当前位置:文档之家› 高中三角函数总结

高中三角函数总结

高中三角函数总结
高中三角函数总结

三角函数做题技巧与方法总结

知识点梳理

1.正弦函数、余弦函数、正切函数的图像

2、三角函数的单调区间:

x y sin =的递增区间是?????

?

+-2222ππππk k ,)(Z k ∈,递减区间是

?????

?

++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,

-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,

x y tan =的递增区间是??? ?

?

+-22ππππk k ,)(Z k ∈,

3、三角函数的诱导公式

sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinα

cos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosα

tan (2kπ+α)=tanα tan (π+α)=tanα tan (-α)=-tanα

sin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosα

cos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinα

tan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotα

sin 2(α)+cos 2(α)=1

4、两角和差公式

5、 二倍角的正弦、余弦和正切公式

sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosα

sin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)

cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:

2cos 12

sin

αα

=; 2

cos 12cos α

α+±=; α

αααααα

sin cos 1cos 1sin cos 1cos 12

tan

-=+=+-±

=

7、函数B

x A y ++=)sin(?ω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ω

π

2=

T ;其图象的对称轴是直线

)(2

Z k k x ∈+

=+π

π?ω,

凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现

无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”

起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)

先将y =sin x 的图象向左(?>0)或向右(?<0)平移|?|个单位,再将图象上各点的横坐标变为原来的

ω

1

倍(ω>0),便得y =sin(ωx +?)的图象

途径二:先周期变换(伸缩变换)再平移变换。 先将y =sin x 的图象上各点的横坐标变为原来的ω

1

倍(ω>0),再沿x 轴向左

(?>0)或向右(?<0=平移ω

?|

|个单位,便得y =sin(ωx +?)的图象。

9、对称轴与对称中心:

sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;

cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;

对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

10、求三角函数的单调区间:

一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单

调性三角函数大小一般要化为同名函数,并且在同一单调区间; 11、求三角函数的周期的常用方法:

经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法。

12、经常使用的公式 ①升(降)幂公式:

21cos 2sin 2αα-=

、 21cos 2cos 2α

α+=

、 1sin cos sin 22ααα=;

②辅助角公式:

sin cos )a b ααα?+=+(?由,a b 具体的值确定);

二、典型例题 弦切互化

例1.已知2tan =θ,求(1)

θ

θθ

θsin cos sin cos -+;

解:(1)2232

121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+

=

-+θθθ

θθθ

θθθθ; 练习:θθθθ22

cos 2cos .sin sin +-的值.

解:θ

+θθ+θθ-θ=θ+θθ-θ22222

2cos sin cos 2cos sin sin cos 2cos sin sin

3

24122221cos sin 2cos sin cos sin 2222-=++-=+θ

θ+θθ

-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

函数的定义域问题

例2、求函数1sin 2+=x y 的定义域。

解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期??

?

???-23,2ππ上符合①

的角为??????-67,6ππ,由此可得到函数的定义域为??

????

+-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。

(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>=a a x f y a

的函数,则其定义域由

()x f 确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义

同时还要使实际问题有意义。 函数值域及最大值,最小值 (1)求函数的值域

一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的

特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 例3、求下列函数的值域

(1)x y 2sin 23-= (2)2sin 2cos 2

-+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1)Θ12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (

2

()[].0,4,1sin 11sin 1sin 2sin 2sin 22

22

cos -∈∴≤≤---=-+-=-+=y x x x x x x y Θ 说明:

练习:求函数21sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos )[4

π

t x x x =+=+∈,

则原函数可化为2213

1()24

y t t t =++=++,

因为[t ∈,所以当t =时,max 3y =,当12t =-时,min 3

4

y =,

所以,函数的值域为3

[34

y ∈+,。 (2)函数的最大值与最小值。

求值域或最大值,最小值的问题,一般的依据是: (1)sinx,cosx 的有界性; (2)tanx 的值可取一切实数;

(3)连续函数在闭区间上存在最大值和最小值。 例4、求下列函数的最大值与最小值

(1)x y sin 2

1

1-= (2)4sin 5cos 22-+=x x y (3)

??

?

???∈+-=32,31cos 4cos 32ππx x x y

分析:(1)可利用sinx,cosx 的值域求解求解过程要注意自变量的去值范围(2)(3)可利用二次函数c bx ax x f ++=2)(在闭区间[]n m ,上求最值得方法。 解:(1)

221sin ;261sin 1sin 11sin 10

sin 21

1min max =

==-=∴≤≤-∴?????≤≤-≥-y x y x x x x 时当时,当Θ (2)

[]2

2

2

592cos 5sin 42sin 5sin 22sin ,sin 1,1,48y x x x x x x ?

?=+-=-+-=--+∈- ??

?Q

∴当sin 1x =-,即2(2

x k k Z π

π=-+∈)时,y 有最小值9-;

当sin 1x =,即2(2

x k k Z π

π=+∈),y 有最大值1。

3)

4

13,21cos 415y 32,21cos ,21,21cos ,32,3,31)32(cos 31cos 4cos 3min max 22-

=====-=??

?

???-∈??????∈--=+-=y x x x x x x x x x y 时,即当时,、即

从而ππππΘ

函数的周期性

例5、求下列函数的周期

()x x f 2cos )(1= ())6

2sin(2)(2π

-=x x f

分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。

(1)把x 2看成是一个新的变量u ,那么u cos 的最小正周期是π2,就是说,当π2+u u 增加到且必须增加到π2+u 时,函数u cos 的值重复出现,而

),(2222πππ+=+=+x x u 所以当自变量x 增加到π+x 且必须增加到π+x 时,

函数值重复出现,因此,x y 2sin =的周期是π。

(2)??? ??-=+-62sin 2)262sin(2πππx x Θ 即())62sin(2642

1

sin 2πππ-=??????-+x x

)6

2sin(2)(π

-=∴x x f 的周期是π4。

说明:由上面的例题我们看到函数周期的变化仅与自变量x 的系数有关。

一般地,函数)sin(?ω+=x A y 或)cos(?ω+=x A y (其中?ω,,A 为常数,),0,0R x A ∈>≠ω

例6、已知函数2()4sin 2sin 22f x x x x R =+-∈,。

特殊角的三角函数值

特殊角的三角函数值 (第3课时) 复习引入 教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的? 在学生回答了这个问题后,教师再复述一遍,提出新问题:两块三角尺中有几个不同的锐角?是多少度?分别求出这几个锐角的正弦值、余弦值和正切值. 提醒学生:求时可以设每个三角尺较短的边长为1,?利用勾股定理和三角函数的定义可以求出这些三角函数值. 探究新知 (一)特殊值的三角函数 学生在求完这些角的正弦值、余弦值和正切值后教师加以总结. 30°、45°、60°的正弦值、余弦值和正切值如下表:

教师讲解上表中数学变化的规律:对于正弦值,分母都是2, 2, 分子按角度增加分别为.对于正切,60?度的正切 ,即是下 一个角的正切值. 要求学生记住上述特殊角的三角函数值. 教师强调:(sin60°)2用sin 260°表示,即为(sin60°)·(sin60°). (二)特殊角三角函数的应用 1.师生共同完成课本第79页例3:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45?? -tan45°. 教师以提问方式一步一步解上面两题.学生回答,教师板书. 解:(1)cos 260°+sin 260°=(12 )2+2=1 (2)cos 45sin 45?? -tan45° 2.师生共同完成课本第80页例4:教师解答题意: (1)如课本图28.1-9(1),在Rt △ABC 中,∠C=90, ,,求∠A 的度数. (2)如课本图28.1-9(2),已知圆锥的高AO 等于圆锥的底面半径OB a .

教师分析解题方法:要求一个直角三角形中一个锐角的度数,可以先求它的某一个三角函数的值,如果这个值是一个特殊解,那么我们就可以求出这个角的度数. 解:(1)在课本图28.1-9(1)中, ∵sinA=3 6 BC AB = 2, ∴∠A=45°. (2)在课本图28.1-9(2)中, ∵tana=3 AO OB OB =3 ∴a=60°. 教师提醒学生:当A、B为锐角时,若A≠B,则 sinA≠sinB,cosA≠cosB,tanA≠tanB. 随堂练习 学生做课本第80页练习第1、2题. 课时总结 1、学生要牢记下表: 30 ° 45 ° 60 ° sinα1 2 2 2 3 2

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

高中数学三角函数知识点总结(非常好用)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈°=57°18ˊ. 1°= 180 π≈(rad ) 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: x y + O — — + # x y O — + + — + y O ) | — + + —

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:αα cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ' ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

《特殊角的三角函数值》教案

28.1锐角三角函数 第3课时特殊角的三角函数 1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点) 2.能够进行30°、45°、60°角的三角函数值的计算;(重点) 3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点 ) 一、情境导入 问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的? 问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值. 二、合作探究 探究点一:特殊角的三角函数值 【类型一】利用特殊的三角函数值进行计算 计算: (1)2cos60°·sin30°-6sin45°·sin60°; (2) sin30°-sin45° cos60°+cos45° . 解析:将特殊角的三角函数值代入求解. 解:(1)原式=2× 1 2× 1 2-6× 2 2× 3 2= 1 2- 3 2=-1; (2)原式= 1 2- 2 2 1 2+ 2 2 =22 -3. 方法总结:解决此类题目的关键是熟记特殊角的三角函数值. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型二】已知三角函数值求角的取值范围 若cosα= 2 3,则锐角α的大致范围是() A.0°<α<30°B.30°<α<45° C.45°<α<60°D.0°<α<30° 解析:∵cos30°= 3 2,cos45°= 2 2,cos60°= 1 2,且 1 2< 2 3< 2 2,∴cos60°<cos α<cos45°,∴锐角α 的范围是45°<α<60°.故选C. 方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性. 【类型三】根据三角函数值求角度 若3tan(α+10°)=1,则锐角α的度数是() A.20°B.30°C.40°D.50°

三角函数特殊角值表

三角函数特殊值 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 21 sin45°=cos45°=2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2 30? 1 2 3 1 45? 1 2 1 2 60? 3

说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 巧记特殊角的三角函数值 初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。 仔细观察表1,你会发现重要的规律。

高中部分三角函数知识点总结

★高中三角函数部分总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos( ,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限)

特殊角的三角函数值的巧记

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、 斜边的比是掌握了这个比例关系,就可以依定义求出30°、60°角的任意 一个锐角三角函数值,如:001sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三 角形是等腰直角三角形,且两直角边与斜边的比是1∶1 住:00sin 45cos 452 == ,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1 →22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°= =tan45°1=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

高中三角函数知识点总结《精华版》

三角函数知识点总结 1.角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2.象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.终边相同的角的表示: α终边与θ终边相同?2()k k αθπ=+∈Z 4.α与2 α的终边关系:例题:若α是第二象限角,则 2 α 是第_____象限角 5.弧长公式:||l R α=,扇形面积公式R l S ?=2 1 6.任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y = +>,那么sin ,cos y x r r αα= =,()tan ,0y x x α=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。 7.三角函数在各象限的符号 8.特殊角的三角函数值: 30° 45° 60° 90° sin α 2 1 22 2 3 1 cos α 23 2 2 2 1 0 tan α 3 3 1 3

9.同角三角函数的基本关系式: (1)平方关系: 1cos sin 2 2 =+αα (2)商数关系:α α αcos sin tan = (3)倒数关系:1cot tan =?αα 例题:已知 11tan tan -=-αα,则α αααcos sin cos 3sin +-=____;2cos sin sin 2 ++ααα=_____。 10.三角函数诱导公式(主要作用:简化角,方便化简计算) (1)απαsin )2sin(=+k (2)ααsin )sin(-=- απαcos )2cos(=+k ααcos )cos(=- απαtan )2tan( =+k ααtan )tan(-=- (3)( 2 k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数) 符号看象限(看原函数,同时可把α看成是锐角). 诱导公式运用步骤:(1)负角变正角,再写成)20(2πααπ<≤+k ; (2)转化为锐角三角函数。 常用重要结论:①若πβα=+,则βαsin sin =,βαcos cos -=; ②若2 πβα=+,则βαcos sin =,βαsin cos =。 11.两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±= ?-↓= -12.合一公式(辅助角公式):()22sin cos sin a x b x a b x θ+= ++

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

高中数学知识点总结之三角函数篇

第三章 三角函数、解三角形 第1讲 任意角和弧度制及任意角的三角函数 一、必记3个知识点 1.角的概念 (1)分类? ?? 按旋转方向不同分为正角、负角、零角. 按终边位置不同分为象限角和轴线角. (2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度的定义和公式 (1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和1 2 |α|r 2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x , tan α=y x (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0). 如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线. 二、必明3个易误区 1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角. 2.利用180°=π rad 进行互化时,易出现度量单位的混用. 3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x . 三、必会2个方法 1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;

高中三角函数总结

三角函数做题技巧与方法总结 知识点梳理 1.正弦函数、余弦函数、正切函数的图像 2、三角函数的单调区间: x y sin =的递增区间是????? ? +-2222ππππk k ,)(Z k ∈,递减区间是 ????? ? ++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是??? ? ? +-22ππππk k ,)(Z k ∈, 3、三角函数的诱导公式 sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinα cos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosα

tan (2kπ+α)=tanα tan (π+α)=tanα tan (-α)=-tanα sin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosα cos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinα tan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotα sin 2(α)+cos 2(α)=1 4、两角和差公式 5、 二倍角的正弦、余弦和正切公式 sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosα sin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α) cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式: 2cos 12 sin αα -± =; 2 cos 12cos α α+±=; α αααααα sin cos 1cos 1sin cos 1cos 12 tan -=+=+-± = 7、函数B x A y ++=)sin(?ω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ω π 2= T ;其图象的对称轴是直线 )(2 Z k k x ∈+ =+π π?ω, 凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

特殊角的三角函数值及计算

特殊角及计算 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= .

3.求下列各式的值. (1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30° (3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?-?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角. (1)2 1cos =α (2)3 3tan = α (3)2 22sin = α (4)33)16cos(6=-οα (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 |tanB-3|+(2sinA-3)2 =002sin 2=-α0 1tan 3=-α3

重点高中三角函数知识点总结

重点高中三角函数知识点总结

————————————————————————————————作者:————————————————————————————————日期:

高中数学-三角函数 考试内容: 角的概念的推广.弧度制. 任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切. 正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法. 考试要求: (1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算. (2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. (5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义. (6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α?cos α=1”. §. 三角函数 知识要点 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk y x ▲ SIN \COS 三角函数值大小关系图sinx cosx 1、2、3、4表示第一、二、三、四象限一半所在区域 1 234 1 2 3 4 sinx sinx sinx cosx cosx cosx

高中三角函数总结

三角函数做题技巧及方法总结 知识点梳理 1.正弦函数、余弦函数、正切函数的图像 2、三角函数的单调区间: x y sin =的递增区间是????? ? +-2222ππππk k ,)(Z k ∈,递减区间是 ????? ? ++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是??? ? ? +-22ππππk k ,)(Z k ∈, 3、三角函数的诱导公式 sin (2kπ+α)=sinα sin (π+α)=-sinα

sin(-α)=-sinα cos(2kπ+α)=cosα cos(π+α)=-cosα cos(-α)=cosα tan(2kπ+α)=tanα tan(π+α)=tanα tan(-α)=-tanα sin(π-α)=sinα sin(π/2+α)=cosα sin(π/2-α)=cosα cos(π-α)=-cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π-α)=-tanα tan(π/2+α)=-cotα tan(π/2-α)=cotα sin2(α)+cos2(α)=1 4、两角和差公式 5、二倍角的正弦、余弦和正切公式 sin(α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosα sin(α-β)=sinαcosβ-cosαsinβ cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) cos(α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan2(α)) cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:

特殊角三角函数值表

特殊角三角函数值表: 函数名 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有 正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y 正弦(sin):角α的对边比斜边余弦(cos):角α的邻边比斜边 正切(tan):角α的对边比邻边余切(cot):角α的邻边比对边 特殊函数人倒数关系: tanα ?cotα=1sinα ?cscα=1cosα ?secα=1 特殊函数人商数关系:tanα=sinα/cosαcotα=cosα/sinα 特殊函数人平方关系:sinα2+cosα2=11+tanα2=secα21+cotα=cscα2 以下关系,函数名不变,符号看象限 sin(π+α)=-sinαcos(π+α)=-cosα tan(π+α)=tanαcot(π+α)=cotα sin(π-α)=sinαcos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα 以下关系,奇变偶不变,符号看象限 sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sin(90°+α)=cosα cos(90°+α)=sinα tan(90°+α)=-cotαcot(90°+α)=-tanα 特殊三角函数人积化和差的关系: sinα ?cosβ=(1/2)*[sin(α+β)+sin(α-β)] cosα ?sinβ=(1/2)*[sin(α+β)-sin(α-β)] cosα ?cosβ=(1/2)*[cos(α+β)+cos(α-β)]

三角函数值表

(1)特殊角三角函数值 sin0=0 sin30=0.5 sin45=0.7071 二分之根号2 sin60=0.8660 二分之根号3 sin90=1 cos0=1 cos30=0.4 二分之根号3 cos45=0.1 二分之根号2 cos60=0.5 cos90=0 tan0=0 tan30=0.9 三分之根号3 tan45=1 tan60=1.8 根号3 tan90=无 cot0=无 cot30=1.8 根号3 cot45=1 cot60=0.9 三分之根号3 cot90=0 (2)0°~90°的任意角的三角函数值,查三角函数表。(见下)

(3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。 附:三角函数值表 sin0=0, sin15=(√6-√2)/4 , sin30=1/2, sin45=√2/2, sin60=√3/2, sin75=(√6+√2)/2 , sin90=1, sin105=√2/2*(√3/2+1/2) sin120=√3/2

高中数学知识点总结之三角函数篇

三角函数 1. 你记得弧度的定义吗?能写出圆心角为α,半径为R 的弧长公式和扇形面积公式吗? (·,··)扇l l == =ααR S R R 121 2 2 O R 1弧度 R 2. 熟记三角函数的定义,单位圆中三角函数线的定义 sin cos tan ααα===MP OM AT ,, y T A x α B S O M P 如:若,则,,的大小顺序是- <<π θθθθ8 0sin cos tan 又如:求函数的定义域和值域。y x =--?? ? ? ?122cos π (∵)122120- -?? ? ? ?=-≥cos sin πx x ∴,如图:sin x ≤ 2 2

()∴,25424 012k x k k Z y ππππ - ≤≤+∈≤≤+ 3. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对 称轴吗? sin cos x x ≤≤11, y x O -π2 π2 π y tgx = 对称点为,,k k Z π20?? ? ? ?∈ ()y x k k k Z =- +? ? ?? ??∈sin 的增区间为,2222ππππ ()减区间为,22232k k k Z ππ ππ++? ??? ? ?∈

() ()图象的对称点为,,对称轴为k x k k Z πππ 02 =+∈ [] ()y x k k k Z =+∈cos 的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈ ()图象的对称点为,,对称轴为k x k k Z πππ+ ?? ? ??=∈2 y x k k k Z =- +?? ? ? ?∈tan 的增区间为,ππππ22 ()()[] ?ω?ω+=x A y cos +x Asin =y 4.或的图象和性质要熟记。正弦型函数 ()振幅,周期12|||| A T = πω ()若,则为对称轴。f x A x x 00=±= ()() 若,则,为对称点,反之也对。f x x 0000= ()五点作图:令依次为,,,,,求出与,依点20232 2ω?πππ πx x y + (x ,y )作图象。 ()根据图象求解析式。(求 、、值)3A ω? 如图列出ω?ω?π()()x x 120 2+=+=??? ? ? 解条件组求、值ω? ()?正切型函数,y A x T =+= tan || ω?π ω

高一三角函数题型总结材料

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的①分式 ②齐次式 可以实现αtan 之间的转化 例题:1.已知sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2. α αα α2 2cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换) 3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求①αsin .αcos ②αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A)2 3 (B)4 3 (C) (D)± 2 3 3.设是第二象限角,则 sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5.已知 sin cos 2sin 3cos αα αα-+=5 1,则tan α的值是 ( ) (A)±83 (B)83 (C)83- (D)无法确定 * 6.若α是三角形的一个内角,且sin α+cos α= 3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形

相关主题
文本预览
相关文档 最新文档