当前位置:文档之家› 钢制管道阴极保护电位检查片测试方法及应用

钢制管道阴极保护电位检查片测试方法及应用

钢制管道阴极保护电位检查片测试方法及应用
钢制管道阴极保护电位检查片测试方法及应用

管道阴极保护电位检查片

河南汇龙合金材料有限公司2018年3月整理

技术部刘珍

摘要

根据相关标准规定,钢制埋地管道阴极保护效果评价应采用断电电位指标,现场测试通常使用同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。本文详细介绍了管道阴极保护电位检查片的适用范围、设计、安装、测试及分析等内容,通过具体实施案例明确了数据记录的规范性,并验证了测试方法的可行性,为该方法的推广应用奠定实践基础。

引言

钢质埋地管道通常是采用防腐层和阴极保护联合保护的方式,防腐层作为第一层堡垒,利用其良好的绝缘性、抗渗透性及机械性能达到防腐目的;阴极保护系统作为第二道防线,可在防腐层破损或存在微孔处,通过保护电流对管道施加阴极极化,从而减缓或消除管壁腐蚀。根据GB/T 21448-2008《埋地钢质管道阴极保护技术规范》,管道阴极保护效果评价应采用断电电位指标,现场测试通常使用GPS

同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。

阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。阴极保护电位检查片是用于模拟被调查管道阴极极化后电位的检查片,将其埋设在管道测试点处,检查片部分裸露,其余部分有防腐层,检查片的埋设状态、材质均与管道相同,通过电缆与管道连接起来,这样检查片的裸露部分就模拟了管道的一个防腐层漏点。当管道处于阴极保护状态时,管道被保护电流极化的同时,检查片也会被极化为与管道相同的程度,只需测量检查片的瞬时断开电位,即可代表管道测量点的断电电位。NACE SP0502-2010《管道外腐蚀直接评价方法》认为检查片的断电电位近似于管道防腐层漏点处的阴极保护电位,能够评估管道阴极保护效果。1适用范围

阴极保护电位检查片能够评价埋地钢制管道阴极保护效果,只要能将检查片连接在管道上便可应用,尤其适用于同步中断法受限制的下列情况:

(1)不能同步中断保护系统内多台恒电位仪提供的阴极保护电流;

(2)存在外部阴极保护系统影响,难以中断该保护系统的恒电位仪;

(3)存在直接连接的、不能中断的牺牲阳极;

(4)存在直流杂散电流影响,导致断电电位不能代表阴极保护电位;

(5)采用管道阴极极化衰减或极化形成判断管道阴极保护效果;

(6)公共走廊内存在多条管道,彼此造成干扰影响。

2检查片设计

阴极保护电位检查片材料应与测试管道材料相同,检查片裸露面积应与测试管段中可能产生的防腐层最大缺陷接近,裸露面积宜为10~100cm2,3PE防腐层及环氧涂层宜取10cm2,沥青类防腐层宜取50cm2。裸露面应位于检查片阔面的中间部分,并用易去除的耐水密封材料覆盖其余面积,通常采用油性涂料或PE套,检查片成品如图1所示。

图1:裸露面积为10cm2检查片成品

图2:裸露面积为6.5cm2检查片成品

检查片表面应保持金属光泽、无锈蚀;检查片与电缆连接牢固,连接电阻尽可能小,连接处无锈蚀并做密封处理;必要时需对检查片及电缆连接处进行除锈。

3检查片安装

阔面应平行于管道,且裸露面背对管道埋设,检查片中心应与管道中心处于统一标高,与管壁净距离宜为0.1~0.3m。每处埋设位置分别在管道两侧安装2个检查片,即阴保极化试片和自腐蚀试片。检查片埋设宜符合图2规定。

图2:检查片安装示意图

检查片周围的土壤用水润湿并压实,使检查片与土壤紧密接触,确保其充分极化。阴保极化试片通过测试桩或其它易连接装置与管道连接,并串联电气开关或类似装置(例如电流中断器)使检查片能够迅速与管道断开。若检查片长期埋设监测阴极保护效果,宜使用长效参比电极,且尽量靠近检查片的位置

埋设;若检查片临时安装测试,宜采用便携式参比电极,放在检查片正上方的地表来测量。

4测试及分析

4.1测量仪器

表1中列出了4种参数测试时常用的仪器。

4.2测试程序

(1)测试前应确保管道和检查片被充分极化,保持阴极保护电流被连续施加在管道上;

(2)保持阴保极化试片与管道的连接,测试和记录阴保极化试片通电电位;

(3)短暂断开阴保极化试片与管道的连接,测试和记录阴保极化试片瞬时断开电位;

(4)测试和记录自腐蚀试片的自然腐蚀电位;

(5)在动态直流干扰管段测量检查片阴极极化衰减或极化形成时,需利用数据记录仪和电流中断器连续记录阴保极化试片连通、断开、再连通循环过程中的保护电位。数据记录仪测试频率不低于10次/秒,记录时间不低于5分钟;电流中断周期根据试片现场极化情况选定,宜选用12秒通/3秒断,断电时间不宜超过30秒。

4.3结果分析

(1)当测得的检查片通电电位与瞬时断开电位较接近时,检查片通电电位、瞬时断开电位均可以代表检查片邻近区域管道的阴极保护电位;

(2)当测得的检查片瞬时断开电位和通电电位有较大差异时,此时仅检查片瞬时断开电位可代表检查片邻近区域管道的阴极保护电位;

(3)通过检查片的瞬时断开电位,采用-850mV电位准则评价管道的阴极保护效果;

(4)若不满足电位准则,也可以比较检查片的自然腐蚀电位和瞬时断开电位,采用100mV阴极极化准则评价管道的阴极保护效果,但在高温条件下、SRB的土壤中、存在杂散电流干扰、以及异种金属材料耦合的管道不适用;

(5)检查片阴极极化衰减或极化形成电位曲线有助于分析动态直流干扰管段的阴极保护状况。

4.4注意事项

(1)检查片必须埋设至少24小时保证其充分极化后,再进行相关测试;

(2)现场必须选用经校准过的硫酸铜参比电极进行测试;

(3)使用数字万用表测量检查片瞬间断开电位时,应在断开0.5秒后读数并记录(通常为万用表显示的第二个数值);

(4)一般情况下检查片的瞬间断开电位数值应保持缓慢降低,若快速下降则表示检查片没有充分阴极极化,需重新埋设完全极化后再测量;

(5)测量检查片阴极极化衰减或极化形成时,阴极保护电流中断周期应通过现场试验进行验证,必须保证试片既能充分极化又能获得去极化过程。

5应用案例

新大线输油管道松岚-七厂段建于2004年,全长21.6km,管道材质L360钢,管径Φ711mm,管壁7.1mm,设计压力4.5MPa。沿线9km管段与大连轻轨3号线近距离并行且发生4次穿越,间距约10~130m。大连轻轨采用直流1500V驱动,机车牵引电流最大2200A,其泄漏的杂散电流对与之接近的新大线管道产生动态直流干扰。

采用阴极保护电位检查片测试方法评价新大线阴极保护效果,各测试点检查片瞬间断开电位及自然电位-距离分布曲线见图3,测试数据见表2。结果显示:大多数检查片满足-850mV电位准则,得到有效保护;其余K22、K30、K33、K34、K38检查片瞬间断开电位正于-0.85V,不满足准则要求,表明这5处测试区域管段接近或大于10cm2的防腐层漏点处于欠保护状态。

图3:检查片瞬间断开电位及自然电位—距离分布曲线

典型位置处(测试桩号25-1)检查片阴极极化衰减及形成电位曲线见图4,结果显示:虽然检查片通电电位受到直流干扰影响而持续波动,但瞬间断开电位基本保持不变,说明地铁对管道的动态直流干扰属于短极化过程,并没有影响阴极保护系统对管道的长极化结果。

图4:典型位置处检查片阴极极化衰减及形成电位曲线(测试频率25次/秒)

6结论与建议

(1)利用阴极保护电位检查片的瞬间断开电位能够有效评价管道阴极保护效果,尤其适用于GPS同步中断法测量管道断电电位受限制的管段区域;

(2)检查片是反映其埋设区域附近管道防腐层缺陷处的实际保护状况(缺陷面积不大于检查片裸露面积),因此选择检查片裸露面积大小非常关键,一定要能代表测试管段的防腐层缺陷尺寸特性;

(3)新大线测试实践表明,选取合理的检查片裸露面积、通断周期及测试频率等参数,可以实现检查片阴极极化衰减及极化形成电位曲线的测量,有助于分析判断动态直流干扰管段的阴极保护状况;

(4)检查片的数量及埋设位置将影响管道阴极保护电流的实时分布,可能造成测试结果与实际情况的偏差,因此,用检查片评价管道阴极保护效果时,必须确保偏差程度控制在允许范围内。

作者:

沈光霁、徐卓、矫英男、王沂沛、田宏革,沈阳龙昌管道检测中心;张若雯,中国石油管道公司。

来源:《全面腐蚀控制》2016年11月

整理:河南汇龙合金材料有限公司

埋地燃气管道阴极保护牺牲阳极防腐系统的综合检测方法

阴极保护产品、设计、工程施工一站式服务;提供阴极保护完整解决方案 埋地燃气管道防腐系统的综合检测方法 埋地天然气管道埋入地下一段时间后,由于受土壤、降水、微生物、地表植被等各种环境因素的影响,都会出现或多或少的管线腐蚀,必须对这些腐蚀点进行定期的检查或修复,以保障供气管道的安全运行。埋地管道的防腐系统一般采用外防腐绝缘涂层和阴极保护联合措施。所以现行的管道腐蚀防护检测技术也都是以管道的外防腐涂层状态和阴 极保护的保护效果为检测对象。根据是否将管道挖出,检测又具体分为开挖检测和地面无损检测。开挖后对管道直接检测是最直接的手段,但是该种方法又受到诸多实际情况的限制,所以除了少数情况下使用开挖检测之外,主要都是借助于各种仪器在地面进行无损检测。防腐层状况检测分2个方面进行:一方面是测量管道防腐层绝缘电阻,方法有变频一选频法、管内电流法和电位差法3 类; 另一方面是进行管道防腐层缺陷地面检测,有皮尔逊法( P E A R S O N) 、多频管中电流法( PCM) 、直流电位梯度( D C V G ) 和密间隔电位测量( CWS ) 等方法。阴极保护效果主是看保护电位是否能处于有效的保护范围内,是否出现欠保护与过保护的情况。

阴极保护产品、设计、工程施工一站式服务;提供阴极保护完整解决方案在防腐层的检测方法中,电位差法和管内电流法都是通过两点电位的变化和流失的电流量来计算两点问防腐层的绝缘电阻率,都需要开挖出管道,并且要求有管道露铁点作为测量的接触点; 变频选频法、皮尔逊法、P C M法、C I P S / D C V G法都是通过在管道上加载交流或直流信号来完成检测,电位差法、管内电流法、变频选频法只是单一的计算绝缘层电阻率,皮尔逊法能检测管道的走向、埋深和防腐层破损点的位置,操作简单易学,检测速度快,但是操作经验对检测的精确性有很大影响。 P C M法能检测管道的走向、埋深、防腐层破损点的位置和防腐层绝缘电阻率,对操作人员要求较高,检测速度不如皮尔逊法快; C I P S / D C V G法能准确地测量真实的管地电位和防腐层破损点,并能判断破损处是否处于被腐蚀状态,该法只能用于有阴极保护系统的管道,检测速度也较慢。 在综合考虑了以上各种检测方法的优缺点及城市燃气 管道的腐蚀特点的基础上,提出了变频选频法、多频管中电流法( P C M) 和标准管地电位( P / S ) 的组合检测方法。其中变频选频法主要检测防腐层的绝缘电阻,用于防腐层状况的总体评价,多频管中电流法用于防腐层的漏损定

阴极保护测试桩安装与测量方法技术

阴极保护测试桩安装和测量方法技术 说 明 文 件 河南邦信防腐材料有限公司 技术部 (欢迎下载,请勿转载)

阴极保护测试桩外观: 阴极保护测试桩说明书: 测试桩又称为测试桩检测桩,阴极保护桩,电位测试桩,电流测试桩。 按材质可分为钢制测试桩、水泥测试桩、塑钢测试桩、碳钢测试桩。按使用环境可分为城网测试桩,埋地管道测试桩等。主要用于埋地管道阴极保护参数的检测,是管道管理维护中必不可少的装置,按测试功能沿线布设。测试桩可用于管道电位、电流、绝缘性能的测试,也可用于覆盖层检漏及交直流干扰的测试。 河南邦信公司根据客户要求设计出防盗、防爆测试桩和防御多功能测试桩、防爆型测试桩,采用最新工艺表面喷塑镀锌,有效防止测试桩在使用中本身的腐蚀。河南邦信公司的测试桩采用无缝焊接技术,经久耐用,美观大方,是阴极保护参数测试桩理想选择。钢管测

试桩的说明: 河南邦信公司生产的钢管测试桩主要有普通钢管测试桩、防雨型钢管测试桩。 常用尺寸如下: 测试桩类型直径长度 钢管测试桩Φ 108 1.5 米- 3 米 防雨测试桩Φ 108 1.5 米- 3 米 测试桩的分类: 1、按材质分:钢质测试桩、水泥测试桩、塑料测试桩。钢质测试桩又分为碳钢测试桩和不锈钢测试桩。 2、按功能分: ●电位测试桩:主要用于检测保护电位 ●牺牲阳极测试桩:用于连接牺牲阳极,测量牺牲阳极的性能参数 ●电流测试桩:测量管中电流 ●保护效果测试桩:连接测试片 可根据客户需求生产不同形状、不同规格产品.

阴极保护水泥测试桩生产图片: 阴极保护水泥测试桩内部接线端子图片:

阴极保护钢制电流测试桩(喷塑)图片: 阴极保护钢制电位测试桩内部测试板图片:

阴极保护工作原理

阴极保护基本原理 容: 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE)高纯镁-1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌-1.10 铝合金(5%Zn) -1.05 纯铝-0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁-0.50 混凝土中的低碳钢-0.20 铜-0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V)被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中)-0.85 -0.75 0.25 -0.778 钢铁(硫酸盐还原菌)-0.95 -0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因是阳极成份达不到规要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。2、外加电流阴极保护是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管

阴极保护与案例分析

标题:阴极保护基本原理[精华] 内容: 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE) 高纯镁 -1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10 铝合金(5%Zn) -1.05 纯铝 -0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50 混凝土中的低碳钢 -0.20 铜 -0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中) -0.85-0.75 0.25 -0.778 钢铁(硫酸盐还原菌)-0.95-0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,

阴极保护测试桩的分类及功能介绍

河南汇龙合金材料有限公司阴极保护测试桩各种材质和规格 详 细 说 明 书 河南汇龙合金材料有限公司 电位测试桩(防水型)外观: 阴极保护测试桩说明书:

测试桩又称检测桩,管道测试桩,管道公里桩,长输管线测试桩,绝缘接头测试桩,电位测试桩,电流测试桩,碳钢测试桩等等。 按材质可分为钢制测试桩、水泥测试桩、塑钢测试桩、碳钢测试桩。按使用环境可分为城网测试桩,埋地管道测试桩等。主要用于阴极保护参数的检测,是管道管理维护中必不可少的装置,按测试功能沿线布设。测试桩可用于管道电位、电流、绝缘性能的测试,也可用于覆盖层检漏及交直流干扰的测试。 本公司根据客户要求设计出防盗、防爆测试桩和防御多功能测试桩,采用工艺表面喷塑镀锌,有效防止测试桩在使用中本身的腐蚀,本公司的测试桩采用无缝焊接技术,经久耐用,美观大方,是阴极保护参数测试桩理想选择。钢管测试桩的说明: 本公司公司生产的钢管测试桩主要有普通钢管测试桩、防雨型钢管测试桩。常用尺寸如下: 测试桩类型直径长度 钢管测试桩Φ108 1.5 米- 3 米 防雨测试桩Φ108 1.5 米- 3 米 测试桩用于阴极保护参数的检测,是管道管理维护中必不可少的装置,用于阴极保护电位、电流、绝缘性能的检测,也可用于覆盖层检漏及交、直流干扰的没试。 测试桩的分类: 1、按材质分:钢质测试桩、水泥测试桩、塑料测试桩。钢质测试桩又分为碳钢测试桩和不锈钢测试桩。

2、按功能分: ●电位测试桩:主要用于检测保护电位 ●牺牲阳极测试桩:用于连接牺牲阳极,测量牺牲阳极的性能参数●电流测试桩:测量管中电流 ●保护效果测试桩:连接测试片 阴极保护水泥测试桩图片: 内部接线端子细节图: 阴极保护钢制电流电位测试桩(喷塑)图片:

钢制管道阴极保护电位检查片测试方法及应用

管道阴极保护电位检查片 测 试 方 法 及 应 用 河南汇龙合金材料有限公司2018年3月整理 技术部刘珍

摘要 根据相关标准规定,钢制埋地管道阴极保护效果评价应采用断电电位指标,现场测试通常使用同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。本文详细介绍了管道阴极保护电位检查片的适用范围、设计、安装、测试及分析等内容,通过具体实施案例明确了数据记录的规范性,并验证了测试方法的可行性,为该方法的推广应用奠定实践基础。 引言 钢质埋地管道通常是采用防腐层和阴极保护联合保护的方式,防腐层作为第一层堡垒,利用其良好的绝缘性、抗渗透性及机械性能达到防腐目的;阴极保护系统作为第二道防线,可在防腐层破损或存在微孔处,通过保护电流对管道施加阴极极化,从而减缓或消除管壁腐蚀。根据GB/T 21448-2008《埋地钢质管道阴极保护技术规范》,管道阴极保护效果评价应采用断电电位指标,现场测试通常使用GPS 同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。

阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。阴极保护电位检查片是用于模拟被调查管道阴极极化后电位的检查片,将其埋设在管道测试点处,检查片部分裸露,其余部分有防腐层,检查片的埋设状态、材质均与管道相同,通过电缆与管道连接起来,这样检查片的裸露部分就模拟了管道的一个防腐层漏点。当管道处于阴极保护状态时,管道被保护电流极化的同时,检查片也会被极化为与管道相同的程度,只需测量检查片的瞬时断开电位,即可代表管道测量点的断电电位。NACE SP0502-2010《管道外腐蚀直接评价方法》认为检查片的断电电位近似于管道防腐层漏点处的阴极保护电位,能够评估管道阴极保护效果。1适用范围 阴极保护电位检查片能够评价埋地钢制管道阴极保护效果,只要能将检查片连接在管道上便可应用,尤其适用于同步中断法受限制的下列情况: (1)不能同步中断保护系统内多台恒电位仪提供的阴极保护电流; (2)存在外部阴极保护系统影响,难以中断该保护系统的恒电位仪;

阴极保护基本原理

阴极保护基本原理 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE) 高纯镁 -1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10 铝合金(5%Zn) -1.05 纯铝 -0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50 混凝土中的低碳钢 -0.20 铜 -0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中) -0.85 -0.75 0.25 -0.778 钢铁(硫酸盐还原菌) -0.95 -0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较

阴极保护系统的运行与维护.docx

阴极保护系统的运行与维护 (一) 阴极保护投入前的准备与验收 1. 阴极保护投入前对管道系统的检查 (1) 管道对地绝缘的检查 从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常,管道沿线布置的设施如阀门等应与土壤有良好的绝缘,管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其他金属构筑物有“短接”等故障。 管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用音频信号检漏仪检测,修补后回填。 (2) 管道导电性检查 对被保护管道应具有连续的导电性能。 2. 对阴极保护施工质量的验收 (1) 对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成并符合要求与图纸设计一致。 (2) 对阴极保护的站外设置的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接严格符合规范。 (3) 图纸、设计资料齐全完备。 (二) 阴极保护投入运行 (1) 组织人员测定全线管道自然电位、土壤电阻率、各站阳极地

床接地电阻。同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。 (2) 阴极保护站投入运行按照直流电源(整流器、恒电位仪、蓄电池等)操作程序给管道送电,使电位保持在-1.30V左右,待管道阴极极化一段时间(4h以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24h以上)。再重复第一次测试工作,并做好记录。若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。 (3) 保护电位的控制各站通电点电位的控制数值,应能保证相邻两站间的管段保护电位达到-O.85V,同时,各站通电点最负电位不允许超过规定数值。调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。 (4) 当管道全线达到最小阴极保护电位指标后,投运操作完毕。各阴极保护站进入正常连续工作阶段。 (三) 阴极保护站的日常管理 工业发达国家的阴极保护站大多数已无人值守,由控制中心遥测、遥控,几乎所有的站都是先由人工调整好,再自动恒定电位。阴极站每一个月派人去检查维护一次。 长输管道阴极保护系统的人工检测是很费人力的。其难易与管道设施所经过的地区有关。美国HARC0公司发展并完善了管线的航空监视体系,能自动监视和记录阴极保护系统的数据。此系统成功的关

管道阴极保护基本知识(终审稿)

管道阴极保护基本知识文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为- 1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。 强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直

管道阴极保护基本知识27680

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。

管道阴极保护电位检查片测试方法及应用

管道阴极保护电位检查片测试方法及应用 河南邦信防腐材料有限公司 2017年3月整理

摘要 根据相关标准规定,钢制埋地管道阴极保护效果评价应采用断电电位指标,现场测试通常使用同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。本文详细介绍了管道阴极保护电位检查片的适用范围、设计、安装、测试及分析等内容,通过具体实施案例明确了数据记录的规范性,并验证了测试方法的可行性,为该方法的推广应用奠定实践基础。 引言 钢质埋地管道通常是采用防腐层和阴极保护联合保护的方式,防腐层作为第一层堡垒,利用其良好的绝缘性、抗渗透性及机械性能达到防腐目的;阴极保护系统作为第二道防线,可在防腐层破损或存在微孔处,通过保护电流对管道施加阴极极化,从而减缓或消除管壁腐蚀。根据GB/T 21448-2008《埋地钢质管道阴极保护技术规范》,管道阴极保护效果评价应采用断电电位指标,现场测试通常使用GPS同步中断法,但其并不适用于无法同步中断管中阴极保护电流,以及受杂散电流干扰的管段。 阴极保护电位检查片可以解决这一难题,通过模拟管道防腐层漏点,利用检查片的瞬间断开电位实现近似管道断电电位的测量。阴极保护电位检查片是用于模拟被调查管道阴极极化后电位的检查片,将其埋设在管道测试点处,检查片部分裸露,其余部分有防腐层,检查片的埋设状态、材质均与管道相同,通过电缆与管道连接起来,这样检查片的裸露部分就模拟了管道的一个防腐层漏点。当管道处于阴极保护状态时,管道被保护电流极化的同时,检查片也会被极化为与管道相同的程度,只需测量检查片的瞬时断开电位,即可代表管道测量点的断电电位。NACE SP0502-2010《管道外腐蚀直接评价方法》认为检查片的断电电位近似于管道防腐层漏点处的阴极保护电位,能够评估管道阴极保护效果。 1 适用范围 阴极保护电位检查片能够评价埋地钢制管道阴极保护效果,只要能将检查片连接在管道上便可应用,尤其适用于同步中断法受限制的下列情况: (1)不能同步中断保护系统内多台恒电位仪提供的阴极保护电流; (2)存在外部阴极保护系统影响,难以中断该保护系统的恒电位仪; (3)存在直接连接的、不能中断的牺牲阳极;

管道牺牲阳极法阴极保护专用方案

管道牺牲阳极法阴极保护专用方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述---------------------------------------------------------- 2 (一)原理---------------------------------------------------- 2 (二)牺牲阳极法阴极保护的优点-------------------------------- 2 (三)牺牲阳极材料-------------------------------------------- 2 (四)阳极安装方式-------------------------------------------- 6 (五)测试系统------------------------------------------------ 7 (六)应用标准和规范------------------------------------------ 7 (七)主要测试设备和工具-------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计 -------------------------------- 8 三、施工方法------------------------------------------------------ 8 1、牺牲阳极法阴极保护施工安装程序简述如下: ------------------- 9 2、牺牲阳极法的施工:----------------------------------------- 9

长输管道阴极保护及阴极保护站维护

1.目的 为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。 一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。 二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 2.阴极保护原理 2.1所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。)。通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。 2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。 阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是: (a)两电极电位不同的两电极; (b)两电极必须在同一电解质溶液里; (c)两电极间必须有导线连接。 该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培)或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床

管道保护智能测试桩的特点和接线方式以及主要作用

测试桩用途: 主要用于阴极保护参数的检测,是管道管理维护中必不可少的装置,按测试功能沿线布设。测试桩可用于管道电位、电流、绝缘性能的测试,也可用于覆盖层检漏及交直流干扰的测试 测试桩用于阴极保护参数的检测,是管道管理维护中必不可少的装置,按照测试功能沿线布设。通常测试桩每公里设置一支,电流测试桩通常5-8公里设置一支。特殊地段可根据情况增加。 管道保护测试桩的特点: 管道保护测试桩阳极由电位较负的金属材料制成,当它与被保护的管道连接时,自身发生优先离解,从而抑制了管道的腐蚀,故称为牺牲阳极.牺牲阳极应有足够负的稳定电位,以保持足够大的驱动电压:同时有较大的理论发生电量,还要有高而稳定的电流效率。从电流测试桩上测得的管道电流具有用于评价CP有效性的作用。当管道的电流密度满足腐蚀控制需要是,管道会停止腐蚀,并生成一极化膜,这层膜的形成依靠电流密度。如果膜不存在或破损,表明电流桩上的电流未能满足管道保护需要,这时可参考监测值来调整保护电位,增大保护电流,可以有效控制管道腐蚀。 测试桩的接线方法: 1、所有电缆通过测试桩钢管底部引到接线端子; 2、根据设计要求确认埋深,测试电缆数量及接线方式: ①电位测试桩:管道测试电缆接红色接线端子,参比电极电缆接黑色接线端子; ②电化学测试桩:两只阳极所带电缆分别接测试装内的红色接线端子,管道测试电缆接上部黑色接线端子,参比电极电缆接下部黑色接线端子。 3、将测试桩埋入地下后,用混凝土浇注,并确保与地面垂直、牢固可靠,并将测试桩门锁好。 4、测试时只需打开测试桩门,将万用表调至2V档量程,然后将万用表的两条线分别接相应接线端子,读取并记录数据即可。 关键词:智能测试桩,智能电位采集仪,GPRS测试桩,GPRS智能测试桩,GPRS单位采集器 后续关注河南汇龙合金材料有限公司不定时更新 技术部:刘珍

阴极保护系统的运行与维护(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 阴极保护系统的运行与维护(新 版) Safety management is an important part of production management. Safety and production are in the implementation process

阴极保护系统的运行与维护(新版) (一)阴极保护投入前的准备与验收 1.阴极保护投入前对管道系统的检查 (1)管道对地绝缘的检查 从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常,管道沿线布置的设施如阀门等应与土壤有良好的绝缘,管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其他金属构筑物有“短接”等故障。 管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用音频信号检漏仪检测,修补后回填。 (2)管道导电性检查 对被保护管道应具有连续的导电性能。

2.对阴极保护施工质量的验收 (1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成并符合要求与图纸设计一致。 (2)对阴极保护的站外设置的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接严格符合规范。 (3)图纸、设计资料齐全完备。 (二)阴极保护投入运行 (1)组织人员测定全线管道自然电位、土壤电阻率、各站阳极地床接地电阻。同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。 (2)阴极保护站投入运行按照直流电源(整流器、恒电位仪、蓄电池等)操作程序给管道送电,使电位保持在-1.30V左右,待管道阴极极化一段时间(4h以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在

管道阴极保护基本知识

管道阴极保护基本知识TTA standardization office

管道阴极保护基本知识公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为;高钝锌,其电位为;工业纯铝,其电位为(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。

阴极保护检查片测量管道的极化电位的过程

河南汇龙合金材料有限公司 Henan Huilong alloy material Co., Ltd 阴极保护检查片 测 量 管 道 的 极 化 电 位 过 程 河南汇龙合金材料有限公司 技术部刘珍

河南汇龙合金材料有限公司 Henan Huilong alloy material Co., Ltd 参比电极 用试片法测量管道的极化电 数字签名 者 :fenghongchen DN :cn=fenghongchen, o=rainbow, ou=head offic 一、摘要 冯洪臣 email=corrtech@126.co m, c=CN 日期:2020.05.0614:20:43 随着人们对阴极保护理论认识的提高,现在,从业者大多都知道,判断管道阴极+保 08'护00'是否充分或是否有过保护,依据的是管道的极化电位,即断电电位。然而,在某些情况下,作 用在管道上的所有电流源是没有办法同步中断 的,如牺牲阳极保护管道。即便是阴极保护系统可以同步中断,如 GPS 同步的外加电流电源的同步中断,但由于管道不同位置的极化程度不同, 所以,电源中断后,管道各部位之间的长线电流也无法消除,这也会给断电电位测量带来误差, 研究发现,该误差在 10-30mV 之间。用地的紧缺造成多条管道、高压输电线路、电力机车系统经常公用一个走廊,各种电气化设施以及各条管道 的阴极保护系统电源都会成为干扰源,而同步中 挂片 断这些干扰源更是不可能的。这就给管道极化电 位的测量带来了困难。为克服这些环境因素带来的困难,古老的试片法又重新得到人们的关注,而用试片法进行管道断电电位的测量也得到了进一步的研究。 二、测量原理 众所周知,管道的腐蚀会发生在防腐层缺陷点处,如果防腐层是完整的,管道不会腐蚀。我们真正关注的是管道防腐层缺陷点处的保护水平。为了测量到防腐层缺陷点处的保护电位,我们用试片来模拟管道防腐层缺陷点。该试片平时通过测试桩与管道连接,得到同样的阴极保护。测量时,瞬时从管道上断开,这样,就可以测量到试片 的断电电位而不需要对管道上的所有电源进行中断。试片的电位就是同一位置,同样大小的管道防腐层缺陷点处的保护电位。该方法同时消除了杂散电流、长线电流等各种干扰因素的影响,可也得到较为准确的保护电位。 三、测量方法 1. 试片法断电电位测量有两种形式,一种是将参比电极与试片组装在一起,称为极化探头;另一种是将试片固定在参比管上,利用便携式参比电极进行测量,称 为参比管试片法。当使用试片时, 参比电极中的电解液会逐渐渗漏直至参比电极失效,同时,渗漏出来的电解液会改变试片所处环境,当硫酸铜电解液与试片接触时,会发生置换反应,试片表面 被铜覆盖,改变了其极化特性,参比电极电位漂移时也不易察觉。 采用参比管,由于参比管的屏蔽作用,利用便携式参比电极在地表就可以进行测量,避免漏液带来的问题。

相关主题
文本预览
相关文档 最新文档