当前位置:文档之家› 人形机器人参数

人形机器人参数

人形机器人参数
人形机器人参数

基于stm32的人形机器人制作

摘要: 变形机器人是机器人领域中新兴起的一个研究方向,同时也是当前机器人学研究领域的一个热点和难点。 本课题参照人体骨骼结构并综合考虑运动中模块间的碰撞、结构变化步数以及车型状态等因素,为机器人设计精确构型。基于机器人结构设计,详细探讨本项目变形机器人人车变形过程,具体展示不同构型的特点及相互之间的转换和衔接,打破变形机器人研究局限,推进本领域关键技术的突破。 本文我们主要对机电一体化产品-变形金刚机器人进行了系统设计,该变形机器人旨在满足四五岁儿童对于变形金刚机器人玩具的需求,可在战车和机器人之间变换,并且各变形处的机构变换设计巧妙,变换的多变性、趣味性和实用性都非常高,在战车和变形后机器人的外观上极为逼真、酷炫,对儿童极具吸引力。 我们首先对市场前景进行了调查和分析,之后查阅相关资料并进行分析,随后进行机器人方案设计及具体的机械结构设计,并绘制机器人总装图和关键零部件图,然后进行传感与控制方案设计,包括硬件与软件设计,试验测试,最后编制课程设计说明书。本文对于硬件电路的连接和软件控制方面进行了详细的阐明,完成变形金刚机器人变形、行走的功能,并实现无线通讯功能。

目录 第一章方案设计 (3) 1机械结构方案设计 (3) 2驱动方案选择 (4) 2.1电机的选择 (4) 3传感器的选择 (4) 4结构的合理性和参数的合理性 (5) 第二章动作的总体规划详细方案 (6) 1人形态下的行走设计 (6) 2车形态下的运动设计 (6) 3人车转换的变形设计 (6) 第三章软件系统设计 (7) 1软件系统总体方案 (7) 2控制方案与流程 (8) 第四章程序 (9) 第五章项目心得 (11)

仿人型机器人设计说明书

目录 1前言 (1) 1.1仿人机器人的概念........................................................ 错误!未定义书签。 1.2课题来源 (1) 1.3技术要求 (1) 1.4国内外研究现状及发展状况[] 2........................................ 错误!未定义书签。 1.4.1 国内研究现状 (1) 1.4.2 国外研究现状 (2) 1.4.3 发展趋势 (3) 1.5本课题要解决的主要问题及解决方案 (4) 2 总体方案设计 (6) 2.1仿人机器人臂手部结构的确定 (6) 2.2仿人机器人上身尺寸的确定 (6) 2.3结构的设计 (6) 2.4仿人机器人自由度的确定 (6) 2.5电机的选择 (7) 3 机器人驱动装置的设计 (8) 3.1 肩部步进电机的选择 (9) 3.2 肘部步进电机的选择 (9) 3.3 腕部及头部电机选择 (10) 4.仿人机器人机械传动件的设计 (11) 4.1齿轮的设计 (11) 4.1.1 肩部齿轮的设计与校核 .............................................. 错误!未定义书签。 4.1.2 肘腕部齿轮设计 (13) 4.1.3 头部齿轮的设计 (14) 4.2轴的设计与计算 (15) 4.2.1 轴的结构设计........................................................... 错误!未定义书签。 4.2.2 轴的强度计算 (16) 5. 仿人型机器人连接板的设计及校核 (21) 5.1肩部连接板的设计与校核 (21) 5.2电机支撑板的设计与校核 (22) 6. 仿人型机器人三维造型及运动仿真 (23) 6.1仿人型机器人三维造型 (23) 6.2仿人型机器人运动仿真 (24) 6.3仿人型机器人舞蹈运动分析 (24) 6.4仿人机器人重力分析 (25) 7 结论 (26) 参考文献 (27) 致谢 (29) 附录 (30)

机器人课程介绍

第1课机器人简介 目的意义概述:本课以科普的形式介绍机器人的发展及应用,并在此基础上初步给出机器人的定义;机器人的分类和机器人的基本组成;最后向学生介绍了款教学机器人。 1.1什么是机器人? 本节以科普的形式机器人的诞生及其广泛应用,并简单地给出了“机器人的定义”。教学中让学生在自学的基础上,通过上网了解更多的机器人诞生的背景,目前的应用范围以及科学家目前的努力方向。关于机器人的定义目前国际上还没有准确的定义,因此让学生理解什么是机器人,机器人与普通机器人的主要区别是什么就可以了。 1.2 机器人的分类 与计算机的分类一样,机器人按照不同的分类方式有着多种不同类别的机器人,教材中介绍了多种分类机器人。同样建议在教学中采用自学和上网探究的学习方式,主要是了解各种不同类型的机器人的应用情况,以及在我国现阶段机器人工业机器人、服务机器人以及仿人型机器人主要有哪些方面的应用。 1.3常见教学机器人简介 教材在介绍各种教学机器人的基础上,主要介绍了乐高机器人和纳英特机器人的特点。有条件的情况下,一定要向学生展示和演示教学机器人完成任务的过程,以提高学生的感性认识,激发学生的学习兴趣。 1.4机器人的基本组成

本节教学中应让学生明白,机器人系统与计算机系统一样,包括硬件和软件两部份。机器人硬件包括思维器官、动作器官和感应器官,而软件系统包括操作系统和高级计算机语言编程系统。 同时应让学生明白机器人学习中,主要是学习科学家是如何分析问题,并针对问题设计和搭建机器人来解决问题的。重点应落实到分析问题和解决问题的方法上。上学生树立信心:随着机器人的技术的不断提高,设计和制作自己的机器人是完全可行的。 第2课机器人的编程系统 目的意义概述:本课通过实际操作纳英特机器人和乐高机器人了解和学习机器人的编程系统。教学时可根据学校的实际,选用一种类型的教学机器人实施教学,教师应尽可能的创造条件让学生有机会亲自操作,至少应能给同学演示。本课的重点是机器人与机器人的连接方法、为机器人下载操作系统。学生的兴奋点在如何让“机器人前进”的任务上。 概述:首先让同学明确,机器人的微处理器实际是一台微型计算机,它只懂得机器语言,不同类型的机器人一般都有自己专门的操作系统。另外,由于机器人的微处理器体积小,功能简单,一般不提供直接编程。因为大多数情况下人们都需要在计算机上为机器人编写程序,再通用下载线将程序下载到机器人内存中,以便控制机器人的行为。 2.1纳英特机器人编程系统 本节重点介绍纳英特机器人编程环境,纳英特机器人与计算机的连接方式以及如何为纳英特机器人下载操作系统和程序,最后通过一个简单的实例——让机

类人型机器人

类人型机器人——ASIMO的问世 班级:11电气一班 姓名:夏禹 学号:8110211046 同组人员:石梁

简介 相信很多人对机器人的最初印象,会是来自于科幻小说或是科幻电影里,而今,人类的 创造能力就如同其无限的想象能力一般,机器人早已不是存在于虚拟的世界里,它已随着科技的进步“登堂入室”,与我们的生活密不可分。 “机器人”一词起源于捷克语,意为强迫劳动力或奴隶。这个词是由剧作家Karel Capek 引入的,他虚构创作的机器人很象 Frankenstein 博士的怪物——由化学和生物学方法而不是机械方法创造的生物。但现在流行文化中的机械机器人和这些虚构的生物创作物没多大区别。 想象一下未来的生活,机器人在你家里帮你煮饭,帮你做家务,帮你打扫房间或者在你工作的时候递上一杯热热的咖啡?机器人已经能够代替人类做很多人类不想做的事情,甚至不能做的事情。在世界各地的很多现代化工厂中,机器人已经很早就代替工人组装汽车,尤其是那些重复性很高的工作。现在的商场里,也早已开始出售各种类型的清洁机器人,能够自动帮助你清洁家里的地面,虽然目前功能上单一了一点,但是毕竟也帮你做了不少工作。日本的本田公司(Honda)在1986年就开始类人机器人的研究工作,到了2011年为止已经20多年了。在这20多年中,他们在这个领域取得了举世瞩目的成绩,ASIMO的研制成功让Honda公司成为目前这个领域最领先的公司。在这篇文章中,我们将详细了解一下ASIMO是如何工作的,基本的原理是什么。 ASIMO的名称由来 ASIMO, 代表 Advanced Step in Innovative Mobility。是日本本田公司开发的目前世界上最先进的步行机器人。也是目前世界上唯一能够爬楼梯,慢速奔跑的双足机器人。虽然其它公司也有类似的双足机器人,但是没有任何一家的产品能在步态仿真度上面能达到ASIMO的水准。除了ASIMO杰出的步行能力以外,ASIMO的智能也同样出色。语音识别功能以及人脸识别功能能够使用语音控制ASIMO以及使用手势来进行交流。不仅如此,ASIMO的手臂还能够开电灯,开门,拿东西,拖盘子,甚至还能推车。 Honda眼中的ASIMO Honda希望开发出的机器人是能够帮助人类,尤其是老年人的人类助手,而不是一个高科技玩具。因此ASIMO被设计成1.2米的高度,正好能够和轮椅上的人平视。这让ASIMO看上去非常有亲和力,因为大尺寸的机器人会让人有威胁感,小孩子也不会喜欢一个太高大的家伙。同时,这个高度也正好让ASIMO能够拿取桌子上的物体。这个设计因素在ASIMO 被创建之初就已经考虑到了,可见Honda工程师们的用心良苦。 ASIMO ASIMO的结构:类似人类的身体结构 Honda的工程师们在项目初始阶段花费了大量的时间研究了昆虫,哺乳动物的腿部移动,甚至登山运动员在爬山时的腿部运动方式。这些研究帮助工程师们更好的了解我们在行走过程中发生的一切,特别是关节处的运动。比如,我们在行走的时候会移动我们的重心,并且前后摆动双手来平衡我们的身体。这些构成了ASIMO行走的基础方式。在行走过程中,我们的脚趾也扮演了非常重要的角色,在平衡我们身体上起了很大的作用。在ASIMO的脚上也有类似的机理,而且还使用了吸震材料来吸收行走过程中产生的对关节的冲击力,就像人类的软组织一样。

仿人机器人

仿人机器人 仿人形机器人是机器人以其外观等,在此基础上,人体的互动,让made-for-human工具或环境。在一般仿人机器人的头部有一个躯干,两臂和两条腿,虽然有些形式的仿人机器人可以模型只身体的一部份,例如,腰部以上。一些仿人机器人也许还有一个'面子',用“眼睛”和“口”。机器人是机器人,从美学的角度,就像一个人类建造的。 介绍 TOSY的TOPIO,仿人形机器人,可以打乒乓球。[1] 仿人形机器人是一个机器人,因为它可以适应它环境的改变或本身并继续达到它的目标。这是最主要的区别和其他种类的人形机器人。在此背景下,一些仿人形机器人的能力方面,其中可能包括: (如充电?自我维持自身) 自主学习(了解或?获得了新的能力,没有外界援助的基础上,调整战略环境和适应新环境,新情况) 避免有害的情况下人们0.9%,财产,本身 互动?安全人类和环境 像其他机械的机器人,人形参阅以下基本元件,工作太:感觉和计划和控制。因为他们尽量的模拟人类的结构和行为,他们是仿人机器人的自主系统,通常是复杂多其他种类的机器人。

这影响到所有的机器尺度复杂性(机械、空间、时间、功率密度、系统和计算复杂性),但这也较明显的在功率密度和系统复杂性鳞片。首先,目前多数的人形不够结实的话甚至跳,这一切发生的时候,因为功率/重量比,不如在人体内。动态平衡德克斯特能跳,但是差到目前为止。另一方面,有很好的算法人形建设几个方面,但它是非常困难的,合并所有成一个有效率的系统(该系统技术的计算复杂性高)。如今,这些是主要的困难,仿人机器人的发展要处理。 仿人机器人的设置是为了模仿一些相同的体力劳动和脑力劳动,人类经历日报。科学家和专家来自许多不同的领域,包括工程,认知科学,语言和语言学结合他们的努力创造一个机器人为类人是不可能的。他们的创造者的目标是:有一天机器人将能够彼此都清楚人类智力,原因和表现得像人类。如果机器人都有能力这样做,他们最终可能工作在凝聚力和人类创造出一个更有生产力及高质量的未来。另一个重要的好处是理解的发展,机器人的人体生物、心理过程,从看似简单的行为的概念走到意识和灵性。 目前有两种方法来创建一个机器人。第一个模型机器人像一套刚性连接,互联的关节。这种结构是一个类似,可以发现,在工业机器人。虽然这种方法用于大部分的仿人机器人的出现,一个新开展的研究工作,在一些使用在生物力学中获取的知识。在此一,仿人形机器人的底线是很相似的人类骨骼。 目的

人形机器人

人型机器人的发展现状与未来展望

什么是人形机器人 人形机器人,又称仿人机器人,是具有人形的机器人。1886年法国作家利尔亚当在他的小说《未来夏娃》中将外表像人的机器起名为“安德罗丁”(android),就是一种人形机器人。按照利尔亚描述,人形机器人由4部分组成:生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等);造型解质(关节能自由运动的金属覆盖体,一种盔甲);肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态); 人造皮肤(含有肤色、轮廓、头发、视觉、牙齿、手爪等)。

构成及特点 现代的人形机器人一种智能化机器人,例如 ROBOT·X人形机器人,在机器的各活动关节配置有多达17个伺服器,具有17个自由度,特显灵活,更能完成诸如手臂后摆90度的高难度动作。它还配以设计优良的控制系统,通过自身智能编程软件便能自动地完成整套动作。 人形机器人随音乐起舞、行走、起卧、武术表演、翻跟斗等杂技以及各种奥运竞赛动作,。ROBOT·X人形机器人采用世界著名的日本FUTABA伺服器,具有高扭力、高转速、高稳定、反应灵敏、无抖动、转动角度大等优点,超快速高精度金属齿轮,耐冲击。

人形机器人集机、电、材料、计算机、传感器、控制技术等多门学科于一体,是一个国家高科技实力和发展水平的重要标志,因此,世界发达国家都不惜投入巨资进行开发研究。日、美英等国都在研制仿人形机器人方面做了大量的工作,并已取得突破性的进展。 日本本田公司于1997年10月推出了仿人形机器人P3,美国麻省理工学院研制出了仿人形机器人科戈(COG),德国和澳洲共同研制出了装有52个汽缸,身高2米、体重150公斤的大型机器人。 美国麻省理工学院研制出了一种有着像人一样眼睛的新型机器人,它能与人类进行交流,能对周围的环境做出回应,并能协助人类完成许多工作。2010年6月16日日本东京大学和大阪大学组成的科研小组向公众展示了一款仿真婴儿机器人,它就是新的一款人形机器人。这个名叫“野尾”的婴儿娃娃身高71厘米,在柔软的仿真皮肤下面共有600个传感器,可以做出伸手、转头等动作。当被拥抱时,忽闪着大眼睛好奇地看着世界,十分可爱。

基于ADAMS的仿人机器人行走仿真

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第4Vol.26No.42012年4月Apr.,2012 收稿日期:2012-02-28 作者简介:肖乐(1981—),女,江苏苏州人,讲师,硕士,研究方向:机器人,智能控制. 常晋义(1955—),男,山西忻州人,教授,研究方向:决策支持系统. 殷晨波(1963—),男,江苏无锡人,教授,博导,研究方向:机器人技术、先进制造技术,车辆动力学. 基于ADAMS 的仿人机器人行走仿真 肖乐1,常晋义1,殷晨波2 (1.常熟理工学院计算机科学与工程学院,江苏常熟215500; 2.南京工业大学机械与动力工程学院,南京210009) 摘要:采用机械系统动力学仿真分析软件ADAMS 进行建模和动力学仿真,提供机器人三维 实体模型、运动学和动力学模型以及动画仿真.采用控制系统专业软件Matlab 进行机器人控制系统设计,提供控制关节目标轨迹、稳定控制算法并输出驱动力矩.通过ADAMS/Controls 接口模块建立起Matlab 与ADAMS 之间的数据接口.联合仿真方法为实现仿人机器人在线控制奠定了基础. 关键词:仿人机器人;虚拟样机;行走稳定性;联合仿真 中图分类号:TP24文献标识码:A 文章编号:1008-2794(2012)04-0073-06 由于仿人机器人研制的复杂性,有必要在物理样机制造之前先建立一个虚拟样机系统,在虚拟环境中模拟机器人双足行走的状态,通过模型计算出各个关节的驱动力矩、ZMP 点的变化轨迹等,并对设计方案进行优化,提高物理样机研制成功的概率[1-4].为了准确地建立仿人机器人的虚拟样机模型,发挥各类专业软件的优势,本文采用ADAMS 软件进行建模和动力学仿真,并在Matlab 中建立控制系统,Matlab 将机器人关节力矩控制指令传送给ADAMS ,ADAMS 将通过建立虚拟位置传感器将关节角实时反馈给Matlab ,实现联合仿真.1ADAMS 虚拟样机建模 ADAMS (Automatic Dynamic Analysis of Mechanical System )是世界上应用最广泛的机械系统动力学仿真分析软件[5-6].它由几十个模块组成,其中最主要的模块为ADAMS/View 用户界面模块和ADAMS/Solver 求解器,通过这两个模块可以对大部分的系统进行仿真分析.ADAMS/View 提供一个直接面向用户的基本操作环境,包括样机的建模和各种建模工具、样机模型数据的输入与编辑、与求解器和后处理等程序的自动连接、虚拟样机分析参数的设置、各种数据的输入和输出、同其他应用程序的接口等.ADAMS/Solver 是求解机械系统运动和动力学问题的程序.完成样机分析的准备工作以后,ADAMS/View 自动调用ADAMS/Solver 模块,求解样机模型的静力学、运动学、或动力学问题,完成仿真分析以后再自动地返回ADAMS/View 操作界面. 在ADAMS 中建立的仿人机器人虚拟样机模型及基本组成部件与主要关节如图1所示,其简化条件为: ①腿和地面都是刚性的,不考虑其弹性特征;②忽略纵向平面和横向平面的动力学耦合;③足与地面有足够

《虚拟机器人》校本课程活动教案

《虚拟机器人》校本课程活动教案

课时:课时 展示范例机器人激发学生搭建兴趣。 师:同学们,上节课我们初步了解了虚拟机器人的平台,这节课,我们来试试搭建属于我们自己的第一个机器人。 一、进入操作界面 首先请大家陆平台,然后点击“搭建机器人”选项,进入机器人搭建操作界面。老师先来带着大家了解一下这一界面的基本功能划分。 模型面板:包含机器人所有模型,有控制器、驱动、安装块、传感器和其它大类。 模型列表:列出各个模型分类中所有模型。 模板列表:用户创建的模板,模板可保存经常使用的模型组合。 菜单工具栏:有文件、功能和操作个菜单,菜单下有相应的工具栏命令。 属性面板:在属性面板中设置直流电机、伺服电机、传感器的属性。 机器人信息:查看机器人零部件的数量,机器人的重量、尺寸等信息。 机器人编辑区:用于构建机器人的操作区,完成机器人零部件的安装等操作。 视角控制面板:调整查看编辑区的视角,完成视角旋转、缩放、移动等操作 二、探索尝试 通过老师的介绍后,大家应该对这些功能区有所了解了。现在请同学们动动脑,动动手,从模型面板中选择自己喜欢的模型,放到机器人编辑区,注意视角的控制和安装点的点选,看谁能组装出属于自己的第一台机器人! 三、问题解决 (一)、机器人搭建首先需要选择好控制器,这是机器人的主体,没有控制器,其他的零件是无法起作用的。 (二)、控制器安放是有方向的,编辑区蓝色坐标轴的方向为机器人前方,学生容易出现错误。(三)、在旋转视角时,切忌用鼠标左键进行拖动,这会改变机器人零件的实际位置。而应该使用视角控制按钮或者鼠标的右键和滚轮来进行视角切换。 (四)、轮子是和电机安装在一起,电机再和控制器连接起来,而不是直接把轮子安装到控制器上。 教师在巡视指导过程中,发现问题,适时引导讲解。 四、拓展延伸 其实在机器人搭建的过程中,我们还可以使用一些小技巧来提高搭建的效率。教授“模板”的使用方法,把一些多次使用的零件组合创建为模板,可以直接拖出来重复使用。 五、秀一秀 通过电子教室“学生演示”的功能,请同学们来展示一下自己的个性机器人,大家来评评谁最有想象力和创造力。 学生点评,教师总结。

仿人形机器人的设计

赛伯乐人形机器人:第一部分- 设计 伊斯梅特·灿德德,穆罕默德·萨利姆·纳赛尔,蒋树声叶Tosunoglu萨布里佛 罗里达国际大学 机械工程学院 西弗拉格勒街10555 迈阿密,佛罗里达州33174 305-348-6841 cdede00阿2@https://www.doczj.com/doc/3113250055.html, 摘要 创造类人型机器人的目的是设计一个可以完成人类复杂动作,具有自主决策功能,能够帮助人类,甚至完成人类无法完成的任务的机器人。建立类人型机器人一直吸引了世界各地的科学家,虽然目的看似简单,但这是一个艰巨的任务。在这篇文章中,我们将呈现一种命名为赛伯乐的仿人机器人的概念,像双足动物一样行走,然后切换到四足的运动模式。第一部分的主要内容是,理想的系统标准,设计方案和最终设计选定以及通过运动学的分析得到仿人机器人的模拟方案。 关键字:仿人形机器人,赛伯乐机器人,双足,四足 1.引言 构建人形机器人的目的是简单地设计一个可以完成人类复杂运动和能够真诚地帮助人类的机器人。尽管其目的简单,但是要完成这个任务相当困难。例如前本田工程师实现了他们梦想建立一个进的仿人机器人,花了超过18年的时间,在这段时间里他们不断的学习,探究和实验,也走了不少的弯路。[1] 行走过程分为两个主要部分即静态和动态步行。静态步行人形机器人包括完整的移动身体的齿轮的基地脚区域,与此同时其他脚抬起并前进。这种机器人是从运动学角度(轨迹,或位移控制)来设计和控制的,结果是有相当大的脚以一个缓慢的速度行走。一个静态步行双足足动物,如本田P3的人形机器人,“不移动很像人并且能量效率低下。它移动与nonpendular外观相似,本田2000机器人在行走时需要大约2kw功率,他需要的功率是同样大小人类的肌肉工作功率的20倍[1]。动态稳定性需要快速行走和多样的地形。在行走时重心不在支撑腿区域内时,机器人在下一个动态平衡区域时就会失衡。 被动动态步行可增加到三分之一组不同类型的步行过程。无动力玩具士兵或企鹅早在一个世纪前就已经发明,它们可以沿着缓坡行走而没有任何电机的控制。通过对它们的腿和胳膊的长度和大众的仔细选择,这些玩具在行走时保持平衡而消耗很少的能量(来自重力)。这种模型以一种固定的方式行走,但他们的结构很简单。使用这个作为起点,可以添加更多的自由度,可以添加驱动和控制实现更加流畅的运动。 研究的目的是趋向于设计简单且能够实现更多功能。为此,我们选择了一个静态步行具有能力从两足改变到四足模式运动,以下部分提供一段到目前为止人形机器人研究历程。最后,介绍了最终设计理念的选择过程,最终设计的详细解释和提出离了初步的步态定义。 2、仿人机器人的发展历程 机器人的研究与应用在过去的三十年有了明显提高,机器人开始用于工业主要在装配生产线上。当他们发展得更智能的时候,在人们的日常生活中与人们的相互作用不断提高。 仿人机器人研究加速使得机器人智力水平的增加成为人类日常生活的一部分。以下阐述了机器人从简单的机械发展到动作形态都像人的类人型机器人的历程[2]。 古希腊的工程师ctesibus 让器官和水中与移动数字结合起来。 1774年瑞士发明家彼埃尔和Henri-louis jacquet-droz创造一些最复杂的机器人,他们的自动抄写员研制成功。这个栩栩如生的男孩可以画写任何长达40个字符的消息。一个女性的机器人演奏钢琴又是他们的另一重大发明之一。 1801约瑟提花发明了一种用打孔卡操作的纺织机器,这台机器被称为一个可编程纺织

机器人课程

远播教育网课程推广用课程体系介绍 一、课程名称:科技兴趣(3大主题、每主题15次课) 适用对象:3-4岁的幼儿 教学目标: 1、认识基本的零件,掌握零件的外形特征及基本拼接方法; 2、了解家居、社区、城市中常见构造物的特点和功能; 3、掌握主题作品的基本搭建方法; 4、培养孩子的搭建和创意兴趣; 5、初步锻炼观察力、语言表达能力和空间想象力等。 课程介绍: 该阶段以家居、社区、城市为主题,通过系列主题作品搭建和互动交流,让孩子认知周围世界,强化情感认知,训练孩子小肌肉群的发展和脑力的开发,锻炼孩子的动手能力,培养孩子的耐心和语言表达,同时,在对器材熟悉的基础上建立空间的概念,并发展孩子的想象力。 课程主题:甜蜜的家、欢乐社区、美好城市 课程优势; 1、旨在促进儿童“认知、社会化/情绪、身体动作和语言”四大领域的发展; 2、充分尊重孩子个性; 3、引导式教学方法。 使用教材:森孚科技兴趣套装 二、科技启蒙(3大主题、每主题15次课) 适用对象:4-6岁的幼儿 教学目标: 1、认识较为复杂的零件,掌握零件的形状、拼接规律及六面拼接法; 2、学会动物、交通工具、建筑物主题作品的搭建; 3、初步探索动物体型、生活习性与环境之间的关系; 4、简单了解运动与结构之间的关系; 5、初步掌握常见建筑构造物的建造方式、基本结构、特点和用途; 6、培养认知与探索的兴趣,在一定程度上发展想象力和创造性。 课程介绍: 该阶段以动物、交通工具、建造结构为搭建主题,通过设问方式,激发孩子的好奇心,引导孩子进行思考和探究,认知自然界的奥秘;在搭建的过程中,让孩子寻找规律、掌握零件动态连接方法,同时鼓励

阿特拉斯:最先进的人形机器人

“阿特拉斯”:最先进的人形机器人 摘要:本文针对当前先进机器人的问题,分析了双足人形机器人阿特拉斯(Atlas)的控制系统结构及设计理念。根据阿特拉斯的结构和理念,分析了的阿特拉斯的能力以及其对未来战争的影响。 关键词:机器人、阿特拉斯、未来战争 一.引言 机器人是人们对科技不断的发展而出现的产物,在未来时代里机器人能够代替多数人类的工作,也能够进行多种高危工作,目前世界上涌现出了很多先进的机器人。比如,人力支援机器人:主要用于帮助长期卧床的病人取房间中的物品;EKSO仿生机器人:这是一种能够模仿人体骨骼和人体动力学设计的机器人;仿四足动物机器人LS3 quadruped:可以携带181公斤的货物行走32公里,同时会根据GPS进行定位;仿真人制作的机器人HRP-4C:其体型酷似青年女性,能够识别面孔、语言和声音,同时能够很好的模仿人类的表情还具备跳舞功能;外形像海豹的机器人Paro:其身体共加了五种传感器,分别用来的声音、光、触觉、姿势、温度进行感应,Paro机器人主要用来治疗心理疾病患者;FACE:模仿人类十多种表情,逼真度达到了95%;Morpheus:完全是由大脑思维进行控制的机器人;Atlas:DARPA公司推出的最先进的机器人,具备光线检测、距离检测、以及声音传感等功能;Asimo:可以作为个人助理的机器人,Asimo通过控制器或计算机来运行,可以感知到声音、姿势甚至脸部表情,然后相应的做出回应。 2013年7月12日,高科技武器开发商美国波斯顿动力公司把一款刚刚制造成功的人形战地机器人呈送给美国军方“检视”。这款名为阿特拉斯的人形战地机器人到达军营后,展现出超强的战斗力,即获美国军方大加的肯定...... 阿特拉斯的设计与生产是由DARPA,美国国防部的一个机构负责监督与波斯顿动力公司合作。机器人的一只手由Sandia国家实验室开发的,而另一只是由iRobot公司开发的。 阿特拉斯机器人是基于波斯顿动力公司早期的PETMAN人形机器人,它有四个液压驱动的四肢,它的手具有精细动作技能的能力。阿特拉斯机器人可以在

人形机器人

人形机器人

这款人形机器人在2000年便已亮相,身高约1.28米、体重55公斤,最新版本已经可以实现跑动(6小时/公里),并且与人类进行互动,提供诸如端餐盘等服务,目前已经在世界范围内得到认可,在一些商业场合为 人们服务。 开发者:日本本田技研工业株式会社

开发者:意大利科技学院 iCub(i取自《我,机器人》里的i;Cub取自 于《丛林之书》的狼群养大的人类小男孩 man-cub),身长104cm,体形跟一个5岁大 的小孩差不多。四肢活动范围可达53度, 具有触觉和肢体协调能力,可以抓东西、 玩捉迷藏,甚至还会跟着音乐跳舞。它的 眼睛和头部可以跟踪运动中小球的移动轨 迹,手臂上安装有定制化的压力传感器。

开发者:法国波尔InriaFlower实验室 开源3D打印人形机器人,Poppy拥有可弯曲的腿、 多关节的躯干和柔软的身体。如此设计能够加强其 在行走过程中的健壮性、灵活性和稳定性。所有机 械部件的设计都根据重量进行优化,并尽可能地减 轻Poppy的体重。为了大量“瘦身”,采用了动力稍弱 的轻型电机。采用P A材料(尼龙)和选择性激光烧 结技术,3D打印其零件。

Romeo 问世已有8年,身高约1.4米、体重40公斤,身体有碳纤维和橡胶材质组成,旨在服务老人。它不仅能够行走,还能够聆听指令和回到问题,目前已经获得法国政府和欧盟亲睐,将在2017至2019年逐渐投放到 欧洲养老院,更好地服务老人。 开发者:日本软银机器人公司

开发者:英国Engineered Arts公司 RoboThespian是一款用于公共环境互动的人形机 器人,目前已经发展至第三代。它采用了完全互 动的设计,肢体灵活,并且内置多语言,能够与 人类沟通。另外,它配备了非常简单的接口,研 究人员可以通过网络上传配置文件,实现更广泛 的研究和应用形式。

机器人校本课程纲要

《机器人》校本课程纲要 xx中学 《机器人》校本课程纲要 一、课程简介: 1.开发背景: 学校为学生开设了机器人这门课,就是培养学生解决问题和动手的能力。未来社会更需要有实践经验,有新的想法,创造力和新的思考方式。在解决问题的过程中,创新思维是培养解决问题能力的核心,它帮助学生发现多个可能的解决方案,寻找替代方案,挑战假设,并提出新的想法,帮助学生解决问题,使学生们会自觉地学习、获取新知识,从而培养学生了合作能力,提高沟通能力,充分表达思想能力。核心理念是“做中学,玩中学”。它传达的观念是让孩子充分体会学习的乐趣,让孩子成为整个学习的过程中是主导角色。 我校机器人教学主要采用乐高机器人EV3的可程序化积木为主,乐高机器人套件最吸引人之处,就像传统的乐高积木一样,玩家可以自由发挥创意,拼凑各种模型,而且可以让它真的动起来。 2.开发教师—— xxx 3.课程名称——可编程机器人 4.授课对象——高一年级学生 5.课程类别——可编程机器人拼装技能与编程能力提升 6.课时安排——每周一节 二、课程目标 1.知识与技能: (1)熟练掌握各个部件之间的组合方法

(2)根据自己的想象,拼装出有创意的机器人或积木 (3)对可编程机器人进行简单的编程操作 2.过程与方法: (1)学会设计、拼装机器人、对机器人进行编程 (2)通过小组合作制作增强学生之间的团队合作意识和创意分享意识 3.情感态度与价值观: 可编程机器人除了能给学生带来这些相互促进的能力之外,还可以带来无穷的乐趣。为兴趣而生、在能力中提升兴趣,这些能力都不是刻意去要求的,都是潜移默化的,无形中就学会这样的能力,同时能认识各种机械的运动方式、学习作品中的数学和物理原理、了解机械装置在生活中的应用,在后期通过机械结构,传感应用,程序应用进行研究探索性学习,进入机器人编程阶段,可以培养学生的逻辑思维能力、团队合作能力。 三、课程内容 1.机器人发展历史及简单结构拼装 2.讲解教师本人利用废旧的材料搭建一个机器人模型 3.熟悉各个零件的名称和作用 4.认识乐高机器人积木及基本零件识别 5.组装简易机器人 5. 传动装置的功能和作用 6. 建筑的建构 7. 搭建一个简单的小车 8. 乐高机器人编程环境介绍 9. 了解各个传感器 10. 超声波传感器的应用 11. 触动传感器的应用 12. 为小车进行编程 13.小组合作进行创意触碰小车搭建 14.为搭建的触碰小车进行编程

机器人课程介绍

第1课机器人简介 目的意义概述:本课以科普的形式介绍机器人的发展及应用,并在此基础上初步给出机器人的定义;机器人的分类与机器人的基本组成;最后向学生介绍了款教学机器人。 1.1什么就是机器人? 本节以科普的形式机器人的诞生及其广泛应用,并简单地给出了“机器人的定义”。教学中让学生在自学的基础上,通过上网了解更多的机器人诞生的背景,目前的应用范围以及科学家目前的努力方向。关于机器人的定义目前国际上还没有准确的定义,因此让学生理解什么就是机器人,机器人与普通机器人的主要区别就是什么就可以了。 1.2 机器人的分类 与计算机的分类一样,机器人按照不同的分类方式有着多种不同类别的机器人,教材中介绍了多种分类机器人。同样建议在教学中采用自学与上网探究的学习方式,主要就是了解各种不同类型的机器人的应用情况,以及在我国现阶段机器人工业机器人、服务机器人以及仿人型机器人主要有哪些方面的应用。 1.3常见教学机器人简介 教材在介绍各种教学机器人的基础上,主要介绍了乐高机器人与纳英特机器人的特点。有条件的情况下,一定要向学生展示与演示教学机器人完成任务的过程,以提高学生的感性认识,激发学生的学习兴趣。 1.4机器人的基本组成 本节教学中应让学生明白,机器人系统与计算机系统一样,包括硬件与软件两部份。机器人硬件包括思维器官、动作器官与感应器官,而软件系统包括操作系统与高级计算机语言编程系统。 同时应让学生明白机器人学习中,主要就是学习科学家就是如何分析问题,并针对问题设计与搭建机器人来解决问题的。重点应落实到分析问题与解决问题的方法上。上学生树立信心:随着机器人的技术的不断提高,设计与制作自己的机器人就是完全可行的。 第2课机器人的编程系统 目的意义概述:本课通过实际操作纳英特机器人与乐高机器人了解与学习机器人的编程系统。教学时可根据学校的实际,选用一种类型的教学机器人实施教学,教师应尽可能的创造条件让学生有机会亲自操作,至少应能给同学演示。本课的重点就是机器人与机器人的连接方法、为机器人下载操作系统。学生的兴奋点在如何让“机器人前进”的任务上。 概述:首先让同学明确,机器人的微处理器实际就是一台微型计算机,它只懂得机器语言,不同类型的机器人一般都有自己专门的操作系统。另外,由于机器人的微处理器体积小,功能简单,一般不提供直接编程。因为大多数情况下人们都需要在计算机上为机器人编写程序,再通用下载线将程序下载到机器人内存中,以便控制机器人的行为。 2.1纳英特机器人编程系统

17自由度人形机器人

1.身高60cm17自由度人形机器人 支持三维虚拟编程环境 (1)机体参数 身高:580mm ; 重量:约3.5公斤(含电池); 关节:共17个关节,头:1个自由度,双手6个自由度,双脚10个自由度; 与电脑连接方式:国标串口RS232(建议采用USB 转232);装载新型机器人专用伺服马达及控制器,附专用锂聚合物充电电池及AC 充电座器; (2)主要机能: 提供动作设定的教学模仿功能,可在PC 上用鼠标操作,附具有数种动作实例的正版光盘,可立即测试运作。 1.具有17个自由度(17ch=17个伺服马达),主机板可扩增至22个自由度。 便于DIY 用户增加其他关节机构; 2.具有1024kb 空间的动作程序存储器。能够分别储存任意的动作模式; 3.电池仓内可以同时安装2节锂电池,用来增加续航能力; 4.为了确保机器人在启动时有敏锐的动作及强而有力的扭转力,请使用锂聚合物电池。本 机所附的锂聚合物电池,可让机器人完全发挥其功能。 5.具惊人的省电设计,使用时间长达1.2-1.5小时; 6.搭配三维虚拟仿真编程环境,呈现出细腻的三维实景效果,各个关节角度可以简易编程; 7.显示运转数据,从指定动作的位置、速度到变化度,都可利用控制板传动并定量显示。每 一度动作角度的指定时,可一面确认数值一面执行; 人形机器人 机器人控制板 红外遥控器 无线遥控器

8.带有动作间自动插补功能,使动作运转连续顺滑。在动作与动作之间会以指定的速度自 动补齐100贞动作。每组存储空间最多可记忆80个动作,总共25组存储空间; 9.各零件的设计十分精准,只要将螺栓拧进即可组装完成; 10.编程软件采用内嵌式三维动画仿真设计,设计理念及技术水准与国际同步; 11.可以连际标准航模遥控器; 2.身高39cm21自由度高级人形机器人 支持三维虚拟编程环境 主要技术指标: 1.全身21个数字伺服马达,其中20个SH14-M 数字伺服马达,重量:56g ,尺寸40×20×46mm ,扭力14kg.cm (7.4v ),速度0.18秒/60度;1个SH0680数字伺服马达。21个可重复定位特制舵盘,与软件同步实现初始坐标补偿。 2.支持C 语言和汇编语言混合编程体系,编译方便; 3.采用ISP 烧写方式,可烧写1万次以上; 4.中高阶用户可以为该系统增加各种传感器,例如水晶陀螺仪、陶瓷陀螺仪、3轴加速度计等惯导装置;还可以加装距离传感器、GPS 全球定位模块、GPRS 全球无线通讯模块、音频捕捉模块等;更可加装视觉系统,符合RoboCup 等机器人大赛类人组标准。满足用户的研究与参赛需求。 5.控制板型号STC-24P ,完全采用表贴工艺;CPU 为STC12系列32管脚芯片,有24个输出端,可以同时联动控制24个数字伺服电机。 机体参数说明: 1. 机器人尺寸 385×200×100mm ; 2. 重量2.1kg ; 3. 关节扭力14kg ·cm (标准7.4V 电池搭载); 4. 待机时间2小时左右(充电完全状态下,根据动作的耗电程度不同); 5. 全身舵机总计21个,即具有21个自由度; 12.脚底尺寸 110×70×5mm ,中空结构,可以安装多个足底传感器; 13.前胸可以加装3个陀螺3个加速度计; 14.静平衡步伐行走速度3.2米/分钟; 15.加装惯导系统后,动平衡步伐行走速度10米/分钟; 16.加装惯导系统后,可以自动进行姿态、步态修正; 18.具有3种无线通讯方式,包括315MHZ 无线遥控,红外线遥控,无线232串口通讯; 19.主板自带1个蜂鸣器,可以同用户进行实时互通; 20.主板有5V 和3.3V 两种规格可选; 21.随机附送红外线遥控器一个,包括27个按钮,可以遥控机器人做各种动作;

人形机器人翻译

基于硬件开发功能的人形机器人(LOCH) 谢明 王磊 机械工程系、南洋理工大学、新加坡 0.摘要 在机器人不同层次的自主移动操作功能方面,硬件设计及其关键。特别是,缺乏某些功能的硬件可以严重影响算法的可行性。本文的目的是介绍低成本移动操作(尼斯)人形机器人在硬件开发方面的性能。同时系统地介绍了机器人的硬件开发,和视觉导航控制能实现移动操作的人形机器人设计。硬件的模块化开发是实现机器人灵巧、模块化、功能和外观重要体现。本文论述了实现硬件模块功能的方法,分别叙述了在驱动、分布式传感系统和分布式控制的人形机器人头部,手部和仿人形手臂。最后,本文给出了可以远程控制的实际的原型。 关键字:人形机器人 设计 控制 1.前言 在设计一个机器人时,通常需要完成电动机技术参数选择。这些都是标准的步骤,这些细节都省略了。同时,本文不会深入探究两足方面的具体功能,因为双足同样是一个长期的研究方向。另一方面,双足行走平台是很有吸引力的。一个原因是,他们可以制成类似人类的两足步行机构。另一个原因是,双臂的组合/手机制和双足步行机构将使机器人看起来像人类。其中本田的ASIMO已经产生了大量的宣传和关注对人形机器人【1】。我们必须承认,今天的人形机器人的吸引力主要来自结果是令人印象深刻的两足动物走路功能【2】。然而,这些机器人非常有限的能力令人类去进行操作。重要的是,人形机器人高成本或不可用的商业。这种情况导致了新加坡政府在2006年启动第一批国家项目来发展低成本的人形(尼斯)机器人。尼斯人形机器人有必要的硬件来执行两个视觉导航控制两足动物行走和视觉导航控制操纵/把握。换句话说,设计仿人机器人的尼斯认为需要各种模块的实现。例如,尼斯的头部模块,如图1。尼斯人形机器人的每条腿上有6个自由度,在每个臂有6自由度,6自由度的双手和各腰部有2自由度,颈部有2自由度。尼斯的头上有两个自由度。 为了实现灵巧操作包括立体观察,单眼视觉,短程仪,和长途仪,尼斯人形机器人有两个手臂和两个多个手指的手。每个臂有6个自由度驱动,而每只手有六个自由度和八自由度驱动(即在一只手有14自由度)。在本文中,我们提出我们的研究工作达到设计和实现的人形头、手和胳膊,体积小、重量轻、独立、人性化、安全运转的优点。最重要的是,双系统是在一个适当的手部大小和重量,可以被安装到肩膀的尼斯人形机器人,如图。此外,双系统是电池驱动的,手部尼斯人形机器人可以自由实现视觉导航控制移动操作且没有任何约束的电源线。本文组织如下:在2中,我们将重点介绍一些现有的原型的人形的手和人形器件。这个调查将有助于读者欣赏类似人的双手。在3中,介绍我们的作品在设计尼斯人形机器人方面的工作。在第4部分,主要描述的是仿人灵巧手的细节上的设计和实现多个手指的手尼斯人形机器人被描述。在第五部分,详细的设计和实现为尼斯人形机器人手臂。 2.有的原型的人形的手和人形器件 多数的人形头部装有一对相机为了支持立体观察。此外,可能会配备简单的接近传

人形机器人设计与制作实验报告

人形机器人的设计与制作结课报告 姓名:钟乐乐 指导老师:罗忠文 班级:040131 学号:20131003495

一.人形机器人简介 人形机器人:又称仿人机器人,是具有人形的机器人。现代的人形机器人一种智能化机器人,例如ROBOT·X人形机器人,在机器的各活动关节配置有多达17个伺服器,具有17个自由度,特显灵活,更能完成诸如手臂后摆90度的高难度动作。它还配以设计优良的控制系统,通过自身智能编程软件便能自动地完成整套动作。人形机器人可以随音乐起舞、行走、起卧、武术表演、翻跟斗等杂技以及各种奥运竞赛动作。人形机器人集机、电、材料、计算机、传感器、控制技术等多门学科于一体,是一个国家高科技实力和发展水平的重要标志,因此,世界发达国家都不惜投入巨资进行开发研究。日、美英等国都在研制仿人形机器人方面做了大量的工作,并已取得突破性的进展。中国的机器人事业也正处于蒸蒸日上的时期。 二.人形机器人的硬件组成 1. 图片数量 16 ( 部)

2 16 ( 部) 14 ( 部) 1 2 2 1 直条型支架

若干 142 87 32 87 15 2.材料的选用: SERVO到底采用什么,看到底预算到哪里,当然,品质越好的SERVO功能就越好,这部分使用普通有耳朵的SERVO(如下图左)原因是—便宜,但这样会牺牲重量,有两边耳朵的SERVO需要比较多的零件来固定,相对来讲重量会比较重;使用没耳朵的SERVO(如下图右),固定所需的零件会明显比较少,重量会比较轻,很多表现会比较好,但相对这种SERVO的价格都明显比较高,如何取舍就看的实际状况来决定了。

斯坦福大学公开课《机器人学》课程简介

斯坦福大学公开课《机器人学》课程简介 01机器人历史及机器人的应用[ 主题:课程概要,机器人历史的视频,机器人应用,相关的斯坦福机器人课程,讲座和阅读计划,机械臂运动学,机械臂动力学,机械臂控制,机械力臂控,前沿论题 02空间描述,广义坐标 主题:空间描述,广义坐标,操作坐标,旋转矩阵,旋转矩阵实例,转化,齐次变换实例,操作方法,通用操作方法 03东芝公司开发的柔性致动器 机器人学导论第三课开始的视频介绍了东芝公司开发的柔性致动器,体积小,由气压驱动,可以简单模仿手脚的运动。接着本课介绍了齐次变换的几个功能:描述坐标系;旋转或平移矢量以及得到某一矢量在另外坐标系的描述,即映射。此外,还有作为运算式的齐次变换转换。齐次变换即为已知某个矩阵和多个坐标系时,将它们相乘即可。如果已知所有坐标系间的关系,基座也是固定的,于是就可以计算出末端执行器的位置,进而得到基座的位置。如果一组变换只有一个是缺失的,就可以通过它与其它坐标系的关系确定出来。表达式包括空间的描述和旋转的表述,具体来说就是如何在空间中定位末端执行器以及怎样把它移动到某个位置。最后本课讨论了如何运用三个角的表述来表示坐标系的变换、奇异性、固定角以及欧拉参数等问题,并围绕着这些基本问题讨论了欧拉角,旋转等具体实例。 04机器人“蜂鸟” 机器人学第四课主要介绍了如何通过各个连杆和末端执行器来控制一个机械手,也就是建立正运动学。本课首先播放机器人“蜂鸟”的视频来演示机械臂的快速工作过程,然后实际地利用学过的坐标系变换和描述来分析一个机械手。末端执行器通过连杆连接到基座上,连杆之间接有关节轴。用DH参数描述连杆,可以精确地定义坐标系。每一个连杆可以附着一个坐标系,通过设置不同的参数,进行坐标变换,最终得到一个可以用在所有坐标系中的总的变换,接着就可以建立正运动学了。 05灵长类仿生机器人 机器人学导论第五课主要介绍了悬臂运动的理论依据以及一个实际的例子。首先通过一个短片讲解了灵长类仿生机器人和悬臂运动的由来。接着通过讲解一个RPRR(转动-移动-转动-转动机制)的例子来告诉同学们如何具体实现上述运动。课程的后半段,在一个真实的机械臂例子中,教授介绍了找到这个臂的正运动学的基本步骤,即首先要知道DH参数并计算与其相关的变换来得到机器人的变换,进而找出末端执行器处的XYZ,通过关节角和移动关节的位置得到末端执行器的姿态。 06瞬态运动学 机器人学第六课开始播放了关于链式机器人Polypod的视频片段,它们是可重构及模块化的,由连接杆和关节点组成。它可以通过伸长和缩回模式实现一系列复杂的诸如搬运和转弯的步态和运动。接下来教授开始运用之前讲过的雅可比矩阵来分析瞬态运动学:定位末端执行器,在坐标系中描述其位置和姿态。雅可比矩阵的模型在建立运动学的过程中非常重要。用一个简单的有两个自由度的例子可以说明上述的讨论过程。接着教授讲述了另一个例子:斯坦福沙因曼机械臂是如何伸展的,通过微分运算求得关于位置和姿态的雅可比矩阵,从而得到机器人的线速度和角速度。接着讨论了物体绕某一固定轴转动的时候,距离轴的

相关主题
文本预览
相关文档 最新文档