当前位置:文档之家› 《材料科学基础》考研—简答题常考题型汇总

《材料科学基础》考研—简答题常考题型汇总

《材料科学基础》考研—简答题常考题型汇总
《材料科学基础》考研—简答题常考题型汇总

材料科学基础简答题考研常考题型汇总

1.原子间的结合键共有几种?各自的特点如何?【11年真题】

答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。

(2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。因此,七熔点和硬度均较高。离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。

(3)共价键:有方向性和饱和性。共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。共价结合的材料一般是绝缘体,其导电能力较差。

(4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。它没有方向性和饱和性,其结合不如化学键牢固。

(5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。

2.说明间隙固溶体与间隙化合物有什么异同。

答:相同点:二者一般都是由过渡族金属与原子半径较小的C、N、H、O、B等非金属元素所组成。

不同点:(1)晶体结构不同。间隙固溶体属于固溶体相,保持溶剂的晶格类

型;间隙化合物属于金属化合物相,形成不同于其组元的新点阵。

(2)间隙固溶体用α、β、γ表示;间隙化合物用化学分子式MX、M2X 等表示。

间隙固溶体的强度、硬度较低,塑性、韧性好;间隙化合物的强度、熔点较高,塑性、韧性差。

3.为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能?

答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。

4.试述硅酸盐的结构和特点?

答:(1)硅酸盐结构的基本单元是[SiO4]四面体。Si原子位于O原子的四面体间隙内,Si、O之间的结合不仅有离子键还有共价键

(2)每一个氧最多被两个[SiO]四面体共有

(3)[Si]四面体可以孤立存在,也可以共顶点互相连接。

(4)Si-O-Si形成一折线。

分类:含有有限硅氧团的硅酸盐、岛状、链状、层状、骨架状硅酸盐。

5.为什么外界温度的急剧变化可以使许多陶瓷件开裂破碎?

答:由于大多数陶瓷由晶相和玻璃相构成,这两种相的热膨胀系数相差很大,高温很快冷却时,每种相的收缩程度不同,多造成的内应力足以使陶瓷器件开裂或破碎。

6.陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊

性能。

答:陶瓷材料中主要的结合键是离子键和共价键。由于离子键和共价键很强,故陶瓷的抗压强度很高、硬度很高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好、耐高温、化学稳定性高。

7.为什么密排六方结构不能称为一种空间点阵?【11年真题】

答:空间点阵中每个阵点应该具有完全相同的周围环境。密排六方晶体结构位于晶胞内的原子具有不同的周围环境。如将晶胞角上的一个原子与相应的晶胞之内的一个原子共同组成一个阵点,这样得出的密排六方结构应属于简单六方点阵。

8.空间点阵和晶体点阵有何区别?

答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各阵点的周围环境相同,它只能有14种类型;晶体点阵又称晶体结构,是指晶体中实际质点的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。

9.简述菲克第一定律和第二定律的含义,写出其表达式,并标明其字母的含义。

【08年真题】

答:菲克定律描述了固体中存在浓度梯度时发生的扩散,即化学扩散。 菲克第一定律:扩散中原子的通量与质量浓度梯度成正比,即dx d D J ρ-=。式中,J 为扩散通量,表示单位时间内通过垂直于扩散方向X 的单位面积的扩散物质质量,其单位是kg/(m 2*s);D 为扩散系数,其单位为m 2/s ;ρ是扩散物质的质量浓度,其单位为kg/m 3。式中的负号表示物质的扩散方向与质量浓度梯度dx

ρ

d

方向相反,即表示物质从高的质量浓度区向低的质量浓度区方向迁移。该定律描述了一种稳态扩散,即质量浓度不随时间而变化。

菲克第二定律:大多数扩散过程是非稳态扩散过程,某一点浓度随时间而变化,这类扩散过程可以由菲克第一定律结合质量守恒定律推导出的菲克第二定律来处理。即t ??ρ= )x

(D ????ρx 。 10.试从扩散系数公式)kT

Q (-exp *Do D =说明影响扩散的因素。【模拟题二】 答:从公式表达式可以看出,扩散系数与扩散激活能Q 和温度T 有关。 扩散激活能越低,扩散系数越大,因此扩散激活能低的扩散方式的扩散系数较大,如晶界和位错处的扩散系数较大。不同类型的固溶体,原子的扩散机制是不同的,间隙固溶体的扩散激活能一般均较小。

温度是影响扩散速率的最主要因素。温度越高,原子热激活能量越大,越易发生迁移,扩散系数越大。

11.为什么钢铁零件渗碳温度一般要选择γ相区中进行?若不在γ相区进行会有什么结果?

答:因为α-Fe 中最大的碳溶解度只有0.0218%,对于含碳质量分数大于0.0218%的钢铁,在渗碳时零件中的碳浓度梯度为零,渗碳无法进行,即使是纯铁,在α相区渗碳时铁中的浓度梯度很小,在表面也不能获得高的含碳层。另外,由于温度低,扩散系数也很小,渗碳过程极慢,没有实际意义。γ-Fe 中的碳溶解度高,渗碳时在表层可获得较高的碳浓度梯度使渗碳顺利进行。

12.三元系发生扩散时,扩散层内能否出现两相共存区域,三相共存区?为什么?

答:三元系扩散层内不可能存在三相共存区,但可以存在两相共存区。原因是三元系中如果出现三相平衡共存,其三相中成分一定且不同相中同一组分的化

学位相等,化学位梯度为零,扩散不可能发生。三元系在两相共存时,由于自由度数为2,在温度一定时,其组成相的成分可以发生变化,使两相中相同组元的原子化学位平衡受到破坏,引起扩散。

13.试述孪晶与滑移的异同,比较它们在塑性变形过程中的作用。【07年真题】

答:相同点:都是切应力下的剪切变形,都是塑性变形的一种基本方式,都不改变晶体结构,都是位错运动的结果。

不同点:(1)滑移不改变晶体位向;孪生改变晶体位向,形成镜面对称关系。

(2)滑移是全位错运动的结果,孪生是不全位错运动的结果。

(3)滑移是不均匀切变过程,孪生是均匀切变过程。

(4)滑移比较平缓,应力应变曲线较光滑、连续,孪生则呈锯齿状

(5)一般先发生滑移,滑移困难时发生孪生。

(6)滑移产生的切变较大,而孪生产生的切变较小。

作用:塑性变形主要通过滑移实现,孪生对塑性变形的直接贡献不大,但孪生改变了晶体的位向,使原处于不利取向的滑移系转到新有利于发生滑移的取向,从而可以激发进一步的滑移和晶体变形。

14.若单晶体铜的表面恰好为{100}晶面,假设晶体可以在各个滑移系上进行滑移。试讨论表面上可能见到的滑移线形貌(滑移线的方位和它们之间的夹角)。若单晶体表面为{111}面呢?

答:铜晶体为面心立方点阵,其滑移系为{111}〈110〉。若铜单晶体的表面为〈110〉晶面,当塑性变形时,晶体表面出现的滑移线应是{111}与{100}的交线〈110〉。即在晶体表面上见到的滑移线是相互平行的,或者互相成90o夹角。

当铜晶体的在表面为{111}晶面族时,表面出现的滑移线为〈110〉,它们要么相互平行,要么相互夹角为60o。

15、沿密排六方单晶体的[0001]方向分别加拉伸力和压缩力。说明在这两种情况下,形变的可能性及形变所采取的主要方式。

答:密排六方金属的滑移面为(0001),而[0001]方向的力在滑移面上的分切应力为零,故单晶体不能滑移。拉伸时,单晶体可能产生的形变是弹性形变或随后的脆断;压缩时,在弹性变形后,可能有孪生。

16、给出位错运动的点阵阻力与晶体结构的关系式。说明为什么晶体滑移通常发生在原子的最密排晶面和晶向。

答:滑移发生在最密排面和密排方向的原因是密排面的面间距最大,点阵阻力小,因而容易沿着这些面发生滑移。而密排方向的原子间距最小,即b最小,点阵阻力小,也即位错b最小。

17.什么是单滑移、多滑移、交滑移?三者的滑移线的形貌各有何特征?

答:单滑移指晶体中只有一个滑移系进行滑移。滑移线呈一系列彼此平行的直线。这是因为单滑移仅有一组滑移系,该滑移系中所有的滑移面都互相平行,且滑移方向都相同所致。

多滑移是指晶体中有两组或以上的不同滑移系同时或交替地进行滑移。它们的滑移线或者平行,或者相交成一定角度。这是因为这些滑移系的滑移面之间及滑移方向之间都有一定角度。

交滑移是指螺型位错在原滑移面运动受阻时,转到与之相交的另一滑移面继续滑移的过程。即一般由两个或以上的滑移面沿共同的滑移方向同时或交替的滑

移。它们的滑移线通常为折线或波纹状。这是螺型位错在不同的滑移面上反复进行“扩展”的结果。

18.用金相分析如何区分“滑移带”、“机械孪晶”、“退火孪晶”。

答:滑移带一般不穿越晶界。一般以平行直线和波纹线出现。可以通过抛光去除。

机械孪晶也在晶粒内,一般孪晶区域不大,孪晶与基体位向不同。不能通过抛光去除。

退火孪晶通常以大条块形态分布于晶内,孪晶界面平直。一般在金相磨面上分布比较均匀。不能通过抛光去除。

19.为什么陶瓷实际的抗拉强度低于理论强度,而陶瓷的压缩强度总是高于抗拉强度?

答:这是由于陶瓷粉末烧结时存在难以避免的显微空隙,在冷却或热循环时由热应力产生了显微裂纹。在裂纹尖端,会产生严重的应力集中,故其一般在低于理论强度的应力下就会发生断裂。

压缩强度高于抗拉强度是因为,在拉伸时,当裂纹一达到临界尺寸就失稳扩展而导致断裂,而压缩时,裂纹或者闭合或者呈稳态地慢慢扩展,并转向平行于压缩轴。

20.试比较去应力退火过程与动态回复过程位错运动有何不同?从显微组织上如何区分动、静态回复和动、静态再结晶?

答:去应力退火过程中,位错通过攀移和滑移重新排列,从高能态转变为低能态;动态回复过程中,则是通过螺型位错的交滑移和刃型位错的攀移,使异号位错相互抵消,保持位错增值率与位错消失率之间的动态平衡。

从显微组织上观察,静态回复时可见到清晰的亚晶界,静态再结晶时会形成等轴晶粒;而动态回复时形成胞状亚结构,动态再结晶时等轴晶中又形成位错缠结胞,比静态再结晶晶粒更细。

21.某低碳钢零件要求各向同性,但在热加工后形成比较明显的带状组织。请提出几种具体方法来减轻或消除在热加工中形成的带状组织的因素。

答:一是不在两相区变形;二是减少夹杂元素的含量;三是采用高温扩散退火,消除元素偏析。对于已经出现带状组织的材料,在单相区加热、正火处理,则可以予以消除和改善。

22.为何金属材料经热加工后机械性能较铸造状态为佳?

答:金属材料在热加工过程中经历了动态变形和动态回复及再结晶过程,柱状晶区和粗等轴晶区消失了,代之以较细小的等轴晶粒;原铸锭中许多分散缩孔、微裂纹等由于机械焊合作用而消失,显微偏析也由于压缩和扩散得到一定程度的减弱,故使材料的致密性和力学性能提高。

23.陶瓷晶体塑性变形有何特点?

答:陶瓷一般是多晶陶瓷,且是比较脆的,其化学键主要是离子键和共价键。在共价键键合的陶瓷中,原子之间的键合具有方向性,位错想要运动必须破坏这种特殊的原子键合,而共价键的结合力是很强的,位错运动有很高的点阵阻力。使得陶瓷有很大的脆性。

但是离子键键合的单晶陶瓷具有一定的塑性。如图,当位错运动一个原子间距时,同号离子的巨大斥力,使得位错难以运动。但位错如果沿45°方向运动,则在滑移过程中相邻晶面始终由库仑引力保持相吸,因而具有很好的塑性。24.图表示再结晶终了的晶粒尺寸和再结晶前的冷加工量之间的关系。图中曲线

表明,三种不同的退火温度对晶粒大小影响不大。这一现象与通常所说的“退火温度越高,退火后晶粒越大”是否矛盾?

答:不矛盾。再结晶终了的晶粒尺寸是指再结晶刚好完成但未发生长大时的晶粒尺寸。但晶粒大小是退火温度的弱函数,故图中曲线再结晶终了的晶粒尺寸与退火温度关系不大。再结晶完成以后,若继续保温,会发生晶粒长大的过程。对这一过程而言,退火温度越高,退火后晶粒越大。因为温度越高,晶界移动的激活能就越低晶界的平均迁移率就越高,晶粒长大速率就越快,退火后晶粒越粗大。

25、灯泡中的钨丝在非常高的温度下工作,故会发生显著的晶粒长大。当形成横跨灯丝的大晶粒时,灯丝在某些情况下就变得很脆,并会在因加热与冷却时的热膨胀所造成的应力下发生破断。试找出一种能延长钨丝寿命的方法。

可以在钨丝中形成弥散、颗粒状的第二相(如ThO2)以限制晶粒长大。因为若ThO2的体积分数为φ,半径为r时,晶粒的极限尺寸R=,若选择合适的φ和r,使R尽可能小,即晶粒不再长大,使灯丝的脆性大大降低而不易破断,从而有效地延长了灯丝的寿命。

26.说明金属在冷变形、回复、再结晶和晶粒长大四个阶段的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。【07真题】

答:(1)冷变形加工时:主要的形变方式是滑移,由于滑移,晶体中空位和位错密度增加,位错分布不均匀。缺陷运动驱动力为切应力作用。

(2)回复过程:空位扩散、聚集或消失;位错密度降低,位错相互作用,重新分布(多样化)。缺陷运动驱动力为弹性畸变能。

(3)再结晶过程:毗邻低位错密度区晶界向高位错密度区的晶粒扩张。位错

密度减少,能量降低,成为低畸变或无畸变区。缺陷运动驱动力为形变储存能。

(4)晶粒长大阶段:弯曲界面向其曲率中心移动,微量杂质原子偏聚在晶界区域,对晶界移动起到拖曳作用,这与杂质吸附在位错中组成柯氏气团阻碍位错运动相似,影响了晶界的活动性。缺陷运动驱动力为晶粒长大前后总的界面能差,而界面移动的驱动力是界面曲率。

27.试用位错理论解释低碳钢的屈服现象。距离说明吕德斯带对工业生产的影响及解决办法。【08、09真题】

答:由于低碳钢是以铁素体为基的合金,铁素体中的碳原子与位错交互作用,形成柯氏气团对位错起“钉扎”作用,致使屈服强度升高。而位错一旦挣脱气团的钉扎,便可在较小的应力下继续运动,这时拉伸曲线上又会出现下屈服点。已经屈服的试样,卸载后立即重新加载拉伸时,由于位错已脱出气团的钉扎,故不出现屈服点。但若卸载后,放置较长时间或稍加热后,再进行拉伸时,由于溶质原子已通过扩散又重新聚集到位错线周围形成气团,故屈服现象又会重新出现。

吕德斯带会使低碳钢薄板在冲压成型时使工件表面粗糙不平。解决办法:可根据应变时效原理,将钢板在冲压之前先进行一道微量冷轧(如1%~2%压下量)工序,使屈服点消除,随后进行冲压成型,也可向钢中加入少量Ti、Al及C、N 等形成化合物,以消除屈服点。

28.奥氏体不锈钢能否通过热处理来强化?为什么?生产中用什么方法使其强化?【09真题】

答:热处理强化机制主要是通过热处理过程中相变而得到强化,而奥氏体不锈钢在热处理时不发生相变,达不到预想的强化效果,因而不能通过热处理来强化。

生产中主要借冷加工实现强化的。金属材料经加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。加工硬化是金属材料的一项重要特性,可被用作强化金属的途径,特别是那些不能通过热处理强化的材料。

29.简要说明提高一种陶瓷材料韧性的方法及原理。

答:相比于金属而言,脆、难以变形是陶瓷的一大特点,为了改善陶瓷的脆性、提高其韧性,目前采取降低晶粒尺寸,使其亚微米或纳米化来提高塑性和韧性,采取氧化锆增韧、相变增韧、纤维增韧或颗粒原位生长增强等有效途径来改善之。

纤维增韧原理:利用一些纤维的高强度和高模量,使之均匀分布于陶瓷材料的机体中,生成一种陶瓷基复合材料。当材料受到外载荷时,纤维可以承担部分的负荷,减轻了陶瓷本身的负担,同时纤维可以组织或抑制裂纹扩展,从而改善了陶瓷材料的脆性,起到增韧效果。

30.指出材料拉伸应力—应变曲线图中b s e σσσ、、的含义。并解释为什么在s σ附近,应力会发生多次微小的波动?【10年真题】

答:e σ为弹性极限,当应力小于e σ时试样发生弹性形变,当应力超过e σ时试样发生塑性形变。s σ为屈服强度,当应力达到s σ时试样开始屈服。b σ为抗拉强度,当应力达到b σ时,试样发生断裂。

在s σ附近,应力的多次微小的波动时屈服伸长现象。这是因为当拉伸试样开始屈服时,应力随即突然下降,并在应力基本恒定的情况下继续发生屈服伸长,所以拉伸曲线出现应力平台区。在发生屈服延伸阶段,试样的应变是不均匀的。这种变形带沿试样长度方向不断形成与扩展,从而产生拉伸曲线平台的屈服伸长。其中,应力的每一次微小波动,即对应一个新变形带的形成。当屈服扩展到

整个试样标距范围时,屈服延伸阶段就告结束。

31.六方晶系的滑移系通常是什么?FCC晶体的滑移系是什么?从晶体滑移角度上分析,为什么FCC晶系的多晶体塑性变形能力通常比六方晶系的多晶体的变形能力大。【11年真题】

答:滑移系是由一个滑移面和此面上的一个滑移方向合起来的,滑移面和滑移方向通常是金属晶体中原子排列最密的晶面和晶向。因为原子密度最大的晶面其面间距最大,点阵阻力最小,因而容易沿着这些面发生滑移;滑移方向为原子密度最大的方向是由于最密排方向上的原子间距最短,及位错b最小。所以六方晶系的滑移系通常是:滑移面为{0001}、滑移方向<11-20>;FCC晶体的滑移系通常为:滑移面{111}、滑移方向<110>。

每一个滑移系表示晶体在进行滑移时可能采取的一个空间取向。在其他条件相同时,晶体中的滑移系越多,滑移过程可能采取的空间取向便越多,滑移容易进行,它的塑性便越好。据此,面心立方的滑移系共有{111}4<110>3=12个,而密排六方晶体的滑移系仅有{0001}1<11-20>3=3个.由于FCC滑移系数比六方晶系的多,所以FCC晶系的多晶体塑性变形能力通常比六方晶系的多晶体的变形能力大。

32.在室温(20℃)下对铅板进行轧制,请问这个加工过程是冷加工还是热加工,为什么?(铅的熔点是327.50℃)【11年真题】

答:热加工是指在再结晶温度以上的加工过程,在再结晶温度以下的加工过程为冷加工。铅的再结晶温度低于室温,因此在室温下对铅板进行加工属于热加工。

33.某工厂用冷拉钢丝绳将一大型钢件调入热处理炉内,由于一时疏忽,未将钢

丝绳取出,而是随同工件一起加热至860℃(该温度高于钢丝绳的再结晶温度),保温时间到了,打开炉门,要吊出工件时,钢丝绳发生断裂,试分析原因。【12年真题】

答:冷拉钢丝绳是经大变形量的冷拔钢丝绞合而成,加工过程的冷加工硬化是钢丝的强度、硬度大大提高,从而能承载很重的钢件。但是当其加热至860℃时,其温度已远远超过钢丝绳的再结晶温度,以致产生回复再结晶现象,加工硬化效果完全消失,强度、硬度大大降低。再把它用来起重时,一旦负载超过其承载能力,必然导致钢丝绳断裂事故。

34.请对比分析加工硬化、细晶强化、弥散强化、和固溶强化的特点和机理有何异同。

答:(1)加工硬化:随冷塑性变形量增加,金属的强度、硬度提高的现象称加工硬化。原因:随变形量增加, 位错密度增加,位错之间的相互堆积、缠结,使得位错难以继续运动,从而使变形抗力增加。

(2)细晶强化:通过细化晶粒来同时提高金属的强度、硬度、塑性和韧性的方法称细晶强化。原因:因为晶粒越细,单位体积内晶粒数目越多,参与变形的晶粒数目也越多,变形越均匀,使在断裂前发生较大的塑性变形。强度和塑性同时增加。

(3)弥散强化:当在晶内呈颗粒状弥散分布时,第二相颗粒越细,分布越均匀,合金的强度、硬度越高,塑性、韧性略有下降,这种强化方法称弥散强化。原因:由于位错绕过、切过第二相粒子需要增加额外的能量,因而会使位错的运动变得困难,提高了变形抗力。

(4)固溶强化:随溶质含量增加,固溶体的强度、硬度提高,称固溶强化。

原因:由于溶质原子与位错相互作用的产生柯氏气团,阻碍位错运动,提高了抗变形能力。

35.纤维组织和织构是怎样形成的?它们有何不同?对金属的性能有什么影响?

答:材料经冷加工后,除使紊乱取向的多晶材料变成有择优取向的材料外,还使材料中的不熔杂质、第二相和各种缺陷发生变形。由于晶粒、杂质。第二相、缺陷等都沿着金属的主变形方向被拉长成纤维状,故称为纤维组织。一般说来,纤维组织使金属纵向(纤维)方向强度高于横向方向。

金属在冷加工以后,各晶粒的位向就有一定的关系。如某些晶面或晶向彼此平行,且都平行于零件的某一外部参考方向,这样一种位向分布就称为择优取向或简称为织构。

形成织构的原因并不限于冷加工,而这里主要是指形变织构。由于织构引起金属各向异性,在很多情况下给金属加工带来不便,如冷轧镁板会产生(0001)<1120>织构,若进一步加工很容易开裂;深冲金属杯的制耳,金属的热循环生长等。但有些情况下也有其有利的一面。

36.金属铸件能否通过再结晶退火来细化晶粒?如果不能,那用什么方法?【模拟题四】

答:再结晶退火必须用于经冷变形加工的材料,其目的是改善冷变形后材料的组织和性能。若对铸件采用再结晶退火,由于铸件没有经过塑性变形处理,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。

37.冷变形金属在加工时经过哪三个阶段,它们各自特点是什么?

答:经过的三个阶段是回复、再结晶、晶粒长大。

(1)回复:不发生大角度晶界迁移,晶粒的形状和大小与变形态相同。

(2)再结晶:首先在畸变度答的区域产生新的无畸变晶粒核心,然后消耗周围的变形基体长大,直到完全变成无畸变的细等轴晶粒,但晶体结构并没有改变,性能发生明显变化并恢复到变形前的情况。

(3)晶粒长大:在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到在该条件下较为稳定的尺寸。

38.讨论形成晶相和玻璃相的条件,指出为什么大多数陶瓷材料可以结晶,形成玻璃相也是常见的,而金属很容易进行结晶,但很难形成玻璃相?【08年真题】答:对于有可能进行结晶的材料,决定液体冷却时是否能结晶或者形成玻璃的外部条件是冷却速度,内部条件是黏度。如果冷却速度足够高,任何液体原则上都可以转化为玻璃。特别是对那些分子结构复杂、材料熔融态时黏度很大的液体,冷却时原子迁移扩散困难,则晶体的形成过程很难进行,容易形成过冷液体。温度下降至Tg以下时,过冷液体固化成玻璃。

金属材料由于其晶体结构比较简单,且熔融时黏度小,冷却时很难阻止结晶过程的发生,故固态下的金属大多为晶体;但如果冷却很快时,能阻止某些合金的结晶过程,此时过冷液态的原子排列方式保留至固态,原子在三维空间则不呈周期性的规则排列。

陶瓷材料晶体一般比较复杂,特别是能形成三维网络的SiO2等,尽管大多数陶瓷材料可进行结晶,但也有一些是非晶体,这主要是指玻璃和硅酸盐结构。

39.铸锭的一般组织可分为哪几个区域?写出其名称,并简述影响铸锭结晶组织的因素。【08年真题】

答:在铸锭组织中,一般有三层晶区:

(1)表层细晶区。其形成是由于模壁的温度较低,液体的过冷度较大,因此形核率较高所致。

(2)柱状晶区。其形成是由于模壁的温度升高,晶核的成长速率大于晶核的形核率,且沿垂直于模壁方向的散热较为有利。在细晶区中取向有利的晶粒优先生长为柱状晶粒。

(3)中心等轴区。其形成是由于模壁温度进一步升高,液体过冷度进一步降低,剩余液体的散热方向性已不明显,处于均匀冷却状态,溶液中出现许多晶核并沿各个方向生长,就形成了中心等轴区。

影响铸锭结晶组织的因素:冷却速度、浇注温度。通常快的冷却速度,高的浇注温度和定向散热有利于柱状晶的形成;如果金属纯度较高、铸锭截面较小时,柱状晶快速成长,有可能形成穿晶。相反,慢的冷却速度,低的浇注温度,加入有效形核剂或搅动等均有利于形成中心等轴晶。

40.什么叫临界晶核?它的物理意义及过冷度的定量关系如何?【11年真题】

答:半径为临界晶核半径的晶核为临界晶核,它实质上能形成稳定晶核并长大的最小尺寸晶胚。

它的物理意义:由△G —r 曲线可知,r=r*时△G 有最大值,当晶胚的r <r*时,其长大将导致体系自由能的增加,故这种尺寸晶胚不稳定,难以长大,最终熔化而消失。当r ≥r*时,晶胚的长大使体系自由能降低,这些晶胚就称为稳定的晶核。因此临界晶核是晶胚可以长大地半径最小的晶核。

r*与过冷度的定量关系:T

Lm m ???=T 2r*σ,即临界半径由过冷度T ?决定,过冷度越大,r*越小,则形核的几率增大,晶核的数目也增多。

41.分析纯金属生长形态与温度梯度的关系。【12年真题】

答:在正温度梯度的情况下,晶体以平直界面的方式推移长大。这是由于温度梯度是正的,当界面上偶尔有突起部分伸入温度较高的液体中时,会使其过冷度减小,它的生长速度就会减缓甚至停止,而被周围部分赶上,因而晶体以保持平直界面的方式生长。长大中晶体沿平行温度梯度的方向生长,或沿散热方向生长,而其他方向的生长则受到抑制。

在负温度梯度时,如果界面上出现突起部分伸入到前面温度更低的液体中时,由于过冷度更大,使得凸出部分的生长速度增大而进一步的伸向液体中,形成一次晶枝轴,同时在这些晶枝上有可能会长出二次晶枝、三次晶枝。在这种情况下,液固界面将以树枝状生长。

42.液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么?

答:固态金属熔化时不一定出现过热。如熔化时,液相若与气相接触,当有少量液体金属在固相表面形成时,就会很快覆盖在整个表面(因为液体金属总是润湿同一种固态金属),由下图表面张力平衡可知r LV cos θ+r SL =r SV ,而实验指出

r LV +r SL

也就不必过热。实际金属多属于这种情况。如果固体金属熔化时液相不与气相接触,则有可能使固体金属过热,然而,这在实际上是难以做到的。

43.简述金属晶体长大地机制。

答:晶体长大机制是指晶体微观长大方式,它与液—固界面结构有关。 具有粗糙界面的物质,因界面上约有50%的原子位置空着,这些空位都可接受原子,故液体原子可以单个进入空位,与晶体相连接,界面沿其法线方向垂直推移,呈连续式长大。

具有光滑界面的晶体长大,是以均匀形核的方式长大。在晶体学小平面界面上形成一个原子层厚的二维晶核与原界面间形成台阶,单个原子可以在台阶上填充,使二维晶核侧向长大,在该层填满后,则在新的界面上形成新的二维晶核,继续填满,如此反复进行。

若晶体的光滑界面存在有螺型位错的露头,则该界面成为螺旋面,并形成永不消失的台阶,原子附着到台阶上使晶体长大。

44.试述结晶相变的热力学条件、动力学条件、能量和结构条件。

答:分析结晶相变时系统自由能的变化可知,结晶的热力学条件为△G<0;由单位体积自由能的变化△G B =m

Lm T ?T ?-

可知,只有△T>0,才有△G B <0。即只有过冷才能使△G<0。

动力学条件为液—固界面前沿液体的温度T

1的表面能必须由液体中的能量起伏来提供。

液体中存在的结构起伏,是结晶时产生晶核的基础。因此,结构起伏是结晶过程必须具备的结构条件。

45.比较说明过冷度、临界过冷度、动态过冷度等概念的区别。

答:实际结晶温度与理论结晶温度(熔点)之间的温度差,称为过冷度(△T=Tm-Tn )。它是相变热力学条件所要求的,只有△T>0时,才能造成固相的自由能低于液相自由能的条件,使得△G <0,发生结晶。

过冷液体中,能够形成等于临界晶核半径的晶胚时的过冷度,称为临界过冷度(△T *)。显然,当实际过冷度△T<△T**时,过冷液体中的最大的晶胚尺寸也小于临界晶核半径,故难于成核;只有△T>△T*时,才能均匀形核。

晶核长大时,要求液—固界面前沿液体中有一定的过冷,这种过冷称为动态过冷度,它是晶体长大地必要条件。

46.杠杆定律与重心法则有什么关系?在三元相图的分析中怎样运用杠杆定律和重心法则?【07年真题】

答:杠杆定律与重心法则的关系:杠杆定律应用于三元相图两相平衡时,而重心法则则是应用于三元系统处于三相平衡时,当设想先把三相中的任意两相,混合成一体,然后再把这个混合体和第三相混合成合金,那么这两部分即可应用杠杆定律中的推论,即当给定材料在一定温度下处于两相平衡状态时,若其中一相的成分给定,另一相的成分点必在两已知成分点连线的延长线上。结合直线定律,再进一步应用杠杆定律,可推导出合金成分正好位于成分三角形(三相平衡的三相成分点构成)的质量重心,即重心法则。可见,重心法则是由一定假设,借助直线法则、杠杆定律而推导出来的。

杠杆定律用来计算三元系中两相平衡时,两个相的质量分数;另外可以由直线法则及杠杆定律作出有用的推论:当给定材料在一定温度下处于两相平衡时,若其中一相的成分给定,另一相的成分点必在两已知成分点连线的延长线上;若两个平衡相的成分点已知,材料的成分点必然位于此两个成分点的连线上。

重心法则可用来计算三元系中三相平衡时,三个相的质量分数。

47.试比较45、T8、T12钢的硬度,强度和塑性有何不同?

答:随着钢中碳含量的增加,钢中的渗碳体增多,硬度也最随之升高,基本呈直线上升。在ωc=0.0077以前,强度也是呈直线上升的。在ωc=0.0077时组织全部为珠光体,强度最高;但在ωc=0.0077以后随碳含量的增加,组织中将会出现网状渗碳体,使强度很快下降;在ωc=0.0211后,组织中出现共晶莱氏体,强

度将很低。而塑性是随碳含量增加而单调下降的。

所以,综上所述,T12钢的硬度最高,塑性最差;45钢硬度最低,塑性最好。而T8钢的强度最高,硬度和塑性居中。

48.由Al-Cu合金相图,试分析: 什么成分的合金适用于压力加工。什么成分的合金适用于铸造?用什么方法可提高合金的强度?

答:当压力加工时,要求合金有良好的塑性变形能力,组织中不允许有过多的脆性第二相,所以,要求铝合金中合金元素含量较低,一般不超过极限固溶度的成分。对Al-Cu合金,常选用ωCu=0.04的合金,该成分合金加热后可处于完全单相α状态,塑性好,适用于压力加工。

铸造合金要求其流动性好,合金的结晶温度范围越宽,其流动性越差。从相图上看,共晶成分的流动性最好所以一般来说共晶成分的合金具有优良的铸造性能,适于铸造。由于其他方面的因素,一般选用ωCu=0.10的Al-Cu合金用于铸造。通过冷变形,产生加工硬化效应,从而提高合金的强度。

49.三元相图的垂直截面与二元相图有何不同?为什么杠杆定律可以应用于二元相图而不能应用于三元相图的垂直截面图?【09年真题】

答:二元相图是二元系相平衡的图解,它直接反应二元系的相平衡关系而三元相图的垂直截面只是特定平面与三元相图的交截图,它一般不反映三元系的相平衡关系,因此前者中可以用杠杆定律计算二元系相平衡反应的各相相对量,后者则不能。

最新材料科学基础总结

材料科学基础复习总结填空 1.过冷奥氏体发生的马氏体转变属于(非扩散型相变)。 2.碳钢淬火要得到马氏体组织,其冷却速度要(大于)临界冷却速度(vk)。 3.珠光体型的组织是由铁素体和渗碳体组成的(机械混合物)。 4.工件淬火后需立即回火处理,随着回火温度的提高,材料的硬度(越低)。 5.共析成分的液态铁碳合金缓慢冷却得到的平衡组织是P(铁碳相图) 6.表征材料表面局部区域内抵抗变形能力的指标为(硬度)。 7.下列原子结合键既具有方向性又具有饱和性的是(共价键)。 8.下面哪个不属于大多数金属具有的晶体结构(面心立方、体心立方、密排六方)。 9.面心立方结构晶胞中原子数个数是( 4 )。 10.如图1所示的位错环中,属于刃型位错的是()。 11.A为右螺旋位错,B为左螺旋位 错,C为正刃位错,D为负刃位错, E为混合位错。 判断方法是根据柏氏矢量与位错线 所形成的角度,图中位错环所标的 方向为位错线的规定方向,柏氏矢 量垂直于位错的是刃型位错,然后 将柏氏矢量按顺时针方向旋转90°,与位错方向相同的为正,相反的为负,叫做顺正逆负。柏氏矢量与位错方向平行的是螺型位错,方向相同的为右螺,方向相反为左螺,这叫做顺右逆左。除ABCD四点之外位错环上其他任意一点均是混合位错。 12.固体材料中物质传输的方式为(扩散)。液态是对流。 13.纯铁在室温下的晶体结构为(面心立方)。 14.由一种成分的液相同时凝固生成两种不同成分固相的过程称为(共晶)。 15.共析包晶 16.碳原子溶于α-Fe中形成的固溶体为(铁素体)。 17.钢铁材料的热加工通常需要加热到(奥氏体)相区。 18.成分三角形中标出了O材料的成分点( )。三元相图 19.白铜是以(镍)为主要合金元素的铜合金。 20.45钢和40Cr钢比较,45钢的(淬透性低(合金),淬硬性高(含碳量))。 21.金属塑性变形方式的是(滑移)。孪生 22.高分子大分子链的柔顺性决定了高分子材料独特的性能。 23.在置换型固溶体中,两组元原子扩散速率的差异引起的标记面漂移现象称为柯肯达耳效应。 24.为减少铸造缺陷,铸造合金需要熔点低、流动性好,因此一般选择共晶点附近的合金。 25.根据相律,对于三元合金,最大的平衡相数为4个。 26.调质处理是淬火+高温回火的复合热处理工艺。 27.材料塑性常用断后伸长率和断后收缩率两个指标表示。

材料科学基础作业

Fundamentals of Materials Science 1. Determine the Miller indices for the planes shown in the following unit cell: A:(2 1 -1) B:(0 2 -1) 2. Show that the atomic packing factor for HCP is 0.74. Solution: This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total sphere-unit cell volume ratio. For HCP, there are the equivalent of six spheres per unit cell, and thus Now, the unit cell volume is just the product of the base area times the cell height, c. This base area is just three times the area of the parallelepiped ACDE shown below.

The area of ACDE is just the length of CD times the height BC. But CD is just a or 2R, and 3. For both FCC and BCC crystal structures, the Burgers vector b may be expressed as

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础总结

材料基础 一、名词解释 1、塑形变形: 2、滑移:晶体一部分相对另一部分沿着特定的晶面和晶向发生的平移滑动。滑移后再晶体表面留下滑移台阶,且晶体滑移是不均匀的。 3、滑移带:单晶体进行塑性变形后,在光学显微镜下,发现抛光表面有许多线条,称为滑移带。 4、滑移线:组成滑移带的相互平行的小台阶。 5、滑移系:一个滑移面和其上的一个滑移方向组成一个滑移系,表示晶体滑移是可能采取的一个空间方向。滑移系越多,晶体的塑形越好。 6、单滑移:当只有一组滑移系处于最有利的取向时,分切应力最大,便进行单系滑移。 7、多滑移:至少有两组滑移系的分切应力同时达到临界值,同时或交替进行滑移的过程。 8、交滑移:至少两个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移叫交滑移。(会出现曲折或波纹状滑移带\最易发生交滑移的是体心立方晶体\纯螺旋位错) 9、孪生变形:在切应力作用下,晶体的一部分沿一定晶面和一定的晶向相对于另一部分作均匀的切变所产生的变形。(相邻晶面的相对位移量相等) 10、孪晶:孪生后,均匀切变区的取向发生改变,与未切变区构成镜面对称,形成孪晶。 11、晶体的孪晶面和孪生方向:体心,{112}【111】,面心立方{111}【112-】,密排六方{101-2} 【1-011】。 12、软取向,硬取向:分切应力最大时次取向是软取向;当外力与滑移面平行或垂直时,晶体无法滑移,这种取向称为硬取向。 13、几何软化、硬化:在拉伸时,随着晶体的取向的变化,滑移面的法向与外力轴的夹角越来越远离45度时滑移变得困难的这种现象是几个硬化;当夹角越来愈接近45度,使滑移越来越容易进行的现象叫做几何软化。 14、细晶强化:晶体中,用细化晶粒来提高材料强度的方法为细晶强化。也能改善晶体的塑形和韧性。 15、固熔强化:当合金由单相固熔体构成时,随熔质原子含量的增加,其塑性变形抗力大大提高,表现为强度,硬度的不断增加,塑性、韧性的不断下降,的这种现象称为固熔强化。(单相) 16、(多相)沉淀强化、时效强化:相变热处理 17、(多相)弥散强化:粉末冶金 18、纤维组织:随变形量的增加,晶粒沿变形方向被拉长扁平晶粒,变形量很大时,各晶粒一不能分辨而成为一片如纤维状的条纹称为纤维组织。 19、带状组织:当金属中组织不均匀,如有枝晶偏析或夹杂物时,塑性变形会使这些区域伸长,在热加工后或随后的热处理中会出现带状组织。 20、变形织构:多晶体材料中,岁变形度的增加,多晶体中原先取向的各个晶粒发生转动,从而使取向趋于一致,形成择优取向。丝织构【***】平行于线轴,板织构{***}【***】平行于扎制方向。 21、制耳:用有织构的扎制板材深冲成型零件时,将会因为板材各方向变形能不同,使深冲出来工件边缘不齐,壁厚不均的现象。 22、应变硬化、加工硬化:金属塑性变形过程中,随着变形量的增加,金属强度,硬度上升,塑性、韧性下降的现象。作用:变形均匀,均衡负载,增加安全性,提高强度 23、冷拉:试样在拉断前卸载,或因试样因被拉断二自动卸载,则拉伸中产生的大变形除少量可恢复外,大部分变形将保留下来的过程。

材料科学基础习题

查看文本 习题 一、名词解释 金属键; 结构起伏; 固溶体; 枝晶偏析; 奥氏体; 加工硬化; 离异共晶; 成分过冷; 热加工; 反应扩散 二、画图 1在简单立方晶胞中绘出()、(210)晶面及[、[210]晶向。 2结合Fe-Fe3C相图,分别画出纯铁经930℃和800℃渗碳后,试棒的成分-距离曲线示意图。 3如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。 4画出简单立方晶体中(100)面上柏氏矢量为[010]的刃型位错与(001)面上柏氏矢量为[010]的刃型位错交割前后的示意图。 5画图说明成分过冷的形成。 三、Fe-Fe3C相图分析 1用组织组成物填写相图。 2指出在ECF和PSK水平线上发生何种反应并写出反应式。 3计算相图中二次渗碳体和三次渗碳体可能的最大含量。 四、简答题 1已知某铁碳合金,其组成相为铁素体和渗碳体,铁素体占82%,试求该合金的含碳量和组织组成物的相对量。 2什么是单滑移、多滑移、交滑移?三者的滑移线各有什么特征,如何解释?。 3设原子为刚球,在原子直径不变的情况下,试计算g-Fe转变为a-Fe时的体积膨胀率;如果测得910℃时g-Fe和a-Fe的点阵常数分别为0.3633nm和0.2892nm,试计算g-Fe转变为a-Fe的真实膨胀率。 4间隙固溶体与间隙化合物有何异同? 5可否说扩散定律实际上只有一个?为什么? 五、论述题 τC 结合右图所示的τC(晶体强度)—ρ位错密度 关系曲线,分析强化金属材料的方法及其机制。 晶须 冷塑变 六、拓展题 1 画出一个刃型位错环及其与柏士矢量的关系。 2用金相方法如何鉴别滑移和孪生变形? 3 固态相变为何易于在晶体缺陷处形核? 4 画出面心立方晶体中(225)晶面上的原子排列图。 综合题一:材料的结构 1 谈谈你对材料学科和材料科学的认识。 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 碳原子易进入a-铁,还是b-铁,如何解释? 7 研究晶体缺陷有何意义? 8 点缺陷主要有几种?为何说点缺陷是热力学平衡的缺陷?

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

材料科学基础总结

材料科学基础总结 铸造C081 张云龙 一、名词解释 1、空间点阵:由周围环境相同的阵点在空间排列的三维列阵称为空间点阵。 2、晶体结构:由实际原子、离子、分子或各种原子集团,按一定规律的具体排列方式称为 晶体结构,或称为晶体点阵。 3、晶格常数:(为了便于分析晶体中的粒子排列,可以从晶体的点阵中取一个具有代表性 的基本单元作为点阵的基本单元,称为晶胞。)晶格常数就是指晶胞的边长。 4、晶向指数:(在晶格中,穿过两个以上结点的任一直线,都代表晶体中一个原子阵列在 空间的位向,称为晶向。)为了确定晶向在晶体中的相对取向,需要一种符号,这种符号称为晶向指数。 5、晶面指数:(在晶格中,由结点组成的任一平面都代表晶体的原子平面,称为晶面)为 了确定晶面在晶体中的相对取向,需要一种符号,这种符号称为晶面指数。 6、晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。 7、配位数:每个原子周围最近邻且等距离的原子的数目称为配位数。 8、致密度:计算单位晶胞中原子所占体积与晶胞体积之比,比值称为致密度。 9、各向异性:晶体的某些物理和力学性能在不同方向上具有不同的数值,此为晶体的各向 异性。 10、晶体缺陷:通常把晶体中原子偏离其平衡位置而出现不完整性的区域称为晶体缺陷。 11、点缺陷:在三维方向上尺寸都有很小的缺陷。 12、线缺陷:在两个方向上尺寸很小、令一个尺寸上尺寸较大的缺陷。(指各种类型的位错, 是晶体中某处一列或若干列原子发生了有规律的错排现象) 13、面缺陷:在一个方向上尺寸很小,令两个方向上尺寸较大的缺陷。 14、刃型位错:位错线与滑移方向垂直的位错。 15、螺型位错:位错线与滑移方向平行的位错。 16、混合型位错:位错线与滑移方向既不垂直也不平行而成任意角度的位错。 17、位错的滑移:在切应力的作用下,位错沿滑移面的运动称为位错的滑移。 18、位错的攀移:刃型位错在正应力的作用下,位错垂直于滑移面的运动。 19、单位位错:柏氏矢量的模等于该晶向上原子的间距的位错则为单位位错。 20、部分位错:柏氏矢量的模小于该晶向上原子的间距的位错则为部分位错。 21、扩展位错:两个肖克莱部分位错中间夹一层错,这样的位错组态称为扩展位错。 22、肖克莱部分位错:层错区与完整晶体区的交线。 23、弗克莱部分位错:层错区与右半部分完整晶体之间的边界。 24、上坡扩散:扩散由低浓度向高浓度进行而导致成分偏析或形成第二相的扩散。 25、下坡扩散:扩散由高浓度向低浓度进行而导致成分均匀的扩散。 26、原子扩散:扩散中只形成固溶体而无其它新相形成的扩散。 27、反应扩散:扩散中有新相形成的扩散。 28、自扩散:在均匀的固溶体或纯金属中原子的扩散,此种扩散不伴有浓度的变化。 29、互扩散:在不均匀的固溶体中异类原子的相对扩散,此种扩散伴有浓度的变化。 30、体扩散:通过均匀介质的扩散。 31、扩散能量:单位时间内通过垂直于扩散方向的单位面积的扩散物质流量。

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

材料科学基础作业解答分析

第一章 1.简述一次键与二次键各包括哪些结合键?这些结合键各自特点如何? 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别?稳态与亚稳态结构的区别? 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

材料科学基础笔记

第一章材料中的原子排列 第一节原子的结合方式 1 原子结构 2 原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。 (2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。 (3)金属键与金属晶体 原子结合:电子逸出共有,结合力较大,无方向性和饱和性; 金属晶体:导电性、导热性、延展性好,熔点较高。如金属。 金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。 (3)分子键与分子晶体 原子结合:电子云偏移,结合力很小,无方向性和饱和性。 分子晶体:熔点低,硬度低。如高分子材料。 氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O (4)混合键。如复合材料。 3 结合键分类 (1)一次键(化学键):金属键、共价键、离子键。 (2)二次键(物理键):分子键和氢键。 4 原子的排列方式 (1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。 (2)非晶体:――――――――――不规则排列。长程无序,各向同性。 第二节原子的规则排列 一晶体学基础 1 空间点阵与晶体结构 (1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。图1-5 特征:a 原子的理想排列;b 有14种。 其中: 空间点阵中的点-阵点。它是纯粹的几何点,各点周围环境相同。 描述晶体中原子排列规律的空间格架称之为晶格。 空间点阵中最小的几何单元称之为晶胞。 (2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。 特征:a 可能存在局部缺陷;b 可有无限多种。 2 晶胞图1-6 (1)――-:构成空间点阵的最基本单元。 (2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。 (3)形状和大小 有三个棱边的长度a,b,c及其夹角α,β,γ表示。 (4)晶胞中点的位置表示(坐标法)。 3 布拉菲点阵图1-7 14种点阵分属7个晶系。 4 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。

材料科学基础作业参考答案

《材料科学基础》作业参考答案 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)和[236]。 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。解答: (1) (2)首先求(111)和(112)的交线。 由式(2-7),即得u=k1l2-k2l1=1x2-1x1=1 v=l1h2-l2h1=1x1-2x1=-1 w=h1k2-h2k1=1x1-1x1=0 所以,(111)和(112)两晶面交线的晶向指数为[110]或者[110]。如下图所示。

3 立方晶系的{111}、{110}、{123}晶面族各包括多少晶面?写出它们的密勒指数。 解答: ++++++++= )213()231()321()132()312()321()231()123(}123{ + ++++++)312()132()213()123()132()312()231() 132()123()213()321()231()213()123()312()321(++++ ++++ 注意:书中有重复的。如(111)与(111)应为同一晶面,只是位于坐标原点的位置不同。 6.(略) 7.(题略) (1)(2)用公式 求。 (3) 用公式 求。 (1)d(100)=0.286nm d(110)=0.202nm d(123)=0.076nm 显然,d(100)最大。 222hkl d h k l =++

(2) d(100)=0.365nm d(111)=0.211nm d(112)=0.149nm 显然,d(100)最大。 (3) d(1120)=0.1605 nm d(1010)=0.278nm d(1012)=0.190nm 显然,d(1010)最大。 由(1)、(2)、(3)得低指数的面间距较大,而高指数的晶面间距则较小 8.回答下列问题: (1)通过计算判断(110)、(132)、(311)晶面是否属于同一晶带? (2)求(211)和(110)晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。解答提示:(1)首先求任两面的交线,即求晶面(h1 k1 l1)和(h2 k2 l2)的求晶带轴[uvw] u = k1 l2 - k2 l1、v = l1 h2-l2h1、w=h1 k2- h2 k1 再判断该晶带轴是否与另一面垂直,即是否满足uh+vk+wl=0。 (2)采用以上公式求得后,任写5个,注意h,k,l必须最小整数化。 10.(题略) 利用公式(2-12)(2-13)求。 正负离子之间的距离:R0=R+ + R-=23.1nm 单价离子半径:R Na+=Cn/(Z1-σ)= Cn/(11-4.52)=Cn/6.48 单价离子半径:R F-=Cn/(Z2-σ)= Cn/(9-4.52) =Cn/4.48 所以,Cn=61.186 从而,R Na+=9.44nm R F-=13.66nm 答:略。 18.(题略)注意写详细一些。 第四章 2.(题略) 解答提示:利用公式(4-1)解答。 取A=1,则 ) ( kT u e e N n- =,

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

2019年材料科学基础期末总结复习资料

材料科学基础期末总结复习资料 1、名词解释 (1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。 (2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称 为共晶转变。 (3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J 点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。即HJB---包晶转变线,LB+δH→rJ (4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。 (5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析 (6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。 (7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。 (9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。 (10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线 通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。 (11)加工硬化:随着冷变形程度的增加,金属材料强度和硬 度指标都有所提高,但塑性、韧性有所下降。 (12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。 (13)能量起伏:能量起伏是指体系中每个微小体积所实际具 有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 (14)垂直长大:对于粗糙界面,由于界面上约有一半的原子 位置空着,故液相的原子可以进入这些位置与晶体结合起来,晶体便连续地向液相中生长,故这种长大方式为垂直生长。 (15)滑移临界分切应力:晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移

材料科学基础知识点汇总

材料科学基础知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

金属学与热处理总结 一、金属的晶体结构 重点内容: 面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型 fcc(A1) bcc(A2) hcp(A3) 间隙类型 正四面体 正八面体 四面体 扁八面体 四面体 正八面体 间隙个数 8 4 12 6 12 6 原子半径r A a 4 2 a 4 3 2 a 间隙半径r B ( ) 4 23a - ()4 22a - ( )4 35a - ()4 32a - ( )4 26a - ( ) 2 12a - 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(2 1T G ?∝?)也为无穷大。临界晶 核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加

材料科学基础最新考题总结_百度文库

#名词解释(5*4) 1、萤石结构:Ca2+作立方紧密堆积 ,F-充填于全部的四面体空隙,八面体空隙全部空着,因此在八个F-之间存在有较大的空洞,为阴离子F-的扩散提供条件。 2、反萤石结构:晶体结构与萤石完全相同,只是阴、阳离子的位置完全互换。 3、正尖晶石 答:在尖晶石AB2O4型结构中,如果A离子占据四面体空隙,B离子占据八面体 空隙,则称为正尖晶石。(A)[B2]O4。 4、反尖晶石型结构 答:如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。 (B)[AB]O4。 5、二八面体:在层状结构硅酸盐晶体中,二八面体以共棱方式相连,但八面体中的离子被其他两个阳离子所共用,因而称为二八面体。 6、三八面体:仍共棱方式相连,但八面体中的离子被其他三个阳离子所共用,因此成为三八面体。 7、位移性转变:这种改变不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子位置发生少许位移。是高低温转变,所需能量低,属于可逆转变,转变速度快。 8、重建性转变:是破坏原有原子间的化学键,改变原子最邻近的配位数,是晶体结构完全改变。使晶体结构完全改变原样的一种多晶转变形式。需要破坏化学键,所需能量高,有些是不可逆转变,转变速率慢。 9、同质多晶现象:相同的化学组成,在不同的热力学条件下却能形成不同的晶体的结构,表现出不同的物理、化学性质。 10、类质同晶现象:化学组成相似或相近,在相同的热力学条件下,形成的晶体具有相同的结构。 11、弗仑克尔缺陷:正常格点离子和间隙位置反应生成间隙离子和空位的过程。特征:当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗仑克尔缺陷。 12、肖特基缺陷:正常格点位置的离子跃迁到晶体表面的位置上,在原来的各点留下空位。 特征:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷。 13、置换式固溶体:亦称替代固溶体,其溶质原子位于点阵结点上,替代(置换)了部分溶剂原子。 14、间隙式固溶体,亦称填隙式固溶体,其溶质原子位于点阵的间隙中

赵品《材料科学基础教程》(第3版)笔记和课后习题(含考研真题)详解 第1章 材料的结构【圣才出品】

第1章材料的结构 1.1复习笔记 一、材料的结合方式 1.化学键 (1)定义 组成物质整体的质点(原子、分子或离子)间的相互作用力称为化学键。 (2)分类 ①共价键 a.定义 同类原子或电负性相差不大的原子互相接近时,原子之间不产生电子的转移,而是借共用电子对所产生的力结合,形成的键被称为共价键。 b.特点 既有方向性又有饱和性。 ②离子键 a.定义 当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子,成为负离子,两种离子靠静电引力结合在一起形成的键被称为离子键。 b.特点 离子键无方向性和饱和性。

③金属键 a.定义 由金属正离子和自由电子之间互相作用而结合形成的键称为金属键。 b.特点 金属键无方向性和饱和性 c.电子气理论 金属原子的结构特点是外层电子少,容易失去。当金属原子相互靠近时,其外层的价电子脱离原子成为自由电子,为整个金属所共有,它们在整个金属内部运动,形成电子气。 ④范德瓦尔键 分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起形成的键,称为范德瓦尔键,又称分子键。 2.工程材料的键性 在实际的工程材料中,原子(或离子、分子)间相互作用的性质,只有少数是以上四种键型的极端情况,大多数是这四种键型的过渡。如果以四种键为顶点,作个四面体,就可把工程材料的结合键范围示意在四面体上,如图1-1-1所示。

图1-1-1工程材料键性 二、晶体学基础 1.晶体与非晶体 (1)原子排列的三个等级(不考虑原子的结构缺陷) 无序排列,短程有序和长程有序。 (2)晶体 ①定义 物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质称为晶体。 ②特点 a.晶体具有一定的熔点。 b.晶体具有各向异性:晶体的某些物理性能和力学性能在不同方向上具有不同的数值。 (3)非晶体 ①定义 在整体上是无序的,但原子间也靠化学键结合在一起,故在有限的小范围内观察还有一定规律,即近程有序,这样的物质称为非晶体。 ②特点 a.非晶体不具有一定的熔点,它实质上是一种过冷的液体结构,往往被称为玻璃体。 b.非晶体具有各向同性。 2.空间点阵 将晶体看成是无错排的理想晶体,忽略其物质性,抽象为规则排列于空间的无数几何点。

相关主题
文本预览
相关文档 最新文档