当前位置:文档之家› 半导体测试技术实践

半导体测试技术实践

半导体测试技术实践
半导体测试技术实践

半导体测试技术实践总结报告

一、实践目的

半导体测试技术及仪器集中学习是在课堂结束之后在实习地集中的实践性教学,是各项课间的综合应用,是巩固和深化课堂所学知识的必要环节。学习半导体器件与集成电路性能参数的测试原理、测试方法,掌握现代测试设备的结构原理、操作方法与测试结果的分析方法,并学以致用、理论联系实际,巩固和理解所学的理论知识。同时了解测试技术的发展现状、趋势以及本专业的发展现状,把握科技前进脉搏,拓宽专业知识面,开阔专业视野,从而巩固专业思想,明确努力方向。另外,培养在实际测试过程中发现问题、分析问题、解决问题和独立工作的能力,增强综合实践能力,建立劳动观念、实践观念和创新意识,树立实事求是、严肃认真的科学态度,提高综合素质。

二、实践安排(含时间、地点、内容等)

实践地点:西安西谷微电子有限责任公司

实践时间:2014年8月5日—2014年8月15日

实践内容:对分立器件,集成电路等进行性能测试并判定是否失效

三、实践过程和具体内容

西安西谷微电子有限责任公司专业从事集成电路测试、筛选、测试软硬件开发及相关技术配套服务,测试筛选使用标准主要为GJB548、GJB528、GJB360等。

1、认识半导体及测试设备

在一个器件封装之后,需要经过生产流程中的再次测试。这次测试称为“Final test”(即我们常说的FT测试)或“Package test”。在电路的特性要求界限方面,FT测试通常执行比CP测试更为严格的标准。芯片也许会在多组温度条件下进行多次测试以确保那些对温度敏感的特征参数。商业用途(民品)芯片通常会经过0℃、25℃和75℃条件下的测试,而军事用途(军品)芯片则需要经过-55℃、25℃和125℃。

芯片可以封装成不同的封装形式,图4显示了其中的一些样例。一些常用的封装形式如下表:

DIP: Dual Inline Package (dual indicates the package has pins on two sides) 双列直插式

CerDIP:Ceramic Dual Inline Package 陶瓷

PDIP: Plastic Dual Inline Package 塑料

PGA: Pin Grid Array 管脚阵列

BGA: Ball Grid Array 球栅阵列

SOP: Small Outline Package 小型外壳

TSOP: Thin Small Outline Package

TSSOP:Thin Shrink Small Outline Package (this one is really getting small!) SIP: Single Inline Package 单列直插

SIMM: Single Inline Memory Modules (like the memory inside of a computer) QFP: Quad Flat Pack (quad indicates the package has pins on four sides) TQFP: Thin version of the QFP

MQFP: Metric Quad Flat Pack

MCM: Multi Chip Modules (packages with more than 1 die (formerly called hybrids)

1.1 自动测试设备

随着集成电路复杂度的提高,其测试的复杂度也随之水涨船高,一些器件的测试成本甚至占到了芯片成本的大部分。大规模集成电路会要求几百次的电压、电流和时序的测试,以及百万次的功能测试步骤以保证器件的完全正确。要实现如此复杂的测试,靠手工是无法完成的,因此要用到自动测试设备(ATE,Automated Test Equipment)。

ATE是一种由高性能计算机控制的测试仪器的集合体,是由测试仪和计算机组合而成的测试系统,计算机通过运行测试程序的指令来控制测试硬件。测试系统最

基本的要求是可以快速且可靠地重复一致的测试结果,即速度、可靠性和稳定性。为保持正确性和一致性,测试系统需要进行定期校验,用以保证信号源和测量单元的精度。

当一个测试系统用来验证一片晶圆上的某个独立的晶片的正确与否,需要用ProbeCard来实现测试系统和晶片之间物理的和电气的连接,而ProbeCard和测试系统内部的测试仪之间的连接则通过一种叫做“Load board”或“Performance board”的接口电路板来实现。在CP测试中,Performance board和Probe card一起使用构成回路使电信号得以在测试系统和晶片之间传输。

当晶片封装出来后,它们还要经过FT测试,这种封装后的测试需要手工将一个个这些独立的电路放入负载板(Load board)上的插座(Socket)里,这叫手工测试(hand test)。一种快速进行FT测试的方法是使用自动化的机械手(Handler),机械手上有一种接触装置实现封装引脚到负载板的连接,这可以在测试机和封装内的晶片之间提供完整的电路。机械手可以快速的抓起待测的芯片放入测试点(插座),然后拿走测试过的芯片并根据测试pass/fail的结果放入事先定义好的相应的Bin区。

1.2 数字和模拟电路

过去,在模拟和数字电路设计之间,有着显著的不同。数字电路控制电子信号,表现为逻辑电平“0”和“1”,它们被分别定义成一种特殊的电压分量,所有有效的数字电路数据都用它们来表示,每一个“0”或“1”表示数据的一个比特(bit)位,任何数值都可以由按照一定顺序排列的“0”“1”比特位组成的二进制数据来表示,数值越大,需要的比特位越多。每8个比特一组构成一个Byte,数字电路中的数据经常以Byte为单位进行处理。

不同于数字信号的“0”“1”界限分明(离散),模拟电路时连续的——在任何两个信号电平之间有着无穷的数值。模拟电路可以使用电压或电流来表示数值,我们常见的也是最常用的模拟电路实例就是运算放大器,简称运放。

为帮助理解模拟和数字电路数值的基本差别,我们可以拿时钟来比方。“模拟”时钟上的指针连续地移动,因此所有的任一时间值可以被观察者直接读出,但是所得数值的准确度或者说精度取决于观察者认知的程度。

而在“数字”时钟上,只有最小增量以上的值才能被显示,而比最小增量小的值则无法显示。如果有更高的精度需求,则需要增加数据位,每个新增的数据位表示最小的时间增量。

有的电路里既有数字部分也有模拟部分,如AD转换器(ADC)将模拟信

号转换成数字信号,DA转换器(DAC)则相反,我们称之为“混合信号电路”(Mixed Signal Devices)。另一种描述这种混合电路的方法则基于数字部分和模拟部分占到电路的多少:数字部分占大部分而模拟部分所占比例较少归于数字电路,反之则归于模拟电路。1.3 测试系统的种类

一般认为测试系统都是通用的,其实大部分测试系统的设计都是面向专门类型的集成电路,这些专门的电路包括:存储器、数字电路、模拟电路和混合信号电路;每种类型下还可以细分成更多种类,我们这里只考虑这四种类型。

a 存储器件类

我们一般认为存储器是数字的,而且很多DC测试参数对于存储类和非存储类的数字器件是通用的,虽然如此,存储器的测试还是用到了一些独特的功能测试过程。带内存的自动测试系统使用一种算法模式生成器(APG,algorithmic pattern generator)去生成功能测试模型,使得从硬件上生成复杂的功能测试序列成为可能,这样我们就不用把它们当作测试向量来保存。存储器测试的一些典型模型包括:棋盘法、反棋盘法、走0、走1、蝶形法,等等……APG在器件的每次测试时生成测试模型,而不带内存的测试系统将预先生成的模型保存到向量存储区,然后每次测试时从中取出数据。存储器测试通常需要很长的测试时间去运行所要求的测试模型,为了减少测试成

本,测试仪通常同时并行测试多颗器件。

b 模拟或线形器件类

模拟器件测试需要精确地生成与测量电信号,经常会要求生成和测量微伏级的电压和纳安级的电流。相比于数字电路,模拟电路对很小的信号波动都很敏感,DC测试参数的要求也和数字电路不一样,需要更专业的测试仪器设备,通常会按照客户的选择在设计中使用特殊的测试仪器甚至机架。模拟器件需要测试的一些参数或特性包括:增益、输入偏移量的电压和电流、线性度、通用模式、供电、动态响应、频率响应、建立时间、过冲、谐波失真、信噪比、响应时间、窜扰、邻近通道干扰、精度和噪声。

c 混合信号器件类

混合信号器件包括数字电路和模拟电路,因此需要测试系统包含这两部分的测试仪器或结构。混合信号测试系统发展为两个系列:大部分数字电路测试结构、少量模拟测试结构的系列,被设计成用于测试以数字电路为主的混合信号器件,它能有效地进行DC参数测试和功能测试,但是仅支持少量的模拟测试;大部分模拟电路测试结构、少量数字测试结构的系列,相反,能够精确地测试模拟参数而在功能测试上稍逊风骚。

d 数字电路器件类

仅含有数字逻辑的电路器件可使用数字电路测试系统来完成测试,这些测试系

统之间在价格、性能、尺寸、可选项上有着明显的不同。

低端的测试机被用来测试低价格或者低性能的低端产品,通常是些管脚少、复杂度低的器件;一般运行于低于20MHz的时钟频率,且只能存储少量的测试向量;用于小规模(SSI)或中规模(MSI)集成电路的测试。

高端的测试机则是速度非常快(时钟频率高)、测试通道非常多的测试系统;时钟频率通常会达到400MHz,并能提供1024个测试通道;拥有高精度的时钟源和百万bit位的向量存储器。它们被用于验证新的超大规模(VLSI)集成电路,但是昂贵的成本阻碍了他们用于生产测试。

而半导体测试工业普遍使用的是中高端的测试设备,它们拥有较好的性价比,在对测试成本非常敏感的半导体测试行业,这无疑是非常重要的。这类测试设备多运行在50-100MHz,提供256个测试通道,通常带有一些可选的配置。

为了控制测试成本,谨慎地选择能满足器件测试需求的测试设备是非常重要的,选择功能相对于我们器件的测试要求过于强大的测试系统会使得我们的测试成本居高不下,而相反的选择会造成测试覆盖率不够;找到设备功能和成本之间的平衡是测试成本控制本质的要求。

1.4 测试负载板(LoadBoard)

测试负载板是一种连接测试设备的测试头和被测器件物理和电路接口,被固定在针测台(Probe)、机械手(Handler)或者其他测试硬件上,其上的布线连接测试机台

内部信号测试卡的探针和被测器件的管脚。

在CP测试中,负载板连接ProbeCard;在手工测试中,我们将Socket固定在负载板上;而在FT的生产测试中,我们将其连接到Handler. 因为测试机在物理和电气上需要与多种类型的设备连接、锁定,因而Loadboard的类型和款式也是多种多样。

测试高速或者大功率的器件需要定制的Loadboard,为保证信号完整性,这种高性能的定制电路板必须完成阻抗匹配——这对于布局、布线及线长、线宽等都有特殊要求,因此通常需要数月的时间设计制作,并且价格非常昂贵。

2 半导体测试基础

2.1测试程序

半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标。

测试程序通常分为几个部分,如DC测试、功能测试、AC测试等。DC测试验证电压及电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。

程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。Pass 指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用。测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning”,也称为“分Bin”. 举个例子,一个微处理器,如果可以在150MHz 下正确执行指令,会被归为最好的一类,称之为“Bin 1”;而它的某个兄弟,只能在100MHz 下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为“Bin 2”,卖给只要求100MHz的客户。程序还要有控制外围测试设备比如 Handler 和 Probe 的能力;还要搜集和提供摘要性质(或格式)的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率(Yield)分析和控制。

2.2测试方法的选择

经常有人问道:“怎样正确地创建测试程序?”这个问题不好回答,因为对于什

么是正确的或者说最好的测试方式,一直没有一个单一明了的界定,某种情形下正

确的方式对另一种情况来说不见得最好。很多因素都在影响着测试行为的构建方式,

下面我们就来看一些影响力大的因素。

a 测试环节的成本

决定什么需要被测试以及以何种方式的因素之一,测试成本在器件总的制造成本中占了很大的比重,因此许多与测试有关的决定也许仅仅取决于器件的售价与测试成本。例如,某个器件可应用于游戏机,它卖15元;而同样的器件用于人造卫星,则会卖3500元。每种应用有其独特的技术规范,要求两种不同标准的测试程序。3500元的器件能支持昂贵的测试费用,而15元的器件只能支付最低的测试成本。

b 测试开发的理念。

测试理念只一个公司内部测试人员之间关于什么是最优的测试方法的共同的观念,这却决于他们特殊的要求、芯片产品的售价,并受他们以往经验的影响。在测试程序开发项目启动之前,测试工程师必须全面地上面提到的每一个环节以决定最佳的解决方案。开发测试程序不是一件简单的正确或者错误的事情,它是一个在给定的状况下寻找最佳解决方案的过程。

四、实践体会与心得

通过这次实践,首先我了解到作为一个公司运作首先是制度化,模块化。

一个良好的规范制度约束才能使公司正常的运转下去。每个部门的人各司其职,互相配合,就好像一个个齿轮互相契合共同促使机器的正常运转。

在测试实践的过程中测试流程和方法的选择也是非常有讲究的。选择都要考虑其科学性,既不损害芯片又能测试其可靠性。

以集成电路LF153J/883,封装为CERDIP-8为例。测试过程如下:

1、外观检查,所用标准为GJB548B-2005方法2009.1

该标准为外部目检,使用放大镜对其进行观察,失效判据分为7点。有一般判据,外来或错位的物质,结构缺陷,封装课题或盖帽的镀涂层,引线,有引线器件的封装壳体或盖帽和玻璃密封,对照规定判定是否失效。

2、常温初测

按照器件相应规范,测试它的电参数。

3、温度循环

在-55℃-125℃进行循环测试,循环次数为5次。

4、恒定加速度,所用标准为GJB548B-2001.1试验条件D,Y1方向

5、PIND,所用标准为GJB548B-2020.1条件A

6、常温中测1,

按照器件相应规范

7、高温动态老炼

在温度T=125℃下动态老炼48h,所加电压电流不大于额定工作值,该步允许不合格率<5%,此批次无不合格产品。

8、常温中测2

按照器件相应规范

9、低温测试,T=-55℃,t=48h

10、高温测试,T=125℃,t=48h

11、细检漏,所用标准为GJB548B-1014.2 条件A1

条件A1为示踪气体氦细检漏,用该条件进行试验所需设备包括合适的压力室,真空室和一台质谱检漏仪。该质谱检漏仪应经过适当的预制和校准,时期灵敏度达到足以读出小于或等于10-4(Pa·cm3)/s的氦漏率。用于测量漏率的工作室体积应根据实际情况保持尽量小,因为该体积过大对灵敏度极限值会产生不利的影响。应该在每个工作班次期间,至少用经校准的扩散型标准漏孔校准一次检漏仪的指示器。

12、粗检漏,所用标准为GJB548B-1014.2 条件C

该条件为碳氟化合物粗检漏,所需设备为:

a)真空/压力室,用于抽真空及随后加压,能使器件收到516KPa的压力

作用达10h。

b)能保持指示用的液体温度在125℃并适于观察的容器以及一套能把尺

寸大于1μm的例子从液体中除去的过滤系统。

c) 1.5倍~30倍的放大镜。当把器件浸入指示用的液体中时,能用该放

大镜观察到从器件中冒出的气泡。

d)表1所列的检测用1型液体和指示用2型液体。

e)光源:它在空气中能在距离等于容器中离光源最远的器件与光源之间

距离的位置处产生大于或等于4572m烛光的亮度。光源不需要校准。

但光源在观察位置上(即在观察气泡时放置被测器件的位置上)产生

的亮度应受到验证。

f)指示试验温度、压力和时间是否符合规定的已校准过的合适仪器

g)使器件浸入指示液中的合适夹具

密封性检测完后,允许不合格率<10%,此批次为0

13、常温终测

14、外观复查,所用标准为GJB548B-2005方法2009.1

此批产品全部合格。

通过实习,不仅了解到了半导体测量的全过程而且培养了我们熟悉电子仪器、仪表工作原理,使我们具备半导体测试应用技术、电子仪器测控技术的能力,并且为今后解决实际工程中的有关问题打下基础,还能在业务组织能力和实际工作能力方面的锻炼。在实习单位,我们必须向师父,工人师傅,还有各位上司努力学习,努力提高自己的各方面素质。我们适时地抓住该次实习的机会,努力地运用在学校学习的书本知识,将他们转化为实地操作的能力。为以后真正走向社会,走向工作岗位提供宝贵的经验,通过这次顶岗实习,对我们巩固和加深所学理论知识,培养我们的独立工作能力和加强劳动观点起了重要作用。 1.在实习中了解企业的组织管理、企业文化、产品开发与销售等方面的知识和运作过程;更重要的是培养了我们严格认真的科学态度、塌实求实的工作作风、吃苦耐劳的献身精神和团结协作的集体观念。 2.在专业比较对口的实习岗位上,努力将所学的理论知识与实际工作密切结合,并能灵活应用,使自己的专业知识、专业技能及工程实践能力均得到一次全面的提升。 3.积累一定的工作经验和社会经验,在职业道德、职业素质、劳动观念、工作能力等方面都有明显的提高,逐步掌握从学生到员工的角色转换,为毕业后的就业打下良好的基础,提高就业竞争力。

实验讲义-半导体材料吸收光谱测试分析2015

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。 b.单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d.检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 0.575 光源单色器吸收池检测器显示双光束紫外可见分光光度计则为: 双光束紫外可见分光光度计的光路图如下:

(2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I?- =α d t e I I?- =α 0(1) I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T为: d e I I T?- = =α t (2) 则 d e T d? = =?α α ln ) /1 ln( 透射光I t

半导体器件综合参数测试

研究生《电子技术综合实验》课程报告 题目:半导体器件综合参数测试 学号 姓名 专业 指导教师 院(系、所) 年月日

一、实验目的: (1)了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。掌握半导体管特性图示仪的使用方法,掌握测量晶体管输入输出特性的测量方法。 (2)测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全面分析、讨论。 二、实验内容: (1)测试3AX31B、3DG6D的放大、饱和、击穿等特性曲线,根据图示曲线计算晶体管的放大倍数; (2)测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。 三、实验仪器: XJ4810图示仪、示波器、三极管、霍尔效应实验装置 四、实验原理: 1.三极管的主要参数: (1)直流放大系数h FE:h FE=(I C-I CEO)/I B≈I C/I B。其中I C为集电极电流,I B为基极电流。 基极开路时I C值,此值反映了三极管热稳定性。 (2)穿透电流I CEO : (3)交流放大系数β:β=ΔI C/ΔI B (4)反向击穿电压BV CEO:基极开路时,C、E之间击穿电压。 2.图示仪的工作原理: 晶体管特性图示仪主要由阶梯波信号源、集电极扫描电压发生器、工作于X-Y方式的示波器、测试转换开关及一些附属电路组成。晶体管特性图示仪根据器件特性测量的工作原理,将上述单元组合,实现各种测试电路。阶梯波信号源产生阶梯电压或阶梯电流,为被测晶体管提

供偏置;集电极扫描电压发生器用以供给所需的集电极扫描电压,可根据不同的测试要求,改变扫描电压的极性和大小;示波器工作在X-Y状态,用于显示晶体管特性曲线;测试开关可根据不同晶体管不同特性曲线的测试要求改变测试电路。(原理如图1) 上图中,R B、E B构成基极偏置电路。当E B》V BE时,I B=(E B-V BE)/R B基本恒定。晶体管C-E之间加入锯齿波扫描电压,并引入小取样电阻RC,加到示波器上X轴Y轴电压分别为:V X=V CE=V CA+V AC=V CA-I C R C≈V CA V Y=-I C·R C∝-I C I B恒定时,示波器屏幕上可以看到一根。I C-V CE的特征曲线,即晶体管共发射极输出特性曲线。为了显示一组在不同I B的特征曲线簇I CI=φ应该在X轴锯齿波扫描电压每变化一个周期时,使I B也有一个相应的变化。应将E B改为能随X轴的锯齿波扫描电压变化的阶梯电压。每一个阶梯电压能为被测管的基极提供一定的基极电流,这样不同变化的电压V B1、V B2、V B3…就可以对应不同的基极注入电流I B1、I B2、I B3….只要能使没一个阶梯电压所维持的时间等于集电极回路的锯齿波扫描电压周期。如此,绘出I CO=φ(I BO,V CE)曲线与I C1=φ(I B1,V CE)曲线。 3.直流电流放大系数h FE与工作点I,V的关系 h FE是晶体三极管共发射极连接时的放大系数,h FE=I C/I B。以n-p-n晶体管为例,发射区的载流子(电子)流入基区。这些载流子形成电流I E,当流经基区时被基区空穴复合掉一部分,这复合电流形成IB,复合后剩下的电子流入集电区形成电流为IC,则I E=IB+IC。因IC>>IB 所以一般h FE=IC/IB都很大。

现代测控大作业

现代检测与控制技术大作业 题目:压力感应夜灯系统设计 学院:信息科学技术学院 专业:电子信息工程 姓名: 学号: 指导老师:王磊 完成时间:2015年5月16日

压力感应夜灯系统设计 摘要:本文结合生活实际对照明控制系统的功能需求进行了合理的预测,然后根据照明系统的发展趋势,通过综合的分析归纳,提出了一种压力控制照明系统的初步设计方案。 关键词:压力感应智能照明 一、引言 随着人民生活水平的不断提高,人们对工作和生活环境的要求越来越高,同时对照明系统的要求也越来越高。照明领域的能源消耗在总的能源消耗中占了相当大的比例,节约能源和提高照明质量是当务之急。传统照明技术受到了强烈冲击。一方面,由于信息技术和计算机的发展对照明技术的变化提供了技术支撑;另一方面,由于能源的紧缺,国家对照明节能越来越重视,新型的照明技术得以迅速发展,以满足使用者节约能源、舒适性、方便性的要求。 二、设计背景 从1983年第一座带有智能化概念的建筑物在美国落成后,楼宇智能化成为建筑电气发展的主流技术。各发达国家,如美国、日本及欧洲各国都对绿色节能照明提出了各自的工作计划及目标。为贯彻执行资源的开发和节约并举、将节约置于首位的方针。美国从2000年起投资5亿美元实施"国家智能照明计划"。美国能源部预测,到2010年前后,美国将有55%的白炽灯和荧光灯被半导体灯具替代,每年仅节电就可达350亿美元。世界著名的印制电路板生产公司、奥地利的AT&S也积极开发LED用于印制电路板,并打算将该类印制电路板作为未来的支柱产品。韩国政府则在实施将路灯更换成智能照明系统的计划。欧盟已经规定,自2009年9月1日起,所有超市不允许销售白炽灯泡,也不允许销售高压的荧光灯灯泡,只能销售节能灯。 90年前后,在国外智能照明蓬勃发展的背景下,真善美、松下以及SOK等众多企业相继投入大量人力物力进行相关产品的研发。国家主席胡锦涛访美期间参观世界首富比尔?盖茨位于西雅图的私人豪宅,所有电器设备均被连接成一个可控网络,涵盖了包括智能气象、智能照明、智能通风、智能电工和智能安防等各项“未来科学技术”,堪称世界智能家居的“未来之屋”。上海世博会上,大家见识到了不同的馆区不同的国家有着不同的风采,但是,不管是美国馆、加拿大

8、半导体材料吸收光谱测试分析

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯、绘图打印机,玻璃基ZnO 薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 UV762双光束紫外可见分光光度计外观图: (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a .光源:钨灯或卤钨灯——可见光源,350~1000nm ;氢灯或氘灯——紫外光源,200~360nm 。 b .单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c .吸收池:玻璃——能吸收UV 光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d .检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 光源 单色器 吸收池 检测器 显示 双光束紫外可见分光光度计则为:

双光束紫外可见分光光度计的光路图如下: (2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I ?-=α0 d t e I I ?-=α0 (1) I 0:入射光强;I x :透过厚度x 的光强;I t :透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T 为: d e I I T ?-==α0 t (2)

半导体测试技术实践

半导体测试技术实践总结报告 一、实践目的 半导体测试技术及仪器集中学习是在课堂结束之后在实习地集中的实践性教学,是各项课间的综合应用,是巩固和深化课堂所学知识的必要环节。学习半导体器件与集成电路性能参数的测试原理、测试方法,掌握现代测试设备的结构原理、操作方法与测试结果的分析方法,并学以致用、理论联系实际,巩固和理解所学的理论知识。同时了解测试技术的发展现状、趋势以及本专业的发展现状,把握科技前进脉搏,拓宽专业知识面,开阔专业视野,从而巩固专业思想,明确努力方向。另外,培养在实际测试过程中发现问题、分析问题、解决问题和独立工作的能力,增强综合实践能力,建立劳动观念、实践观念和创新意识,树立实事求是、严肃认真的科学态度,提高综合素质。 二、实践安排(含时间、地点、内容等) 实践地点:西安西谷微电子有限责任公司 实践时间:2014年8月5日—2014年8月15日 实践内容:对分立器件,集成电路等进行性能测试并判定是否失效 三、实践过程和具体内容 西安西谷微电子有限责任公司专业从事集成电路测试、筛选、测试软硬件开发及相关技术配套服务,测试筛选使用标准主要为GJB548、GJB528、GJB360等。 1、认识半导体及测试设备

在一个器件封装之后,需要经过生产流程中的再次测试。这次测试称为“Final test”(即我们常说的FT测试)或“Package test”。在电路的特性要求界限方面,FT测试通常执行比CP测试更为严格的标准。芯片也许会在多组温度条件下进行多次测试以确保那些对温度敏感的特征参数。商业用途(民品)芯片通常会经过0℃、25℃和75℃条件下的测试,而军事用途(军品)芯片则需要经过-55℃、25℃和125℃。 芯片可以封装成不同的封装形式,图4显示了其中的一些样例。一些常用的封装形式如下表: DIP: Dual Inline Package (dual indicates the package has pins on two sides) 双列直插式 CerDIP:Ceramic Dual Inline Package 陶瓷 PDIP: Plastic Dual Inline Package 塑料 PGA: Pin Grid Array 管脚阵列

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

实验一 半导体材料的缺陷显示及观察资料讲解

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 仅供学习与交流,如有侵权请联系网站删除谢谢2

材料测试与分析总复习

XRD复习重点 1.X射线的产生及其分类 2.X射线粉晶衍射中靶材的选取 3.布拉格公式 4.PDF卡片 5.X射线粉晶衍射谱图 6.X射线粉晶衍射的应用 电子衍射及透射电镜、扫描电镜和电子探针分析复习提纲 透射电镜分析部分: 4.TEM的主要结构,按从上到下列出主要部件 1)电子光学系统——照明系统、图像系统、图像观察和记录系统;2)真空系统; 3)电源和控制系统。电子枪、第一聚光镜、第二聚光镜、聚光镜光阑、样品台、物镜光阑、物镜、选区光阑、中间镜、投影镜、双目光学显微镜、观察窗口、荧光屏、照相室。 5. TEM和光学显微镜有何不同? 光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;TEM分辨本领高(1A)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。 6.几何像差和色差产生原因,消除办法。 球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。减小球差可以通过减小CS值和缩小孔径角来实现。 色差是由于入射电子波长(或能量)的非单一性造成的。采取稳定加速电压的方法可以有效的减小色差;适当调配透镜极性;卡斯汀速度过滤器。 7.TEM分析有那些制样方法?适合分析哪类样品?各有什么特点和用途? 制样方法:化学减薄、电解双喷、竭力、超薄切片、粉碎研磨、聚焦离子束、机械减薄、离子减薄; TEM样品类型:块状,用于普通微结构研究; 平面,用于薄膜和表面附近微结构研究; 横截面样面,均匀薄膜和界面的微结构研究; 小块粉末,粉末,纤维,纳米量级的材料。 二级复型法:研究金属材料的微观形态; 一级萃取复型:指制成的试样中包含着一部分金属或第二相实体,对它们可以直接作形态检验和晶体结构分析,其余部分则仍按浮雕方法间接地观察形态; 金属薄膜试样:电子束透明的金属薄膜,直接进行形态观察和晶体结构分析; 粉末试样:分散粉末法,胶粉混合法 思考题: 1.一电子管,由灯丝发出电子,一负偏压加在栅极收集电子,之后由阳极加速,回答由灯丝到栅极、由栅极到阳极电子的折向及受力方向? 2.为什么高分辨电镜要使用比普通电镜更短的短磁透镜作物镜? 高分辨电镜要比普通电镜的放大倍数高。为了提高放大倍数,需要短焦距的强磁透镜。透镜的光焦度1/f与磁场强度成H2正比。较短的f可以提高NA,使极限分辨率更小。 3.为什么选区光栏放在“象平面”上? 电子束之照射到待研究的视场内;防止光阑受到污染;将选区光阑位于向平面的附近,通过

ic半导体测试基础(中文版)

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。 一.测试目的 Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。 测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。 另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。 二.测试方法 Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。 基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT 管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。 既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。 串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。缺点在于,从测试时间上考虑,会要求测试系统对DUT的每个管脚都有相应的独立的DC测试单元。对于拥有PPPMU结构的测试系统来说,这个缺点就不存在了。 当然,Open-Short也可以使用功能测试(Functional Test)来进行,我会在后面相应的章节提及。

现代测试技术应用_论文

现代测试技术在液压缸设计中的应用 摘要:随着自动化技术的高速发展及其对测试技术要求的不断提高,从而使测试技术作为一种新产品开发的重要手段,可以有效缩短新产品研发周期,提高产品研发成功率。本文以液压缸缓冲设计为例,介绍测试技术在液压缸中的应用。结果表明,采用测试技术能够直观、量化缓冲性能指标及结果,并能进行改进前后性能的对比,缩短了元件满足主机性能需要的试制周期。最后,通过对工程机械的研发过程的总结,提出现代测试技术的主要任务及其发展方向。 关键词:测试技术,液压缸,智能化,集成化,网络化 1 引言 我国工程机械主机技术仍落后于发达国家,为其配套的关键液压元件是制约其发展的主要因素,尽快缩短与国外技术的差距,已在行业形成共识。 随着自动化技术的高速发展,仪器及检测技术已成为促进当代生产的主流环节,同时也是生产过程自动化和经营管理现代化的基础,没有性能好、精度高、质量可靠的仪器测试到各种有关的信息,要实现高水平的自动化就是一句空话。因此,借鉴测试技术与传感技术在工程技术的成功应用,在液压件开发领域中引入测试技术的理念,将大幅度提高国产液压件的发展速度。 液压缸作为主要的执行元件,在某些主机上对其缓冲性能要求越来越高。利用较好的缓冲结构延长液压缸的寿命越来越受到关注。本文介绍利用测试与传感技术建立计算机辅助测试系统,如何研究液压缸缓冲结构的设计和定型。利用测试结果,调节液压缸缓冲参数和节流孔参数。通过测试不同工况下缓冲腔工作压力及行程等参数,实现仿真设计,确保样机性能验证结果的可信度。 2 测试技术及传感技术 在传统的产品开发模式中,进行产品的改进是被动的,是由主机厂使用过程中发现问题、提出问题并反馈,得到信息后再进行设计改进的。鉴于传统产品开发模式耗费开发周期时间长,被动改进,我们提出了新型产品开发模式如图1。 图1 新型产品开发模式 结合自身的需求,我们开发出一套适用于液压缸缓冲结构研发过程中的计算机辅助测试系统。图2为计算机辅助测试系统的构成示意图,由液压系统传感器和数据采集系统组成,被测液压缸为带缓冲的液压缸,在主机上进行规定动作试验,采用多功能数据采集模块及数据采集软件,完成两腔压力( 缓冲压力或工作压力) 位移-时间的采集和测量。

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

半导体C-V测量基础

半导体C-V测量基础 作者:Lee Stauffer 时间:2009-07-29 来源:吉时利仪器公司 C-V测量为人们提供了有关器件和材料特征的大量信息 通用测试 电容-电压(C-V)测试广泛用于测量半导体参数,尤其是MOSCAP和MOSFET结构。此外,利用C-V测量还可以对其他类型的半导体器件和工艺进行特征分析,包括双极结型晶体管(BJT)、JFET、III-V族化合物器件、光伏电池、MEMS器件、有机TFT显示器、光电二极管、碳纳米管(CNT)和多种其他半导体器件。 这类测量的基本特征非常适用于各种应用和培训。大学的研究实验室和半导体厂商利用这类测量评测新材料、新工艺、新器件和新电路。C-V测量对于产品和良率增强工程师也是极其重要的,他们负责提高工艺和器件的性能。可靠性工程师利用这类测量评估材料供货,监测工艺参数,分析失效机制。 采用一定的方法、仪器和软件,可以得到多种半导体器件和材料的参数。从评测外延生长的多晶开始,这些信息在整个生产链中都会用到,包括诸如平均掺杂浓度、掺杂分布和载流子寿命等参数。在圆片工艺中,C-V测量可用于分析栅氧厚度、栅氧电荷、游离子(杂质)和界面阱密度。在后续的工艺步骤中也会用到这类测量,例如光刻、刻蚀、清洗、电介质和多晶硅沉积、金属化等。当在圆片上完全制造出器件之后,在可靠性和基本器件测试过程中可以利用C-V测量对阈值电压和其他一些参数进行特征分析,对器件性能进行建模。 半导体电容的物理特性 MOSCAP结构是在半导体制造过程中形成的一种基本器件结构(如图1所示)。尽管这类器件可以用于真实电路中,但是人们通常将其作为一种测试结构集成在制造工艺中。由于这种结构比较简单而且制造过程容易控制,因此它们是评测底层工艺的一种方便的方法。

半导体测试原理

IC 测试原理解析 第一章数字集成电路测试的基本原理 器件测试的主要目的是保证器件在恶劣的环境条件下能完全实现设计规格书所规定的功能及性能指标。用来完成这一功能的自动测试设备是由计算机控制的。因此,测试工程师必须对计算机科学编程和操作系统有详细的认识。测试工程师必须清楚了解测试设备与器件之间的接口,懂得怎样模拟器件将来的电操作环境,这样器件被测试的条件类似于将来应用的环境。 首先有一点必须明确的是,测试成本是一个很重要的因素,关键目的之一就是帮助降低器件的生产成本。甚至在优化的条件下,测试成本有时能占到器件总体成本的40% 左右。良品率和测试时间必须达到一个平衡,以取得最好的成本效率。 第一节不同测试目标的考虑 依照器件开发和制造阶段的不同,采用的工艺技术的不同,测试项目种类的不同以及待测器件的不同,测试技术可以分为很多种类。 器件开发阶段的测试包括: 特征分析:保证设计的正确性,决定器件的性能参数; 产品测试:确保器件的规格和功能正确的前提下减少测试时间提高成本效率 可靠性测试:保证器件能在规定的年限之内能正确工作; 来料检查:保证在系统生产过程中所有使用的器件都能满足它本身规格书要求,并能正确工作。 制造阶段的测试包括: 圆片测试:在圆片测试中,要让测试仪管脚与器件尽可能地靠近,保证电缆,测试仪和器件之间的阻抗匹配,以便于时序调整和矫正。因而探针卡的阻抗匹配和延时问题必须加以考虑。 封装测试:器件插座和测试头之间的电线引起的电感是芯片载体及封装测试的一个首要的考虑因素。 特征分析测试,包括门临界电压、多域临界电压、旁路电容、金属场临界电压、多层间电阻、金属多点接触电阻、扩散层电阻、接触电阻以及FET 寄生漏电等参数测试。 通常的工艺种类包括: TTL ECL CMOS NMOS

半导体测试理论

半导体测试理论1 测量可重复性和可复制性(GR&R) GR&R是用于评估测试设备对相同的测试对象反复测试而能够得到重复读值的能力的参数。也就是说GR&R是用于描述测试设备的稳定性和一致性的一个指标。对于半导体测试设备,这一指标尤为重要。 从数学角度来看,GR&R就是指实际测量的偏移度。测试工程师必须尽可能减少设备的GR&R值,过高的GR&R值表明测试设备或方法的不稳定性。 如同GR&R名字所示,这一指标包含两个方面:可重复性和可复制性。可重复性指的是相同测试设备在同一个操作员操作下反复得到一致的测试结果的能力。可复制性是说同一个测试系统在不同操作员反复操作下得到一致的测试结果的能力。 当然,在现实世界里,没有任何测试设备可以反复获得完全一致的测试结果,通常会受到5个因素的影响: 1、测试标准 2、测试方法 3、测试仪器 4、测试人员 5、环境因素 所有这些因素都会影响到每次测试的结果,测试结果的精确度只有在确保以上5个因素的影响控制到最小程度的情况下才能保证。 有很多计算GR&R的方法,下面将介绍其中的一种,这个方法是由Automotive Idustry Action Group(AIAG)推荐的。首先计算由测试设备和人员造成的偏移,然后由这些参数计算最终GR&R 值。 Equipment Variation (EV):代表测试过程(方法和设备)的可重复性。它可以通过相同的操作员对测试目标反复测试而得到的结果计算得来。 Appraiser Variation (AV):表示该测试流程的可复制性。可以通过不同操作员对相同测试设备和流程反复测测试所得数据计算得来。 GR&R的计算则是由上述两个参数综合得来。 必须指出的是测试的偏移不仅仅是由上述两者造成的,同时还受Part Variation(PV)的影响。PV表示测试目标不同所造成的测试偏差,通常通过测试不同目标得到的数据计算而来。 现在让我们来计算总偏差:Total Variation (TV),它包含了由R&R和PV所构成的影响。 TV = sqrt((R&R)**+ PV**) 在一个GR&R报表中,最终的结果往往表示成:%EV, %AV, %R&R,和 %PV。他们分别表示EV,AV,R&R 和PV相对TV的百分比。因此 %EV=(EV/TV)x100% %AV=(AV/TV)x100% %R&R=(R&R/TV)x100% %PV=(PV/TV)x100% %R&R如果大于10%,则此测试设备和流程是良好的;%R&R在10%和30% 之间表示可以接受;如果大于30%则需要工程人员对此设备和流程进行改良。 电气测试可信度(Electrical Test Confidence)

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

电子半导体行业封装测试技术分析报告

广州创亚企业管理顾问有限公司 电子半导体行业封装测试技术分析报告

半导体封装测试 是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。 包含对芯片的支撑与机械保护,电信号的互连与引出,电源的分配和热管理。 半导体封装的作用 包括贴膜、打磨、去膜再贴膜、切割、晶圆测试、芯片粘贴、烘焙、键合、检测、压膜、半导体封测主要流程 电镀、引脚切割、成型、成品测试等。 在于如何将芯片I/O接口电极连接到整个系统PCB板上,键合是关键环节即用导线将芯片封装的核心 上的焊接点连接到封装外壳的焊接点上,外壳上的焊接点与PCB内导线相连,继而与其 他零件建立电气连接。

测试工艺贯穿半导体设计、制造、封装与测试三大过程,是提高芯片制造水平的关键工序之一。 广义的半导体测试包括前段及中后段的工艺检测。其中,前段的工艺检测偏重于从微观角度在线监测晶圆制造的微观结构是否符合工艺要求(例如几何尺寸与表面形貌的检测、成分结构分析和电学特性检测等),主要设备是高精度晶圆光学检测机(AOI)等。中后段的性能测试主要偏重于从芯片功能性的角度检测芯片 的性能表现是否符合设计要求。 半导体产业链中测试设备的应用

涉及中后道的性能测试,主要设备是测试机、分选机及探针台。测试机、分选机、探针台除了在晶圆制造、芯片封装及测试环节使用,在芯片设计的设计验证环节也有一定的应用。 其中测试机是检测芯片功能和性能的专用设备,测试机对芯片施加输入信号,采集被检测芯片 的输出信号与预期值进行比较,判断芯片在不同工作条件下功能和性能的有效性。 分选机把芯片传送到指定测试位置,然后通过电缆接受测试机的控制,根据测试结果将完成测 试的芯片分类放置。 探针台主要用途是为晶圆上的芯片的电参数测试提供一个测试平台,探针台配合测量仪器可完 成集成电路的电压、电流、电阻以及电容电压特性曲线等参数检测。

半导体测试项目可行性研究报告

半导体测试项目可行性研究报告 (立项+批地+贷款) 编制单位:北京中投信德国际信息咨询有限公司编制时间:二〇一九年十二月 咨询师:高建

目录

专家答疑: 一、可研报告定义: 可行性研究报告,简称可研报告,是在制订生产、基建、科研计划的前期,通过全面的调查研究,分析论证某个建设或改造工程、某种科学研究、某项商务活动切实可行而提出的一种书面材料。 可行性研究报告主要是通过对项目的主要内容和配套条件,如市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等,从技术、经济、工程等方面进行调查研究和分析比较,并对项目建成以后可能取得的财务、经济效益及社会影响进行预测,从而提出该项目是否值得投资和如何进行建设的咨询意见,为项目决策提供依据的一种综合性分析方法。可行性研究具有预见性、公正性、可靠性、科学性的特点。 一般来说,可行性研究是以市场供需为立足点,以资源投入为限度,以科学方法为手段,以一系列评价指标为结果,它通常处理两方面的问题:一是确定项目在技术上能否实施,二是如何才能取得最佳效益。 二、可行性研究报告的用途 项目可行性研究报告是项目实施主体为了实施某项经济活动需要委托专业研究机构编撰的重要文件,其主要体现在如下几个方面作用: 1. 用于向投资主管部门备案、行政审批的可行性研究报告 根据《国务院关于投资体制改革的决定》国发(2004)20号的规定,我国对不使用政府投资的项目实行核准和备案两种批复方式,其中核准项目向政府部门提交项目申请报告,备案项目一般提交项目可行性研究报告。 同时,根据《国务院对确需保留的行政审批项目设定行政许可的决定》,对某些项目仍旧保留行政审批权,投资主体仍需向审批部门提交项目可行性研究报告。 2. 用于向金融机构贷款的可行性研究报告 我国的商业银行、国家开发银行和进出口银行等以及其他境内外的各类金融机构在接受项目建设贷款时,会对贷款项目进行全面、细致的分析平谷,银行等金融机构只有在确认项目具有偿还贷款能力、不承担过大的风险情况下,才会同意贷款。项目投资方需要出具详细的可行性研究报告,银行等金融机构只有在确认项目具有偿还贷款能力、不承担过大的风险情况下,才会同意贷款。 3. 用于企业融资、对外招商合作的可行性研究报告 此类研究报告通常要求市场分析准确、投资方案合理、并提供竞争分析、营销计划、管理方案、技术研发等实际运作方案。 4. 用于申请进口设备免税的可行性研究报告 主要用于进口设备免税用的可行性研究报告,申请办理中外合资企业、内资企业项目确认书的项目需要提供项目可行性研究报告。 5. 用于境外投资项目核准的可行性研究报告 企业在实施走出去战略,对国外矿产资源和其他产业投资时,需要编写可行性研究报告报给国家发展和改革委或省发改委,需要申请中国进出口银行境外投资重点项目信贷支持时,也需要可行性研

浙江大学现代测试技术作业参考

第0讲思考题 1. 试举例说明测试技术的概念 测试是人们认识客观事物的方法。测试过程是从客观事物中摄取有关信息的认识过程。凡需要观察事物的状态、变化和特征等等,并要对它进行定量的描述时,都需要测试。测试包含“测量”与“试验”。“测量”—以确定被测物属性量值为目的的全部操作;“试验”—为了解某物的性能或某事的结果而进行的尝试性活动。如机械振动测试,温度测试等。 2. 结合自己所从事的方向或自己感兴趣的方向,举出一个简单的测试系统的例子,并说明测试技术在该研究方向中的作用。 现代的一些内燃发电机组中,内燃机的一些基本参数控制就是由测试系统和控制系统联合实现的。如,内燃机的转速、水温和油压就是通过转速传感器、温度传感器和压力传感器在机器运行过程中采集到机器的转速、水温和油压的数据,这些数据一方面输送到显示仪器进行显示,另一方面送到处理系统进行分析计算,当这些数据超过预设的限制时,处理系统就会作出报警或自动停机等相应处理。 3. 试列举测试技术的发展史及发展趋势。 自古以来,测试技术就渗透于人们的生产活动和日常生活中,如我国西汉初的侯风地动仪用来测量地震方位;东汉阳嘉元年日晷是利用日影计时,1664年发明的机械计算机,以及后来的电子管,晶体管,集成电路,使测试技术向着智能化、网络化的方向发展。测试技术将向以下方向发展:新型传感技术,测试系统智能化技术,虚拟仪器技术,网络化仪器技术。 4. 试举例说明测试技术离不开实验环节。 从测试的概念看,测试包含“测量”与“试验”。“试验”—为了解某物的性能或某事的结果而进行的尝试性活动。例如:机床主轴径向跳动测试,它包括测量过程:确定径向跳动具体量值。试验过程:机床主轴径向跳动超标否,如果不通过实验就看不出是否超标。 5. 试说出在本科阶段“测试技术”的学习中,学习了哪些知识? 信号的基本概念,测试系统的基本概念,传感器的基本类型,信号处理的基本知识,机械工程量测试系统介绍 第1讲思考题 1. 解释术语——信息、消息、信号。 信息:它是事物运动的状态和方式,是用来消除不确定性的东西,它本身不具有能量。有可以识别、转化、传输的特性和存储性、共享性、永不枯竭性。 消息:由文字、符号、数字或语音构成的序列,消息是信息的外壳,信息是消息的内核。信息一定含于消息之中,但消息不一定有信息。 信号:传输信息的载体,它蕴涵着信息,它本身具有能量。 2. 宇宙三要素是什么? 物质、能量和信息 3. 现代科学技术中三大支柱是什么?信息科学的主体结构是什么?信息技术包括哪些技术? 信息科学与材料科学、能量科学三者成为当代科学技术的主要支柱。信息科学的主体结构是信息论、控制论、系统论,人工智能是三者的综合利用。信息技术包括测试技术、通信技术和计算机技术 4. 试说明测试系统是一种广义通讯系统。 首先,广义通信系统是指适合于所有信息流通的系统。比较其模型和测试系统的模型,如下图:

材料现代测试分析方法期末考试卷加答案

江西理工大学材料分析测试题(可供参考) 一、名词解释(共20分,每小题2分。) 1.辐射的发射:指物质吸收能量后产生电磁辐射的现象。 2.俄歇电子:X射线或电子束激发固体中原子内层电子使原子电离,此时原子(实际是离子)处于激发 态,将发生较外层电子向空位跃迁以降低原子能量的过程,此过程发射的电子。 3.背散射电子:入射电子与固体作用后又离开固体的电子。 4.溅射:入射离子轰击固体时,当表面原子获得足够的动量和能量背离表面运动时,就引起表面粒 子(原子、离子、原子团等)的发射,这种现象称为溅射。 5.物相鉴定:指确定材料(样品)由哪些相组成。 6.电子透镜:能使电子束聚焦的装置。 7.质厚衬度:样品上的不同微区无论是质量还是厚度的差别,均可引起相应区域透射电子强度的改 变,从而在图像上形成亮暗不同的区域,这一现象称为质厚衬度。 8.蓝移:当有机化合物的结构发生变化时,其吸收带的最大吸收峰波长或位置(λ最大)向短波方 向移动,这种现象称为蓝移(或紫移,或“向蓝”)。 9.伸缩振动:键长变化而键角不变的振动,可分为对称伸缩振动和反对称伸缩振动。 10.差热分析:指在程序控制温度条件下,测量样品与参比物的温度差随温度或时间变化的函数关系 的技术。 二、填空题(共20分,每小题2分。) 1.电磁波谱可分为三个部分,即长波部分、中间部分和短波部分,其中中间部分包括(红外线)、 (可见光)和(紫外线),统称为光学光谱。 2.光谱分析方法是基于电磁辐射与材料相互作用产生的特征光谱波长与强度进行材料分析的方法。 光谱按强度对波长的分布(曲线)特点(或按胶片记录的光谱表观形态)可分为(连续)光谱、(带状)光谱和(线状)光谱3类。 3.分子散射是入射线与线度即尺寸大小远小于其波长的分子或分子聚集体相互作用而产生的散射。 分子散射包括(瑞利散射)与(拉曼散射)两种。 4.X射线照射固体物质(样品),可能发生的相互作用主要有二次电子、背散射电子、特征X射线、俄 歇电子、吸收电子、透射电子 5.多晶体(粉晶)X射线衍射分析的基本方法为(照相法)和(X射线衍射仪法)。 6.依据入射电子的能量大小,电子衍射可分为(高能)电子衍射和(低能)电子衍射。依据 电子束是否穿透样品,电子衍射可分为(投射式)电子衍射与(反射式)电子衍射。 7.衍射产生的充分必要条件是((衍射矢量方程或其它等效形式)加|F|2≠0)。 8.透射电镜的样品可分为(直接)样品和(间接)样品。 9.单晶电子衍射花样标定的主要方法有(尝试核算法)和(标准花样对照法)。 10.扫描隧道显微镜、透射电镜、X射线光电子能谱、差热分析的英文字母缩写分别是( stm )、 (tem)、(xps)、( DTA )。 11. X 射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 12. 扫描仪的工作方式有连续扫描和步进扫描两种。 13. 在X 射线衍射物相分析中,粉末衍射卡组是由粉末衍射标准联合 委员会编制,称为JCPDS卡片,又称为PDF 卡片。 14. 电磁透镜的像差有球差、色差、轴上像散和畸变。 15. 透射电子显微镜的结构分为光学成像系统、真空系统和电气系统。 16. 影响差热曲线的因素有升温速度、粒度和颗粒形状、装填密度和压力和气氛。 三、判断题,表述对的在括号里打“√”,错的打“×”(共10分,每小题1分) 1.干涉指数是对晶面空间方位与晶面间距的标识。晶面间距为d 110 /2的晶面其干涉指数为(220)。 (√) 2.倒易矢量r* HKL 的基本性质为:r* HKL 垂直于正点阵中相应的(HKL)晶面,其长度r* HKL 等于(HKL)之

相关主题
文本预览
相关文档 最新文档