当前位置:文档之家› 遥感概论_秦其明_第八章定量遥感基础

遥感概论_秦其明_第八章定量遥感基础

遥感概论_秦其明_第八章定量遥感基础
遥感概论_秦其明_第八章定量遥感基础

第八章定量遥感

模型是解决问题的工具。在利用遥感技术解决问题时我们通常需要建立模型,模型是联系遥感可测参数(辐射强度、偏振、相位)与实际应用中所需参数的纽带和桥梁。本章的学习重点就是建立遥感模型的一般方法。

本章重点是掌握定量遥感建模方法。

第一节定量遥感概述

定量遥感是当前遥感发展的前沿。它利用遥感器获取的地表地物的电磁波信息,在计算机系统支持下,通过数学的或物理的模型将遥感信息与观测地表目标参量联系起来,定量地反演或推算出某些地学、生物学及大气等目标参量或地物定量信息。

8.1.1 可见光、近红外波段定量遥感

遥感的基本过程可以看作是电磁波与大气相互作用过程以及电磁波与地表的相互作用过程的叠加。在这个过程中:

电磁波与大气相互作用形成大气效应。大气效应是电磁辐射在太阳-目标物-传感器系统的传输过程中受到大气分子、水气、气溶胶和尘粒等散射、吸收和折射等影响。通过大气纠正可以基本消除大气效应对遥感影象的影响。

定量遥感需要考虑地表非朗伯体特性。大多数情况下的地面物质都不是均一的朗伯体,朗伯体的假设给定量遥感计算带来很大的误差。可以用地表的二向反射率分布函数(BRDF)来描述地表的非朗伯体特性,减少定量遥感计算造成的误差。

8.1.2 热红外波段的定量遥感

热红外波段遥感测量的对象是地表物质的热辐射。在热学中,温度是物质分子热运动平均动能的量度,描述了物质内部分子热运动的剧烈程度。物质内部微观粒子的运动导致了物质向外发射电磁波,即热辐射。地球环境的代表性温度为300K,它对应的接近10μm,正接近热红外大气窗口区,因此,可以利用热红外遥感器获取地表的热辐射状况。

热红外遥感获得的亮度温度。对于地球表面真实物体(绝大多数为非黑体)

而言,由于其辐射亮度受自身比辐射率的影响,所以比辐射率是联系亮温与真实温度的桥梁。

8.1.3 主动微波遥感基础

合成孔径雷达(SAR)二维成像过程是通过安装在运动平台上的雷达天线不断地发射脉冲信号,接受它们在地面的回波信号,经信号的成像处理形成二维SAR影像,影像中的每一像素的幅度只与目标的后向散射系数有关。

随着应用的需要,不仅希望得到SAR照射场景的二维信息,而且希望能得到该区域的高度信息。

获取地表形态垂直变化的遥感测量传感器主要有干涉雷达,即干涉测量合成孔径雷达。

第二节定量遥感主要研究内容

8.2.1遥感器定标

遥感器定标是指建立遥感器每个探测元件所输出信号的数值量化值与该探测器对应像元内的实际地物辐射亮度值之间的定量关系。

由于卫星运行时所获取的遥感信息受到诸多因素影响,如遥感器系统的畸变、大气传播的干扰、地形影响等都会造成遥感器采集到的辐射能量与目标地物实际的辐射能量之间存在较大偏差,因此需要遥感器定标。遥感器定标是遥感数据定量化处理中的最基本环节,遥感器的定标精度直接影响到遥感数据的可靠性和精度。遥感器定标包括实验室定标、星上内定标和场地外定标三部分内容。

8.2.1.1 遥感器实验室定标是指对比分析与研究空中遥感器接收到的电磁波能量信号与地物光谱仪接收到的电磁波能量信号的定量关系,以及电磁波能量信号与地物的物理特性的关系,以便对获取的空中遥感器信号进行纠正。遥感器实验室定标主要包括光谱定标与辐射定标两大部分。光谱定标是测量遥感器随入射辐射波长变化的响应。辐射定标用以确定遥感器入瞳处的准确辐射数值。

8.2.1.2 遥感器星上内定标卫星发射后,探测探测器元件老化或者工作温度变化都会影响到遥感器的响应,因此需要遥感器星上内定标。星上内定标主要是绝对辐射定标,在可见光和反射红外区采用电光源(灯定标)和太阳光(太阳定标)作为高温的标准辐射源,在热红外区采用卫星上的标准黑体(黑体定标)作为高温的标准辐射源,以宇宙空间作为低温标准辐射源。

8.2.1.3 遥感器场地外定标

是在遥感器飞越辐射定标场上空时,在定标扬选择若干像元区,测量遥感器对应的各波段地物的光谱反射率和大气光谱参量,并利用大气辐射传输模型给出遥感器入瞳处各光谱带的辐射亮度,最后确定它与遥感器对应输出的数字量化的数量关系,求解定标系数,并进行误差分析。

通过地面辐射场地外定标对于提高辐射定标精度具有重要意义,这因为场地外定标方法可以实现全孔径、全视场、全动态范围的定标,并考虑到大气传输和环境的影响。该定标方法可以实现在遥感器运行状态下与获取地面图像完全相同条件下的绝对订正。

8.2.2 大气校正

大气校正是消除遥感图像在大气传输中所引起质量退化的一种图像处理方法。

由于遥感器在空中获取地表信息过程中,受到大气分子、气溶胶和云粒子等

大气成份的吸收与散射的影响,以及大气中水汽和气溶胶含量具有很大的时空变化特性,其结果是目标反射辐射能量被衰减,空间分布被改变,部分和目标物无关的大气散射辐射进入遥感器视场,因此,定量遥感必须考虑大气的影响,对于一个已经经过绝对辐射标定的遥感图像,还必须经过大气校正才可以得到地表目标的正确信息。大气校正包括实验方法和理论方法两类:

8.2.2.1大气校正实验方法

直方图调整(Histogram Matching)。假设清楚目标和模糊目标反射率直方图是一样的,在图像中找到清楚的目标,用清楚目标的反射率直方图来调整模糊目标的反射率直方图。常用的图像处理软PCI,EARDAS等使用了此方法。该方法的优点是简单、实用;缺点包括:1)对于由具有不同反射特征的目标物组成的混合像元,以上假设是不成立的;2)气溶胶空间分布变化大时,此方法校正结果不一定正确。

黑暗目标法(Dark Object Method)。若图像中存在浓密植被或水体,它们在可见光(浓密植被)和红外(水体)具有低反射,根据其在此特征波段的反射率和其他波段反射率之间的相关关系,进行大气校正。比如,在ETM+/TM7波段(2.1um)左右水体反射率应该为零,但由于大气效应往往是非零,确定此差距,用来可以移除其他波段像元中的大气干扰。此方法优点是应用方便,目前在中分辨率成像光谱仪MODIS、MERIS等数据处理中广泛使用。缺点是图像中没有大范围分布的浓密植被或水体存在时,比如北半球冬天的图像或沙漠的图像,该方法无法使用。

固定目标法(Invariant Object)。假设图像中某像元反射率已知或“固定”,利用这些像元反射率和各波段光谱反射率之间的线性关系,可对整个图像进行校正和均一化。如果得到卫星同步的地面观测反射率数据,此方法是绝对大气校正方法。

对比减少法(Contrast Reduction)。地表反射率稳定的区域,若不同时期获取的卫星信号发生变化,说明该区大气光学特征发生了变化。这样,变化差值可用于反演大气气溶胶厚度。但由于地表反射率是一般随时间和空间变化的,稳定地表反射率假设限制了其广泛实用性。

查找表法LUT(Look Up Table) 。是指利用辐射传输模型事先计算不同大气条件下的气溶胶光学厚度、单次散射反照率和相函数等,形成查找表,以便在进行校正时调入使用。

8.2.2.2 大气校正理论方法

实验方法依赖于某种假设或实测数据,其适用性受到了限制。对大气-地表-遥感器之间的辐射传输过程进行模拟,可以模拟出卫星同步的大气参数和地表的真实反射率,常用的有MODTRAN和6S。

MODTARN(Moderate Resolution Transmission)这是由美国空军地球物理实验室(AFGL)开发的计算大气透过率及辐射的软件包。MODTRAN从LOWTRAN发展而来,它提高了LOWTRAN的光谱分辨率。MODTRAN的基本算法包括透过率计算,多次散射处理和几何路径计算等。需要输入的参数有四类:计算模式,大气参数,气溶胶参数和云模式。

MODTRAN有四种计算模式:透过率,热辐射,包括太阳或月亮的单次散射的辐射率,直射太阳辐照度计算。

用MODTRAN进行大气纠正的一般步骤是:首先输入反射率,运行MODTRAN

得到大气层顶(TOA)光谱辐射,解得相关参数;然后利用这些参数带入公式进

行大气纠正。

6S描述了大气如何影响辐射在太阳-地表-遥感器之间的传输。需要输入的参数有:几何参数(遥感器类型、成像年月日和经纬度;大气中的水和臭氧浓度;气溶胶浓度;辐射条件、观测波段和海拔高度;地表覆盖类型和反射率。6S预先设置了50多种波段模型,包括MODIS,AVHRR,TM等常见传感器的可见光近红外波段。

6S和MODTRAN比较:MODTRAN解决的是正问题,给出反射率,MODTRAN能计算出大气层顶辐射;6S解决的是反问题,给出大气层顶辐射,计算地表的反射率。MODTRAN可以计算的波段范围是0.20um到无穷,而6S只能计算太阳反射光谱波段(0.25-4.0um)的大气传输参数,两者进行大气纠正的操作也不相同,MODTRAN得到大气传输参数,需要带入传输公式,得到校正后的反射率;6S输入表观反射率,直接能得到校正后的地面反射率。

8.2.3 定量遥感模型

遥感模型是从抽取遥感专题信息的应用需要出发,对遥感信息形成过程进行模拟、统计、抽象或简化,最后用文字、数学公式或者其他的符号系统表达出来。定量遥感模型概括起来分为三类:

物理模型

根据物理学原理建立的模型,模型中参数具有明确的物理意义,模型通常采用数学公式描述。此类模型通常是非线性的,方程复杂、输入参数多、实用性较差,为了求解通常对多个非主要因素进行忽略或假定。常见的“物理模型”有植被二向性反射的辐射传输模型、几何光学模型等。

统计模型

又称为“经验模型”,其建模思路是对一系列观测数据作经验性的统计描述,或者进行相关分析,建立遥感参数与地面观测数据之间的回归方程。这类模型优点是简便、适用性强,参数较少。弱点是理论基础不完备,缺乏对物理机理的足够理解和认识,代表性差,模型应用受到区域实用性的限制。

半经验模型

综合统计模型和物理模型的优点产生的混合模型。“半经验模型”建模思路既考虑模型的定性物理含义,又采用经验参数建模。例如Rahman的地表二向反射模型等半经验模型。

主要定量遥感模型介绍

辐射传输模型

辐射传输模型的理论基础是辐射传输理论,描述光辐射和粒子(包括电子、质子、中子等基本粒子)在介质中传播的规律。其核心为辐射传输方程,即:

几何光学模型

几何光学模型主要考虑地表的宏观几何结构,把地表假设为具有已知几何形状和光学性质,按一定方式排列的几何体,通过分析几何体对光线的截获和遮阴及地表面的反射来确定植冠的方向反射(赵英时等,2003)。代表性的有Li-Strahler GOMS 模型

ds表示地表或树冠表面的面积元,R(s)是该面积元的的反射率,(i,s)和(r,s)分别代表ds的法矢量与入射及观察的方向矢量夹角的余弦,Ii(s)表示受阳光直照与否的指数,数值为1(受直照)或0,Ir(s)是ds是否直接在观察者视场内的指数,为1(直接可见)或0,A是视场(FOV)在水平地面的投影。

混合模型

李小文等在1994年发展了植被BRDF几何光学与辐射传输几何模型(GORT),综合用几何光学模型(GO)在解释树冠阴影和辐射传输模型(RT)在解释对此散射上各自的优势。GORT模型在解释林下辐照及总反射上比较成功,但当树冠浓密时,有过高估计对此散射的各向同性的倾向,从而导致偏亮的阴影。

Ls为传感器所接收到的辐射亮度;Lg为地表光照面所产生的亮度;Lc为树冠光照面所产生的亮度;Lt为树冠的阴影所产生的亮度;Lz为地表的阴影所产生的亮度;Kg,Kc,Kt,Kz 分别为地表光照面、树冠光照面、树冠阴影面、地表阴影面在视场内的所占的面积比例。

计算机模拟模型

计算机模拟模型是指为研究的物理过程营造一些概率模型,进行随即模拟和统计试验,通过估算这些模型的近似解的数值方法,如蒙特卡罗(Monte Carlo)方法。

蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”,目前被遥感信息领域使用。

8.2.4 尺度效应与混合像元

遥感图像像元所对应的地表单元具有从小于1米到数千米的不同尺度的空间分辨率。这些不同尺度的像元,反映出的同一地表物体的信息量是不同的,其空间异质性程度因尺度不同而有明显差异。在某一个尺度上观测到的性质,总

结的定理和定律,在另一个尺度上不一定有效,需要验证与修正。

尺度效应研究根据定量遥感反演需求确定不同的空间尺度,着重研究不同尺度信息的空间异质性的特点,尺度变化对信息量、信息分析模型和信息处理结果的影响,并进行尺度转换的定量描述。

混合像元分解

若像元只包含了一种类型,则为纯像元,像元中包括两种或两种以上地物类型,称为混合像元。从理论上说,陆地表面在任一空间分辨率像元尺度上总是混合像元,为了应用方便,人们往往把一种地物类型占绝对大比例的混合像元视为纯像元。

混合像元分解,目的是求得两种或两种以上地物类型亚像元所占的比例。常用的方法为随即几何模型:

Ri为混合像元反射率,fi目标物在像元中的面积比例, Rik为该目标的反射率,ε误差系数。

8.2.5 多角度遥感

多角度遥感是指从两个以上的观测方向对下垫面进行观测,从不同的视角获取地表物信息。单一方向的遥感只能得到地面目标一个方向的信息,缺乏足够的信息推断目标的时空特征,从而使定量遥感非常困难。

多角度对地观测通过对目标进行多个方向的观测,获得更为详细可靠的地表三维空间信息,可以提高地表目标物的解译精度和参数反演的准确度。

第三节定量遥感建模与应用

模型是解决问题的工具,在利用遥感技术解决问题时通常需要建立模型。模型是联系遥感可测参数(辐射强度、偏振、相位)与实际应用中所需参数的纽带和桥梁。

8.3.1 遥感信息模型分类

8.3.1.1 正演模型已知地表上每一类目标地物的固有波谱特性等参数和大气各种参数,求出观测目标区域所有目标地物的电磁波(反射)辐射强度,称为正演建模问题,即前向建模问题。

正演建模是从遥感机理出发,用数学物理模型来描述电磁波传播过程,揭示电磁波与地表物质之间的相互作用规律,在此基础上形成遥感信息模型

8.3.1.2 反演模型已知观测目标区域所有目标地物的电磁波(反射)辐射强度,求出不同尺度上辐射源、大气、地表物和遥感器有关的任一参数,则称为反演建模问题。

对反演建模进行求解,称为反演,即从遥感测量到的现象推求未知的原因或

参数。遥感参数反演就是利用接收到的地表地物电磁波信息,依据一定的计算模型,利用遥感影像成像时的各种环境参数如大气状况、成像时间等信息计算出大气和地表目标物的相关物理参数如温度、叶面积指数等

8.3.2 定量遥感建模

定量遥感建模的一般步骤:

模型准备

了解问题的实际背景,明确建模目的。收集和准备模型需要的各种信息,如遥感数据、非遥感资料(等值线图、研究区各种矢量图和说明资料等)、实测数据等,在掌握充分资料基础上明了与把握原型的主要特征;

模型假设

根据建模目的和原型的主要特征,对研究的问题进行分析,设想能够最有效地解决问题的遥感信息模型,列出模型涉及的各类参数及影响因子,确定这些因子之间的关系,区分主要因子和次要因子,对问题进行适当简化,设定变量与参数;

模型求解

运用适当的数学工具求解,求解时要考虑解的唯一性和存在性等。在实际计算机求解过程中,要正确输入文件名或数据表及对应的参数设置。了解模型如何处理数据和完成问题求解的具体过程,以便为模型分析和检验作准备;

模型分析

根据求解结果分析各变量间的依赖关系或稳定性态,分析、比较模型的可靠性和可行性;

模型形成

根据所作的假设,建立变量和参数间的数学表达式。模型形成有如下方法:第一种是把模型影响因子之间的规律用数理方法表达出来,构成数学模型,并求解;

第二种是数理方程与数理统计结合的方程;

第三种是概念分析与数理统计方法结合的方程,即根据经验将影响因子或权重进行量化,在此基础上进行统计分析;

模型检验

在实验区选择均匀分布的参考点,利用实测数据和遥感观测数据计算结果进行比较,对模型进行检验。如果模型观测数据计算结果与实测(结果)数据之间

误差大,要重新考虑模型参数、可测参数以及模型的数学和物理结构,也可以利用数理统计方法进行检验。

模型应用

如果对检验结果满意,那么可以按建模目的应用该模型,在应用模型时必须注意模型的地域实用性,并根据地域差异调整模型参数,以获得正确结果。

由于实际问题的复杂性和建模过程的针对性,以上步骤可以根据实际建模要求调整。

8.3.3 定量遥感建模与应用

8.3.3.1 植被参数反演

NDVI是对地表植被状况的简单、有效的度量,通过两个或多个光谱观测通道组合得到:

式中,Rnir和Rred分别为近红外和红光波段的反射率。

叶面积指数LAI(Leaf Area Index)是指单位地表面面积上的单个侧面的所有绿色叶面积之和。其公式如下:

公式中,R为植被与土壤混合反射率,Rv为土壤反射率,Rs为植被覆盖的反射率,k为待定系数。

8.3.3.2反照率反演

反照率是在反射体表面半球空间的全部短波波段(0.30--5.0 um)反射辐射通量与总入射辐射通量之比。地表反照率研究在揭示局部和区域气候形成的内在机制和中长期气候预报和全球变化研究中具有重要的意义。

反照率的计算包括辐射纠正、大气校正、光谱反照率的计算和光谱反照率向宽波段反照率的转换等步骤(见图):

8.3.3.3 陆地温度反演

陆地表面温度反演的方法有两大类:

实验方法是在实际工作中利用地面定标,实测处在卫星传感器过境时的地面温度,建立图像灰度值和地面温度的回归方程,求出地面温度图像;

理论方法是通过求解辐射传输方程,消除大气影响,求出陆地表面温度如分裂窗法。下式为基于NOAA/AVHRR数据的温度反演算法:

公式中,LST是地表温度,T4,T5分别为NOAA/AVHRR第4,5通道亮度温度,ε4,ε5分别为第4,5通道发射率。

8.3.3.4 InSAR测量地面高程

干涉成象雷达(InSAR)就是利用SAR两次成象观测的相位差,按照一定的几何关系进行变换,可以得到观测区域的地形高度。

INSAR技术原理是通过两副天线同时观测(单轨模式),或两次平行观测(重复轨道模式),获取地面同一景观的复数影像对。由于目标与天线位置的几何关系,在复图像上产生相位差,形成干涉条纹图。干涉条纹图包含了斜距向上的点与两天线位置之差的精确信息。

利用传感器高度,雷达波长,波束视向及天线基线距之间的几何关系,可以精确地测量出图像中每一点的三维位置。

使用2幅SAR图像数据与DEM数据进行雷达差分干涉检测处理流程为:

对两干涉相位图进行图像配准,两干涉相位图求差,同时进行利用已知的地面数字高程模型,根据成像关系合成一副干涉图,在此基础上进行地形相位改正,用此干涉图减去原来的干涉图,去除地形的影响,生成差分干涉图,通过相位解缠,得到解缠相位图,然后进行相位到位移的变换,得到位移图。

遥感导论答案

第一章 1.遥感的概念:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通 过分析,揭示出物体的特征性质及其变化的综合性探测技术 2.遥感系统的基本构成:遥感系统包括被测目标的信息特征, 信息的获取, 信息的传输与记录, 信 息的处理和信息的应用五大部分 3.遥感的特点:1)大面积的同步观测2)时效性3)数据的综合性和可比性4)经济性5)局限性 第二章 1.电磁波: 当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,就是电磁波 电磁波谱: 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱 2.辐射通量φ: 单位时间内通过某一面积的辐射能量 辐射通量密度E:单位时间内通过单位面积的辐射能量 辐射度I:被辐射的物体表面单位面积上的辐射通量 辐射出射度M:辐射源物体表面单位面积上的辐射通量 3.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体 黑体辐射规律:1)绝对黑体的总辐射出射度与黑体温度的四次方成正比 2)黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比 3)黑体温度越高,其曲线的峰顶就越往波长短的方向移动 4.太阳常数:是指不受大气影响在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量 5.常见的大气散射及其特点,解释蓝天、朝霞、夕阳 1〉瑞利散射:当大气中粒子的直径比波长小的多时发生的散射。特点是散射强度与波长的四次方成反比,对可见光的影响很大 2〉米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。特点是散射强度与波长的二次方成反比,散射在光线向前方向比向后方向更强,方向性比较明显,潮湿天气对米氏散射影响较大 3〉无选择性散射:当大气中粒子的直径比波长大得多时发生的散射。特点是散射强度与波长无关无云的晴空呈现蓝色,因为蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,,使太阳辐射传播方向的蓝光被大大削弱。在日出和日落时,太阳高度角小,阳光斜射向地面,通过的大气层比阳光直射时要厚得多。在过长的传播中,蓝光波长最短,几乎被散射殆尽,波长次短的绿光散射强度也居次之,大部分被散射掉了。只剩下波长最长的红光,散射最弱,因此透过大气最多。加上剩下的绿光,最后合成呈现橘红色。 6.大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口 7.地球辐射的特点 波段名称可见光与近红外(微米)中红外远红外 波长0.3~0.5 2.5~6 〉6 辐射特性地表反射太阳辐射为主地表反射太阳辐射 地表物体自主热辐射为主 和自身的热辐射 发射光谱曲线:某种物体的比辐射率(发射率)随波长的变化曲线

定量遥感的定义

定量遥感的定义 定量遥感 随着经济和科技的发展,国家的宏观决策、资源调查、环境及灾害监测等 影响国民经济发展的关键领域急需数据支持,要求数据具有空间上的宏观性, 时间上的连续性和可获取数据的全面性。而遥感技术正具备这一能力,它能够 以不同的时空尺度不断地提供多种地表特征信息。 但是与遥感卫星获取数据的能力相比,遥感数据的自动、定量化处理乃至 对遥感数据信息的理解能力与对遥感数据的有效利用却远远不足,这也是目前 制约遥感发挥作用的瓶颈问题。因此,定量遥感逐渐成为遥感发展的主要方向。 定义 定量遥感或称遥感量化遥感研究,主要指从对地观测电磁波信号中定量提 取地表参数的技术和方法研究,区别于仅依靠经验判读的定性识别地物的方法。 它有两重含义:遥感信息在电磁波的不同波段内给出的地表物质的定量的 物理量和准确的空间位置;从这些定量的遥感信息中,通过实验的或物理的模 型将遥感信息与地学参量联系起来,定量的反演或推算某些地学或生物学信息。 建模 装置在星体上的传感器,它的可测参数一般为电磁波的属性参数,也就是 电磁辐射强度、偏振度、相位差等,而我们的目的是要从这些可测参数中获得 有关目标的物理的、地理的、化学的、甚至生物学的状态参数,所以在可测参 数与目标状态参数间建立某种函数关系是实现目标参数反演的关键一步,我们 称它为建模。 遥感模型一般分为三种: 1.统计模型(即经验模型):基于陆地表面变量和遥感数据的相关关系,对 一系列的观测数据做经验性的统计描述或者进行相关性分析,构建遥感参数与 地面观测数据之间的线性回归方程。 优点:参数少;容易建立且可以有效概括从局部区域获取的数据,简便, 适用性强;

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感导论梅安新复习资料资料讲解

<<<<<<精品资料》》》》》 第一章1、什么是遥感?有何特点?如何分类?有何应用? 遥感:是一种远离目标,在不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获信息进行提取、判定、加工处理及应用分析的 综合性技术。 分类:☆按遥感平台分类:近地面遥感;航空遥感;航天遥感等。 ☆按传感器的探测波段分类: 紫外遥感:0.05 ~ 0.38 μm可见光遥感:0.38 ~ 0.76 μm 红外遥感:0.76 ~ 1000μm微波遥感: 1 mm ~ 10 m 多波段遥感:传感器由若干个窄波段组成 ☆按工作方式分类:主动遥感;被动遥感 ☆按应用领域分类:陆地遥感、海洋遥感;农业遥感、城市遥感……  特点:1.大面积的同步观测 2.时效性 3.数据的综合性和可比性 4.经济性 5.局限性 应用: A、土地资源、土地利用及其动态监测 B、农作物的遥感估产 C、重要自然灾害的遥感监测与评估 D、城市发展的遥感监测 E、天气与海洋 F、其他领域如军事、突发事件 2、什么是光谱特性?指地球上每种物质其反射、吸收、透射及辐射电磁波的固有特质,这种对电磁波固 有的波长特性。 3、遥感技术系统包括哪些内容? ?1)被测目标的信息特征、2)信息的获取、3)信息的传输与纪录、4)信息的处理、5)信息的应用 ?第二章 ?1、电磁波及电磁波谱? 电磁波:指电磁振源产生的电磁振荡在空间的传播 电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列成的图表 ?2、紫外线、可见光、红外线的波谱范围及特征(遥25页) ?3、大气成份与大气结构 ?大气成份:大气中主要包括N2、O2、H2O、CO、CO2、N2O、CH4、O3等 * 微粒有尘埃、冰晶、水滴等形成的气溶胶、云、雾等 * 以地表为起点,在80KM以下的大气中,除H2O、O3等少数可变气体外,各种气体均匀混合、比例不变,故称均匀层,在该层中大气物质与太阳辐射相互作用,是太阳辐射衰减的主要原因。 ?大气结构:大气层没有明显的界线,一般取1000KM。 ?1)对流层:经常发生气象变化,是RS活动的主要区域,是空气作垂直运动而形成对流的一层,在离地面7-19KM之间变化,厚度随纬度降低而增加。 2)平流层:没有明显对流,几乎没天气变化。因有O3层对太阳紫外线的强吸收,温度由下部向上升高。 3)电离层:由下向上分为中间层、热层和散逸层。中间层的气温随高度增加而减少,热层(增温层的气温随高度增加而急剧递增。电离层对可见光、红外甚至微波都影响较小,基本上是透明的,层中 大气十分稀薄,处于电离状态。 4)大气外层: ?4、大气对太阳辐射的影响(遥24~32页):

遥感导论答案

第一章 1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 第二章 1.大气的散射现象有几种类型?①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射) 2.电磁波谱主要分为哪几个波段?遥感利用最多是那些?分析原因 频率由大到小:r射线,x射线,紫外线,可见光,红外线,微波,无线电波 最常用的是:红外,可见光(被动遥感);微波(主动遥感) 3、几类常见地物反射波谱特性.1.植物:叶绿素对蓝光和红光吸收作用强,而对绿光的反射强,在绿波段形成波峰,在红和蓝是两个吸收带,在远红外波段有一反射陡坡,是因为植物的叶细胞结构不同,同时植物的种类、季节、病虫害影响、含水量也影响植被的光谱性质 2.土壤:没有明显的波峰波谷,土质越细反射率越高,有机质含量越高含水量越高,反射率越低 3. 水体:反射主要在蓝绿波段,其它波段吸收都很强,特别是近红外波段吸收更强。水中含泥沙时,可见光波段反射率会增加,峰值出现在黄红区。水中含叶绿素时,近红外波段明显抬升。4. 岩石:没有统一的变化规律。5.城市道路,建筑物的反射波谱曲线受太阳的位置影响 第三章 1.主要遥感平台是什么,各有何特点? 地面平台:高度在0~50m范围内,与地面接触的平台称为地面平台或近地面平台。它通过地物光谱仪或传感器来对地面进行近距离遥感,测定各种地物的波谱特性及影像的实验研究。 航空平台:包括飞机和气球。飞机按高度可以分为低空平台、中空平台和高空平台。 航天平台:包括卫星、火箭、航天飞机、宇宙飞船。高度在150km以上。航天飞机240~350km高度。卫星:低轨150~300km,大比例尺、高分辨率图象;寿命短,用于军事侦察;中轨:700~1000km,资源与环境遥感;高轨:35860km,地球静止卫星,通信、气象。航天平台目前发展最快,应用最广:气象卫星系列、海洋卫星系列、陆地卫星系列。 2.垂直摄影相片的几何特征? (1)中心投影(2)像点位移(3)ao/AO = f/H(正地形会向相片边缘移动,负地形会由相片边缘向中间移动) 3.微波成像的特点? (1)能全天候、全天时工作(2)对某些地物具有特殊的波谱特征(3)对冰、雪,森林、土壤等具有一定的穿透能力(4)对海洋遥感具有特殊意义(5)分辨率低,但特性明显 4.如何评价遥感图像的质量? 一、遥感图像的空间分辨率:指像素所代表的地面范围的大小。地面分辨率取决于胶片的分辨率和摄影镜头的分辨率所构成的系统分辨率,以及摄影机焦距和航高。二、图象的光谱分辨率:波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔愈小,分辨率愈高。传感器的波段选择必须考虑目标的光谱特征值。三、辐射分辨率:辐射分辨率是指传感器接受波谱信号时,能分辨的最小辐射度差。在遥感图像上表现为每一像元的辐射量化级。某个波段遥感图像的总信息量与空间分辨率、辐射分辨率有关。 四、图象的时间分辨率:时间分辨率指对同一地点进行采样的时间间隔,即采样的时间频率,也称重访周期。时间分辨率对动态监测很重要。 第四章 1.理解假色法与减色法的原理和使用条件 加色法原理:不同颜色(波长)的光混合后生成白光 使用条件:显像管(电视、电脑) 减色法原理:2块滤光片组合产生颜色混合时,入射光通过滤光片时都会减掉一部分辐射,最后透过光是经过多次减色的结果使用条件:颜色的配制、彩色相片的染印等 2.真彩色与假彩色的区别 真彩色:用地物对红光的反射率作为红,对蓝光的反射率作为蓝,对绿光的反射率作为绿 假色光:(1)根据加法彩色合成原理,选择遥感的某三个波段,分别赋予红、绿、蓝三种原色。此时原来的选择与原来遥感波段所代表的真实颜色不同,生成的合成色不是地物真实的颜色。(2)对于单波段遥感图像,可按亮度分层,对每层赋予不同的色彩,使之成为不同彩色图像

遥感概论_秦其明_第八章定量遥感基础

第八章定量遥感 模型是解决问题的工具。在利用遥感技术解决问题时我们通常需要建立模型,模型是联系遥感可测参数(辐射强度、偏振、相位)与实际应用中所需参数的纽带和桥梁。本章的学习重点就是建立遥感模型的一般方法。 本章重点是掌握定量遥感建模方法。 第一节定量遥感概述 定量遥感是当前遥感发展的前沿。它利用遥感器获取的地表地物的电磁波信息,在计算机系统支持下,通过数学的或物理的模型将遥感信息与观测地表目标参量联系起来,定量地反演或推算出某些地学、生物学及大气等目标参量或地物定量信息。 8.1.1 可见光、近红外波段定量遥感 遥感的基本过程可以看作是电磁波与大气相互作用过程以及电磁波与地表的相互作用过程的叠加。在这个过程中: 电磁波与大气相互作用形成大气效应。大气效应是电磁辐射在太阳-目标物-传感器系统的传输过程中受到大气分子、水气、气溶胶和尘粒等散射、吸收和折射等影响。通过大气纠正可以基本消除大气效应对遥感影象的影响。 定量遥感需要考虑地表非朗伯体特性。大多数情况下的地面物质都不是均一的朗伯体,朗伯体的假设给定量遥感计算带来很大的误差。可以用地表的二向反射率分布函数(BRDF)来描述地表的非朗伯体特性,减少定量遥感计算造成的误差。 8.1.2 热红外波段的定量遥感 热红外波段遥感测量的对象是地表物质的热辐射。在热学中,温度是物质分子热运动平均动能的量度,描述了物质内部分子热运动的剧烈程度。物质内部微观粒子的运动导致了物质向外发射电磁波,即热辐射。地球环境的代表性温度为300K,它对应的接近10μm,正接近热红外大气窗口区,因此,可以利用热红外遥感器获取地表的热辐射状况。 热红外遥感获得的亮度温度。对于地球表面真实物体(绝大多数为非黑体)

第五章。定量分析概论

第五章。定量分析概论 一、选择题:(在题后所附答案中选择正确答案代号填入括号中) 1、定量分析的任务是() a:测定物质的含量; b: 测定物质中的组成; c: 测定物质的组成及含量; d: 测定物质的有关组分的含量; 2、下列论述中错误的是:() a:方法误差属于系统误差; b: 系统误差不包括操作误差; c: 系统误差呈正态分布 d: 系统误差又称为可测定误差; 3、滴定分析中出现下列情况,导致产生系统误差的是:() a:滴定时有溶液溅出; b:所有试剂含有干扰离子; c:试样未经充分混匀; d:砝码读错了。 4、下列措施中,能减少偶然误差的是() a:增加平行测定次数; b:进行空白实验; c:进行对照实验; d:进行仪器校准。 5、下列有关偶然误差的论述不正确的是() a:偶然误差具有单向性。 b:偶然误差具有随机性; c: 偶然误差的数值大小、正负出现的机率是相等的; d: 偶然误差是由一些不确定的偶然因素造成的。 6、下列有关偶然误差正态分布曲线特点的论述中不正确的是() a:曲线与横坐标间所夹的面积的总和,代表所有测定值出现的机率; b:横坐标x值等于总体平均值u时,曲线有极大值; c:曲线呈对称钟形,两头小中间大,说明小误差出现机率大,大误差出现机率小; d:曲线以u值的横坐标为中心呈镜面对称,说明正、负误差出现的几率相等。 7、下列论述中,正确的是() a:进行分析时,过失误差是不可避免的; b:精密度高,准确度一定高; c: 准确度高,一定需要准确度高; d: 准确度高,系统误差一定小。 8、定量分析要求测定结果的误差() a:愈小愈好;b:等于零; c:略大于允许误差;d: 在允许误差范围内。 9下列各项定义中不正确的是() a:绝对误差是测定值与真实值之差; b:相对误差是绝对误差在真实结果中所占百分率 c:偏差是指测定结果与平均结果之差;

遥感导论试题

遥感导论课后练习题 第一章绪论 1.遥感的基本概念。 2.简述遥感探测系统的几个部分。 3.简述遥感的类型。 4.简述遥感的特点。 5.试述全球及我国遥感技术的进展与趋势。 第二章电磁辐射与地物光谱特征 1、电磁波含义及电磁波的性质。 2、电磁波谱的含义,电磁波区段的划分就是怎样的? 3、辐射通量,辐射通量密度的物理意义。 4、简述辐照度,辐射出射度与辐射亮度的物理意义,其共同点与区别就是什么? 5、朗伯源与黑体的概念? 6、大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾的能力而可见光不能? 7.什么就是大气窗口?对照书内卫星传感器表中所列波段区间与大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。 8、综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整体过程中所发生的物理现象。 9、从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地

物反射波谱特性。 10、列举几种可见光与近红外波段植被、土壤、水体、岩石的地物反射波谱曲线实例。 11、在真空中电磁波速为3×108 s m (1)可见光谱的波长范围从约3、8×10-7 m 的紫色光到约7、6×10-7m 的红色光,其对应的频率范围为多少? (2)X 射线的波长范围约5×10-9—1、0×10-11m,其对应的频率范围就是多少? (3)短波无线电的频率范围约为1、5MH Z ---300MH Z 其对应的波长范围就是多少? 12、在地球上测得太阳的平均辐照度I=1、4×10 3 2m w 设太阳到地球 的平均距离约为1、5×1011m 试求太阳的总辐射能量。 13、假定恒星表面的辐射与太阳表面辐射一样都遵循黑体辐射规律。如果测得到太阳辐射波谱λ=0、51μm ,的北极星的λ=0、35μm ,试计算太阳与北极星的表面温度及每单位表面积上所发射出的功率就是多少? 14、已知日地平均距离为天文单位,1天文单位≈1、496×103m,太阳的线半径约为6、96×105KM (1)通过太阳常数I 0,计算太阳的总辐射通量E 。 (2)由太阳的总辐射通量E,计算太阳的辐射出射度M 。 第三章 遥感成像原理与遥感图像特征 1. 传感器,遥感平台的含义。

定量遥感原理与方法(复试) 考试大纲

中国地质大学研究生院 硕士研究生入学考试《定量遥感原理与方法》考试大纲 一、考试性质 《定量遥感原理与方法》是我校资源与环境遥感专业硕士生入学考试的专业复试课。考生必须熟练掌握定量遥感的基本原理、方法及其应用,以适应硕士阶段专业学习的需要。 二、考试形式与试卷结构 (一)答卷方式:闭卷,笔试。 (二)题型比例: 名词解释或选择约20% 简答题约40% 方案论述题约40% 三、考试要点 (一)定量遥感基础 1、基本概念 了解遥感、电磁波谱、立体角、辐照度、反照率等基本概念。 2、物体的发射辐射特性 了解黑体辐射、太阳辐射概念及其意义,掌握辐射基本定律。 3、地物的反射辐射 了解地物的反射类别、光谱反射率以及地物的反射光谱特性、影响地物光谱反射率变化的因素。 4、大气光学特性 理解大气对于遥感光谱辐射的影响及相关特性。 5、辐射传输模型 了解辐射传输模型相关概念以及地表BRDF统计模型等基本模型。 (二)遥感数据定标方法 1、遥感器定标 了解遥感器定标的方法,包括实验室定标,内外检校定标。 2、遥感图像大气校正 理解大气校正的目的、意义、基本原理,掌握直方图调整、暗目标法等相对校正方法以及Modtran、6S等绝对大气校正模型的原理及处理流程。 3、地形校正方法 理解余弦校正等基本地形校正方法。 (三)定量遥感模型 1、定量遥感模型基本概念 了解可见光近红外、热红外、微波波段定量遥感的基本原理,分析各波段的成像原理、大气影响等内容。 2、定量遥感建模方法 了解定量遥感建模的一般步骤,理解地学反演/遥感反演的基本原理,掌握地表

参数的遥感反演方法。 3、典型定量遥感模型 了解植被冠层反射模型、地表温度反演等典型定量遥感模型,掌握其主要原理及数据处理流程。 (四)定量遥感应用 了解定量遥感技术在农业(如旱情遥感监测)、国土资源调查(如土壤成分分析)、环境监测等方面的应用思想及其基本实现过程。 1

遥感导论课后习题答案

第一章: 1.遥感的基本概念是什么? 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分? 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。 ④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章: 6.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射). ②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射) ③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射). 大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 7.对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。 对于遥感传感器而言,只有选择透过率高的波段才有观测意义。根据卫星传感器的用途选择合适的波段区间进行观测,选择电磁波通过大气层透过率高的大气窗口,以获取更多有效信息。 8.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 ○1大气的吸收作用;○2大气的散射作用;大气的反射、折射、散射、透射 9.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。

遥感导论习题部分答案

第一章: 1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? 答:①大面积同步观测;②时效性;③数据的综合性和可比性;④经济性;⑤局限性 4.遥感技术研究(应用领域)容及发展前景? 答:遥感技术应用领域: (一)技术遥感在测绘中的应用; (二)遥感技术在军事上应用; (三)遥感技术在农林牧方面的应用; (四)遥感技术在水体信息提取中的应用; (五)遥感技术在灾害监测方面的应用。 影响遥感技术发展中主要存在的问题:(1)遥感的时效性:实时检测与处理能力不足;(2)遥感的定量反演:精度不能达到实用要求。 产生以上问题的原因主要有:(1)遥感技术本身的局限性;(2)人们认识上局限性。 发展前景:遥感技术正在进入一个能偶快速准确的提供多种对地观测海量数及应用研究的新阶段,在近一二十年的倒了飞速发展,目前又将达到一个新的啊高潮!主要发展有以下几个方面:【1】遥感影像的空间分辨率和时间分辨率愈来愈高(例如,民用遥感影像饿空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十个数百个;军用侦察卫星空间分辨率达到厘米级,如美若的KH-11空间分辨率为0.11m;【2】可获取遥感立体影像;【3】微波遥感迅速发展,未来诸多领域倾向于合成孔径雷达、成像光谱仪的广泛应用;【4】高光谱遥感迅速发展;【5】遥感的综合应用不断深化,表现为从单一信息源分析向包含非遥感数据的多源信息的复合分析的方向发展;从定向判读向信息系统应用模型及专家系统支持下的定量分析;从静态研究向多时相的动态研究发展;【6】商业遥感时代的到来;【7】建立高速、高精度和大容量的遥感数据处理系统,3S一体化。 第二章:

第八章定量分析概论课案

第八章定量分析化学概论(计划学时数:5) [教学目的]通过本章讲解使学生对分析化学有全面了解。 [教学要求] 1.明确学习定量分析的目的,了解定量分析的方法、分类和定量分析的一般程序。 2.熟悉定量分析误差的来源、分类和减免措施;熟悉准确度和精密度、误差和偏差的含义及表示方法。 3.掌握有效数字的含义和运算规则。 4.了解滴定分析的方法、熟悉滴定分析对滴定反应的要求及基准物质应具备的条件。[学时分配] 第一节定量分析的任务和分析方法的分类1节时 第二节定量分析的一般程序1节时 第三节定量分析的误差1节时 第四节定量分析概述 1.5节时 第五节滴定分析的计算0.5节时 [重点内容] 配合物的组成和命名 [难点内容] 影响配位平衡的因素 [使用教具]挂图,多媒体课件 [教学方法]讲解结合启发和提问。 [作业] 129页1、7、8、11

第一节 分析化学的任务和方法 一、分析化学的任务:是研究物质化学组成和结构的分析方法及有关理论的一门学科。 二、分析方法的分类 1 定性 定量 结构分析 2.分析对象分 有机分析、 无机分析。 3.按式样用量及操作方法分 常量分析(﹥1%)、 半微量分析、 微量分析 痕量分析(〈0.01%〉 4.按分析要求分 例行分析、快速分析 5.按测定原理分??? ??????????滴定分析重量分析为基础的分析方法化学分析:以化学反应 法等色谱分析法、放射分析析法光学分析法、电化学分仪器分析 化学分析是分析化学的基础。 仪器分析的特点:快速、操作简便、灵敏度高适用于微量和痕量分析。 第二节 化学分析的一般程序 一、取样和缩分 取样原则:代表性、均匀性、“多点采样”、“四分法缩合 二、称样和试样的前处理 湿法分解:用单一酸、混合酸等破坏有机质; 干法分解:灰化、熔融 浸提:静态、动态 三、测定 四、分析结果的处理与报告

遥感导论课后习题答案

第一章 1.遥感的基本概念是什么? 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分? 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点? ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章 1.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 3.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。(一)大气的吸收作用;(二)大气的散射作用;大气的反射、折射、散射、透射(提供者原答案) 4.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 波段名称可见光与近 红外 中红外远红外 波长0.3~2.5um 2.5~6um >6um 辐射特性地表辐射太 阳辐射为主 地表辐射太 阳辐射和自身的 热辐射 地表物体自 身热辐射为主

定量分析概论部分习题

定量分析概论部分习题 一、下列情况引起的误差属于哪种误差,如果是系统误差,如何减免? 1.天平盘被腐蚀 2.天平零点有微小波动 3.读数时,发现标尺有些漂移 4.试剂中含有微量杂质干扰主反应 5.试剂中还有微量待测组分 6.待测液未充分混均 7.滴定管读数最后一位估读不准 8.滴定管刻度不均匀 9.测量过程中,电压温度的波动 10.滴定过程中,滴定剂不慎滴在台面上 二、根据有效数字修约规则,将下列数据修约到小数点后第三位。 3.1415926;0.51749;15.454546;0.378502;7.6915; 2.3625 三、根据有效数字运算计算下式。 1.50.2+ 2.51-0.6581=?(52.1) 2.0.0121×25.66×2.7156=?(0.114) 3. 20.0014.39162.206 0.0982 100.03 100%? 1.4182 - ?? ?? ? ???= (21.0%) 4. 1.187×0.85+9.6×10-3-0.0326×0.00824÷2.1×10-3=?(0.9) 四、滴定结果的计算 1.以间接法配制0.1mol·L-1的盐酸溶液,现用基准物质Na2CO3标定。准确称取基准试剂 Na2CO30.1256g,置于250mL锥形瓶中,加入20~30mL蒸馏水完全溶解后,加入甲基橙指示剂,用待测HCl标准溶液滴定,到达终点时消耗的体积为21.30mL,计算该HCl 标准溶液的浓度。(0.1113 mol·L-1) 2.测某试样中铝的含量,称取0.1996g试样,溶解后加入c(EDTA)=0.02010 mo l·L-1的标准 溶液30.00mL,调节酸度并加热使Al3+完全反应,过量的EDTA标准溶液用c(Zn2+)=0.02045 mo l·L-1标准溶液回滴至终点,消耗Zn2+标准溶液6.00mL。计算试样中Al 2 O3的质量分数。(12.27%) 3.称取基准物质K2Cr2O70.1236g用来标定Na2S2O3溶液。首先用稀HCl完全溶解基准物质 K2Cr2O7后,加入过量KI,置于暗处5min,待反应完毕后,加入80mL水,用待标定的Na2S2O3溶液滴定,终点时消耗Na2S2O3溶液21.20mL,计算c(Na2S2O3)。(0.1189 mo l·L-1)4.称取1.0000g过磷酸钙试样,溶解并定容于250ml容量瓶中,移取25.00mL该溶解,将 其中的磷完全沉淀为钼磷酸喹啉,沉淀经洗涤后溶解在35.00mL0.2000 mo l·L-1NaOH中,反应如下: (C9H7N3)3·H3[P(Mo3O10)4]+26OH-=12MoO42-+HPO42-+3C9H7N3+14H2O 然后用0.1000 mo l·L-1HCl溶液滴定剩余的NaOH,用去20.00mL,试计算(1)试样中水溶性磷(也称有效磷)的百分含量;(2)有效磷含量若以w(P2O5)表示则为多少?(5.96%; 13.65%)

遥感导论课后习题答案解析

第一章: 1.遥感的基本概念是什么 应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感探测系统包括哪几个部分 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.作为对地观测系统,遥感与常规手段相比有什么特点 ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。因此,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。 ④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 第二章: 6.大气的散射现象有几种类型根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。 ①瑞利散射(大气中粒子的直径比波长小得多时发生的散射). ②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射) ③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射). 大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大很多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被成为具有穿云透雾的能力。 7.对照书内卫星传感器表中所列波段区间和大气窗口的波段区间,理解大气窗口对于遥感探测的重要意义。? 对于遥感传感器而言,只有选择透过率高的波段才有观测意义。根据卫星传感器的用途选择合适的波段区间进行观测,选择电磁波通过大气层透过率高的大气窗口,以获取更多有效信息。 8.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。 ○1大气的吸收作用;○2大气的散射作用;大气的反射、折射、散射、透射 9.从地球辐射的分段特性说明为什么对于卫星影像解译必须了解地物反射波谱特性。 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。

分析化学答案01定量分析概论

分析化学习题及答案(第四版) 第一章:定量分析化学概论 5. 某试样中汉MgO 约30%,用定量法测定时,Fe 有1%进入沉 淀。若要求测定结果的相对误差小于0.1%,求试样中Fe 2O 3允许的最高质量分数为多少? 解:设 Fe 2O 3的质量分数为ωFe2O3,试样质量记为m 样 测定的相对误差= 的质量 绝对误差 MgO =的质量的量进入沉淀中的MgO Fe +3 即 0.1% =% 30% 1??样 m m Fe Fe 2O 3≈2Fe , n Fe 2O 3fe n =2 1n Fe ωFe 2O 3,n Fe 2O 3 m Fe =n Fe ?M Fe =2n Fe 2O 3?M Fe M Fe 代入 ωFe 2O 3=0.043=4.3%

6. 某含Cl -试样中含有0.10%Br -,用AgNO3进行滴定时,Br -与Cl -同时被滴定,若全部以Cl -计算,则结果为20.0%。求称取的试样为下列质量时,Cl -分析结果的绝对误差及相对误差:a. 0.1000g, b. 0.5000g, c. 1.000g. 解: 设 Cl - 真实含量x,称取试样质量m s (g)。则 0.2000=x+ s B Cl s m r M M m * %10.0? ∴x=0.200-0.001?90 .7945.35=0.200-4.4?10-4=0.1996 E=x-T ∴绝对误差:4.4?10-4(即0.044%) 相对误差:% 96.19%044.0?100%=0.22% 7. 某试样中含有约5%的S ,将S 氧化为SO 42-,然后沉淀为BaSO 4。若要求在一台灵敏度为0.1mg 的天平上称量BaSO 4的质量时可疑值不超过01.%,问必须称取试样多少克? 解:设 必须称取x 克 S —— SO 42-——BaSO 4 32.066 233.39 x ?5% m BaSO 4 天平上的绝对误差 ±0.1mg ?2 (两次读取) 相对误差=4 BaSO m 绝对误差 0.1%= x ???? %539.233066.3210002 1.0

遥感导论-习题及参考答案第二章 电磁辐射与地物光谱特征答案

第二章电磁辐射与地物光谱特征 ·名词解释 辐射亮度:由辐射表面一点处的单位面积在给定方向上的辐射强度称为辐射亮度。 普朗克热辐射定律:在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 灰度波谱:用该类型在该波段上的灰度值反应的波谱曲线 黑体辐射:任何物体都具有不断辐射、吸收、发射电磁波的本领,为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 电磁波谱:将电磁波按大小排列制成图表。 太阳辐射:太阳射出的辐射射线 瑞利散射:大气中粒子的直径比波长小得多时发生的散射 米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射 地球辐射:地面吸收太阳辐射能后,向外辐射的射线。 地物波谱特性:各种地物因种类和环境条件不同,都有不同的电磁波辐射或反射特性 反射率:地物反射能量与入射总能量之比。 比辐射率:某一物体在一特定波长和温度下的发射辐射强度与理想黑体在相同波长和温度下所发射的辐射强度之比。 后向散射 ·问答题 地球辐射的分段特性是什么? 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 什么是大气窗口?试写出对地遥感的主要大气窗口 答:大气窗口的定义:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高 的波段成为大气窗口。 包括:部分紫外波段,0.30 m μ~0.40m μ,70%透过。 全部可见光波段,0.40 m μ~0.76m μ,95%透过。 部分近红外波段,0.76 m μ~1.3m μ,80%透过。 近红外窗口:1.5 m μ~2.4m μ,90%透过,可区分蚀变岩石。 包括两个小窗口:1.5 m μ~1.75m μ 2.1 m μ~2.4m μ。 中红外窗口:3.5 m μ~5.5m μ,反射和发射并存。 包括两个小窗口(反射和发射混合光谱):3.5 m μ~4.2m μ 4.6 m μ~5m μ 远红外窗口:8 m μ~14m μ,发射电磁波,热辐射。 微波窗口:0.5cm~300cm

相关主题
文本预览
相关文档 最新文档