当前位置:文档之家› 输电线路绝缘子选择与计算

输电线路绝缘子选择与计算

输电线路绝缘子选择与计算
输电线路绝缘子选择与计算

1 绝缘子选型

1.1 绝缘子材质

我国主要生产的绝缘子主要有盘形瓷绝缘子、盘形玻璃绝缘子及复合绝缘子

1.2 各类绝缘子特性

绝缘子的性能比较

表1-1 不同类型线路绝缘子的性能比较

3 污区划分

3.1 沿线污秽调查

3.1.1 走廊沿线污源分布情况

本次对待建1000kV特高压中线工程线路走廊沿线进行了污染情况调查。湖北省境内绝大部分地区为自然污秽,包括生活污染、公路扬尘、农村施用农药、化肥以及烧山积肥的灰尘;工业污秽主要集中在宜城市板桥镇,分布有石灰厂、水泥厂、采石场等重点污源。河南省境内线路附近分布较多乡镇,主要的自然污秽来自居民区的生活污染和农田施用的化肥等,线路跨越铁路、高速公路、土路若干,加上风沙扬尘等也会对线路造成一定的污染;工业污源主要有采石场、石灰厂、水泥厂、铝铁厂、炼钢厂、火电厂等。山西省境内沿线分布储煤厂、炼焦厂、炼铁厂、火电厂、砖厂等,小型煤矿区和炼铁高炉更是星罗棋布,大气污染十分严重。另外1000kV特高压中线工程线路平行或跨越的500kV线路有:斗樊线、双玉Ⅰ、Ⅱ回、樊白Ⅰ、Ⅱ回、姚白线、白郑线、牡嵩线、沁获线、榆临线;跨越铁路七条、已建成高速公路六条、国道和省道若干。

(1) 化工污秽

该线路走廊附近的化工污源主要集中在河南省和山西省,主要有沁阳市碳素有限公司(1500万kg/a)、孟县化肥厂(6000万kg/a)、偃师市山化县化工厂、南阳石蜡精细化工厂(12000万kg/a)、南阳市金马石化有限公司(600万kg/a)、长治化工有限公司、钟祥市华毅化工有限公司(18000万kg/a)等。另外晋城市规划中的野川、马村化工园区,工厂十分集中,规模现在大约为30000万kg/a,随着发展,其规模将进一步扩大。

(2) 冶金污秽

冶金污秽主要包括铝厂、炼铁厂、炼钢厂等。根据调研情况,主要

有巩义市回锅镇的铝加工基地、焦作市西向镇的沁阳铝试验厂(5000万kg/a)、西向镇宏达炼钢厂、晋城市泽州县弘鑫冶炼公司(3000万kg/a)以及晋城分布广泛的小型炼铁厂等。

(3) 火电厂

主要集中在河南省和山西省,有以下大型火电厂:沁阳铝电集团电厂(31万kW)、孟州电力股份有限公司(49万kW)、偃师市首阳山电厂(100万kW)、洛阳华润热电有限公司(25万kW)、南阳市鸭河口电厂(现有70万kW,总体规划310万kW)、阳城电厂(现有容量235万kW,在建的二期规模将达到355万kW),晋城和长治规划中将建成赵庄电厂、高河电厂、沁水电厂和郑庄电厂四个大型火电厂,规模都在240万kW以上,这将大大增加污染的严重程度。

(4) 其它工业污秽

沿线走廊附近除上述类型污秽外,还包括如水泥厂、石灰厂、煤矿区等。主要有宜城市水泥厂、汝州水泥公司、南阳航天水泥厂、赵庄煤矿、成庄煤矿等。另外沿线有许多小型采石场、砖厂、煤矿和储煤厂等,污染比较严重。

(5) 自然污秽

自然污秽主要是由大气降尘、风沙、农药以及化肥产生的污染。待建特高压线路沿线多数地段附近工业并不发达,大气环境污染状况相对较轻。湖北省境内地势多为平地和丘陵,沿线主要是农田和旱地,杂树林覆盖面积较大,植被较多,雨水比较充沛,在一定程度上减轻了自然污秽的影响。河南省境内地势以平原为主,全年以东北风为主,雨水较少,灰尘、风沙较大,自然污秽影响比较大。山西省境内主要以高山大岭和山地为主,待建特高压线路将跨越太行山脉,全年以西北风为主,

降雨较少,粉尘污染严重。

(6) 部分污秽物化学成分分析

对沿线走廊不同类型的污源点的污秽物进行了取样以及化学成分分析,分析结果见表3-1。

表3-1 部分污源污秽物成分分析结果单位:mg/L

图3-6 污染物的化学成分

从测量结果和上图可知,污秽物中Ca+离子含量远大于Na+、K+、Mg2+离子含量,尤其是炼焦厂、水泥厂和化肥厂,都大于100mg/L。污秽物中的Na+和K+含量基本相等,其中以火电厂和炼钢厂最为严重。负离子中SO42-离子含量最高,其中水泥厂和火电厂都超出了100mg/L,化肥厂甚至超过200mg/L。可见,沿线污染源的排放物主要以粉尘污染和盐类污染为主。

2.1.2 气候条件和污湿特征

根据调查收资,沿线与污秽闪络相关的降雨量、小雨天数、降雾日数及最长雾日数、平均温度和相对湿度及污闪季节的风等气象条件的调查统计结果如下:

图3-7 降雨日数

从调查情况来看,2002年-2004年三省的降雨主要集中在6月-9月,这四个月的平均月降雨日数为15天-22天。占到全年降雨日数的

52%-68%。降水量以荆门、襄樊、南阳和平顶山等地居多,山西省降水量在三省中为最少,呈从南向北逐渐减少的趋势。连续无降雨日主要集中在10月至来年3月,平均连续无降雨日数呈从南向北逐渐递增的趋势。毛毛雨是引发污闪的主要原因,湖北地区以及河南省南部毛毛雨较多,为18天-39天;河南北部及山西省相对较少,为12天-29天。

综合上述情况,沿线从南向北利于积污的气象条件递增的趋势,但诱发污闪的外部条件例如毛毛雨则反之,降雾气象以南阳、长治境内较为严重。

表3-2 污闪季节的风速、主导风向和静风频率统计

2002-2004年的污闪季节的风速均在2m/s左右,静风频率在23%以下,不利于污染物的扩散。

3.2 沿线现状污区情况

3.2.1 现有污区图的情况

3.2.2 现场实测污秽状况

图3-16 山西段路径与电网相对关系图

表3-5 部分线路闪络跳闸统计

注:斗樊线144#杆塔绝缘子串在雾湿天气下有放电现象。

3.3 本工程沿线污区划分

3.3.1 污区划分原则

(1) 参照GB/T16434-1996《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》的规定。

(2) 有关文件的要求;

(3) 结合特高压线路具体情况及污区划分“运行经验、污湿特征、现场等值附盐密度”三要素来确定。当三者不一致时,应以运行经验为主;

(4) 对既没有运行经验、又没有盐密测量值的地区,暂按污湿特征,并结合各省最新污区分布图的定级来确定污秽等级。

建议本工程特高压线路污区划分参照GB/T16434-1996中对各污秽等级下的爬电比距分级数值作出的规定,如表3-6所示。

表3-6 特高压线路各污秽等级下的爬电比距分级数值

注:爬电比距取额定电压计算值

3.3.2 晋东南—南阳段线路污区划分

山西省境内线路全长约118km,地形以丘陵为主,跨越太行山脉;省内污染源主要有煤矿、炼焦厂、炼铁厂、化工厂以及大型电厂等,另外规划中的野川、马村化工园区以及阳城电厂二期、赵庄电厂、高河电厂、沁水电厂、郑庄电厂等重污染源将使大气污染愈加严重;全年干旱少雨,小雨日数约为12天-21天,平均湿度仅为61%左右;污闪季节降雾日数达到18天-32天;主导风向为西北风,风力较大,污秽物的扩散能力很强。

山西省境内与特高压线路平行或跨越的500kV线路有阳东线(Ⅲ级中、上限设计、爬电比距2.8-3.1cm/kV)、榆临线(Ⅲ级下限设计、爬电比距2.6cm/kV)。河南境内与特高压线路平行或跨越的500kV线路有樊白双回(Ⅱ级上限设计、爬电比距2.5cm/kV)、白郑线(Ⅱ级中限设计、爬电比距2.2cm/kV)、姚白线(Ⅱ级中限设计、爬电比距2.2cm/kV)、牡嵩双回(Ⅲ级中限设计、2.8cm/kV)、沁获线(Ⅲ级上限设计、爬电比距3.0cm/kV)。根据ESDD测量结果,结合线路运行经验和污湿特征,晋东南—南阳段特高压输电线路污秽等级划分如下:

我国500kV输电线路一般按泄漏比距法确定绝缘子片数,从而确定

串长。

对于我国来说,由于大气污染严重,现有500kV 线路,绝缘子串长一般均由工频条件下的污闪特性决定。由爬电距离来决定绝缘子的串长,这种方法首先根据输电线路所经地区的污秽情况,盐密和灰密的测量值,以及已有输电线路的运行经验,确定污秽等级,再依据国家标准GB/T 16434-1996《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》来决定该污区所对应的爬电比距,根据所选绝缘子的爬电距离计算所需绝缘子的片数。此种方法简单易行,可操作性强,在工程设计中被广泛采用,并且经过很多工程实际的考验,是一种可被接受的工程设计方法。

4.4 按爬电比距法选择悬垂串的绝缘子片数

4.1.1 工频过电压条件下绝缘子串片数

由爬电距离来决定绝缘子的串长,在工程设计中被广泛采用。由工

频电压爬电距离要求的线路每串绝缘子片数应符合下式要求:

式中:m — 每串绝缘子片数; U m — 系统额定电压,kV ;

λ — 爬电比距,cm/kV ,列于表盐密与爬距配臵表; L0 — 每片悬式绝缘子的几何爬电距离,cm ;

Ke — 绝缘子爬电距离的有效系数,主要由各种绝缘子爬电距离在试验和运行中提高污秽耐压的有效性确定。

(1) 绝缘子爬电距离的有效系数Ke

绝缘子爬电距离的有效系数K e 定义为在相同的自然条件下,在相同

L K U m e m

λ≥

的积污时间内被试绝缘子与基准绝缘子沿单位泄漏距离的污闪电压之比。K e 不能仅根据人工污秽闪络电压的试验结果确定,还必须考虑绝缘子的自然积污能力。我国幅员辽阔,各地的地理气象条件差别很大,不同形状的绝缘子在不同地区的运行效果也有差别。目前还很难确定各种形状绝缘子的K e 值。

电力行业标准DL/T 620-1997《交流电气装臵的过电压保护和绝缘配合》中指出:几何爬电距离290mm 的XP-160型绝缘子的K e 暂取为1。采用其它型式绝缘子时,K e 应由试验确定。

1

%.50022

%.5001U L U L K e

式中:L 01、L 02 — 分别为XP-160型及其它型绝缘子的几何泄漏距离; U 50%.1、U 50%.2 — 分别为XP-160型及其它型绝缘子的50%污闪电压,kV 。

为分析研究不同型式绝缘子的有效系数;参考了《西北电网750kV 输电线路绝缘子在高海拔低气压条件下的污闪特性研究》报告,该报告提供了750(2#)和750(4#)试验U 50%值(ESDD :0.05;NSDD :0.1mg/cm 2)。

表4-5 西北电网污闪特性研究的瓷绝缘子U 50%值

武汉高压研究所《1000kV 交流输电线路绝缘子长串污秽特性及污秽外绝缘设计的研究》报告,报告中提供的常压下绝缘子的单片U 50%值;具体数据和相应绝缘子的有效系数Ke 计算值如表4-6。

表4-6

有效系数Ke 的计算

上表中盘型(钟罩型)绝缘子的有效系数Ke的计算值基本在0.86-0.90之间,由于3#-6#绝缘子为灰密0.5mg/cm2条件下U50%值,其值偏大,因此,绝缘子的有效系数Ke计算值偏大;7#-8#双伞和三伞绝缘子的有效系数Ke的计算值基本在0.94-0.99之间,由于其U50%无法进行灰密修正,且7#和8#绝缘子的U50%值为短串试验得到,其值偏大,因此,有效系数Ke的计算值也偏大。

双层伞绝缘子在我国500kV及以下线路中已大量使用,积累了大量试验数据和运行经验。通过对双层伞绝缘子和普通型(XP-300)绝缘子在同样条件下的污闪电压和积污状况的比较,以及对大量数据的统计分析,由运行部门总结出,双层伞型绝缘子的Ke值为0.95。

西北750kV线路绝缘子爬电距离的有效系数Ke的取值,普通型取1.00;防污型(双伞型和三伞型)取0.95;防污型(钟罩型)取0.90。

本报告暂推荐在轻污区普通型、双伞和三伞绝缘子的有效系数Ke 取值为1.0;防污型绝缘子的有效系数Ke取值为0.9;中等及以上污秽区普通型盘型、双伞和三伞型绝缘子的有效系数Ke取值为0.95;防污

钟罩型绝缘子的有效系数Ke取值为0.85。

(2) 绝缘子片数计算

计算工频电压下所要求的爬电距离和绝缘子串片数进行计算,其结果如表4-7。

表4-7 悬垂Ⅰ串绝缘子片数计算

由表4-7可知,Ⅱ级污区可选用54片单片爬距485mm 普通型绝缘子和双伞、三伞型绝缘子;绝缘子串长10530mm ;Ⅲ级污区可选用54片单片爬距635mm 三伞型绝缘子或Ⅲ级和Ⅳ级污区选用合成绝缘子。

4.4.2 按操作过电压选择绝缘子串片数

操作过电压要求的线路绝缘子串正极性操作冲击电压波50%放电电压U50应符合下式要求:

S U K U ?≥150

式中:U s ?线路相对地统计操作过电压,kV ;

1K ?线路绝缘子串操作过电压统计配合系数,根据电力科学研究院

“1000kV 交流输变电工程过电压与绝缘配合研究”(2006年6月),操作过电压统计配合系数1K 取为1.25。

S U K U ?≥150

1000kV 输电线路统计操作过电压倍数取1.7p.u.。系统最高运行电压取1100kV 。正极性操作冲击电压波50%放电电压U 50为:

)(19093/110027.125.150kV U =???≥

根据电力科学研究院“500kV 交流和直流输电线路杆塔绝缘强度和作用电压”(1991年6月),在临界波头长度下绝缘子串50%闪络电压与串长的关系:

对于边相:

l

U cr 6.714460

50+

=

对于中相:

l

U cr 2.71402050+

=

式中:U 50c r — 临界波头长度下绝缘子串50%闪络电压,kV ;

l — 绝缘子串长,m 。

对于实际波头长度的操作波,其闪络电压要高于临界波头情况,可按下式修正:

2

505075.0184.022.1???

? ??++???

?

??+???? ??=cr cr

cr cr

U U ττττ

ττ

式中:τ、τcr — 实际波头长度和临界波头长度,μs ,实际波头长度取 250μs ;

U 50、U 50cr — 波头长度为τ和τcr 时的绝缘子串50%闪络电压,kV 。 对于不同的绝缘子串长,上式中的临界波头长度由下式计算: 5035+=l cr τ

由于以上的计算公式均按标准气象条件给出,故应进行气象修正:

0U K U t =

式中:U 、U 0 — 实际状态和标准状态下的外绝缘放电电压,kV ; K t — 空气密度修正系数。

()n

t K 12δδ=

()26.41H αδ-=

式中:α — 空气温度梯度,0.0065℃/m ; H — 海拔高度,m ; T — 绝对温度,取293℃; n — 特性指数,取n=0.5。

操作过电压要求的线路绝缘子串片数(以普通型300kN 绝缘子计算)列于表4-8。

表4-8

操作过电压要求绝缘子串片数/绝缘长度(mm)

考虑2片零值绝缘子后操作电压要求的1000kV交流输电线路绝缘子串片数(以普通型300kN绝缘子计算)列于表4-9。

表4-9 绝缘子串片数

本工程不存在在0级、Ⅰ级污秽区,当污秽等级大于等于Ⅱ时,操作过电压对绝缘子串片数的选择已不起作用,绝缘子串片数由工频电压决定。

表4-10 0级污秽区普通型绝缘子串片数

表4-11 Ⅰ级污秽区普通型绝缘子串片数

4.4.3 按雷电过电压的要求进行校验

一般来说,雷电过电压与运行电压无直接关系,在特高压系统中,由于输电线路本身的外绝缘水平很高,对外绝缘设计而言,雷电过电压不起决定作用。

1000kV线路绝缘子串具有很高的冲击绝缘水平(U50%≈4MV),雷击杆塔只能在很大的雷电流(I0=200-250kA)下才有可能引起绝缘子串反击闪络,出现这种雷电流的概率是很小的(数量级0.1%及以下)。

日本1000kV线路尽管线路走廊大多通过海拔1000m以上的山地,但是由于1000kV电压等级引弧角间隙长,线路的雷害事故率比500kV 约减少1/2。1000kV防雷设计考虑以下条件:

(1) 双回路铁塔采用2条具有负屏蔽角的架空地线;

(2) 引弧角间隙从减少雷击事故次数考虑,应尽可能加大,同时为了不使线路装臵直接受害,应保持良好的通路特性;

(3) 从减少雷击事故次数考虑铁塔接地电阻应尽可能降至10Ω以下。

但在雷电过电压下,绝缘子串仍应满足一定的耐雷水平。在0级污秽区、海拔1000-3000m时,按绝缘子串雷电冲击绝缘水平U50%≈4MV 考虑,耐雷水平I1计算结果见图4-1~4-4。由此可以看出ZB塔的耐雷水平高于ZM塔,三相V串的耐雷水平与中相V串的基本相当。且耐雷水平均随塔高、接地电阻的增加而降低。由于1000kV线路要求的对地距离大,杆塔高度相应增加,一般在60m以上,因此为了获得较高的耐雷水平,其接地电阻设计值应尽量减小;或增加绝缘子提高绝缘子串雷电冲击绝缘水平。

.5 按污耐压法选择悬垂串的绝缘子片数

污耐压法是根据试验得到绝缘子在不同污秽程度下的污秽耐受电压,使选定的绝缘子串的污秽耐受电压大于该线路的最大工作电压。该方法和实际绝缘子的污耐受能力直接联系在一起,是一种较好的绝缘子串长的确定方法,但人工污秽试验结果同自然污秽条件下的污耐受电压值存在等价性问题。

前苏联、美国、美国、日本、武汉高压研究所和中国电力科学研究院主要是以U50%进行污秽外绝缘设计。U50%以长串绝缘子试验来确定。

不同国家污秽外绝缘设计原则相同,仅是设计参数取值不同。不同的国家确定污耐压和污秽设计目标电压值也不同。前苏联取标准偏差σ为8%,校正系数1-4σ;美国取σ为10%,校正系数1-3σ;武汉高压研究所和中国电力科学研究院按试验来计算σ取7%,污耐压校正系数为1-3σ。日本单片绝缘子最大耐受电压Umax按长串绝缘子试验来确定,前苏联还考虑爬电距离有效系数对不同型绝缘子串的Umax进行校正;污秽设计目标电压值均取系统最高运行相电压UФmax,UФmax校正系数原苏联、美国、美国、日本分别为1、1、1.1、1.15~1.6。绝缘子串片数N 由校正后的UФmax与U max之比确定,即:

N=UФmax/U max

不同国家污秽外绝缘设计基本参数如表4-12所示。

表4-12 不同国家污秽外绝缘设计基本参数对比

(对应单串闪络概率为0.14%,查正态分布表得出);

注2、1000kV线路设计污耐压校正系数取1.04

(对应单串闪络概率为15%,查正态分布表得出)。

根据国网武汉高压研究院编制的《1000kV交流输变电工程设备外绝缘特性研究》报告中推荐的污耐压设计方法如下(海拔1000m以下):

①确定现场污秽度SPS(ESDD/NSDD)

②将现场污秽度SPS(ESDD/NSDD)校正到附盐密度SDD(可简称试验盐密SDD)

③单片绝缘子最大耐受电压U max的确定

④污秽设计目标电压值UΦmax的确定

本工程按1.1倍的最高运行相电压取值。

⑤绝缘子串片数N的求取N=UΦmax/U max

⑥按表4-13校核确定的N。

表4-13 不同性质工作电压确定绝缘子串片数

注:按污秽设计确定不同污秽等级的绝缘子片数满足以上不同性质工作电压和

条件对其要求。

4.5.1 试验盐密(SDD)的确定

由武汉高压研究所牵头,湖北、河南、山西省电力公司参加的国家电网公司重点科研项目《晋东南—南阳—荆门待建1000kV特高压交流输电线路沿线走廊污秽特性的调研》,课题对中线工程的沿线污秽参数进行了调研,沿线CaSO4的含量约为30%-49%,分别取30%、41%、20%时,根据GB/T 16434-1996中的ESDD经CaSO4校正换算成SDD如表4-14所示。

校正后换算成SDD

表4-14 GB/T 16434-1996中的ESDD经CaSO

4

4.5.2 单片绝缘子最大耐受电压U max的确定

根据武汉研究高压院的研究,单片绝缘子最大耐受电压U max先要求出绝缘子串U50%并折算为单片值,然后进行修正。

单片绝缘子最大耐受电压U max1由GB/T 4585-2004附录B2.2条规定的在给定基准污秽度SPS下的50%人工污秽耐受电压的测定程序求出绝缘子串U50%并折算为单片值。

U max1=(1-k1σ)U50℅

U max = k 2 k 3 k 4 (1-k 1σ)U 50℅ k 1:正态分布系数

k 2:绝缘子上下表面不均匀比系数 k 3:对NSDD 的校正系数 k 4:对串型的校正系数 修正后的结果见表4-15 。

表4-15

不同污秽等级下不同型式单片绝缘子U max

单位:kV

注:SDD 为附盐密度(CaSO 4按41%修正)。

4.5.3 绝缘子片数 (1) 单Ⅰ串绝缘子片数

在外绝缘研究报告中,以300kN 绝缘子为例,得出的不同污秽等级下不同型式单片绝缘子U max 见表4-16。

表4-16

不同污秽等级下不同型式绝缘子所对应的片数

输电线路绝缘子及其连接金具的选择

输电线路绝缘子及其连接金具计算 河北兴源工程建设监理有限公司许荣生 最大使用应力=计算拉断力×新线系数×40%÷导线截面积 年平均使用应力=计算拉断力×新线系数×年平均系数÷导线截面积 实际使用应力=计算拉断力×新线系数÷安全系数÷导线截面积 一、已知条件见下图 该图为JL/G1A-240/30导线35kV输电线路的双联耐复合绝缘子串组装图。根据GB/T 1170-2008国家标准《圆线同心绞架空导线》,JL/G1A-240/30的额定拉断力为75.19kN,由于线路导线上有接续管、耐张管、补修管,而使得导线的计算拉断力降低,故设计使用的导线保证计算拉断力为其实际额定拉断力95%;根据2009年5月编制的“河北省南部电力系统污秽区分布图”该线路处于Ⅳ级污秽区,其线路标称电压爬电比距为3.2~3.8cm/kV。试选择该线路的绝缘子及其连接金具,满足设计规范要求的机械强度及电气强度。 二、计算依据 1.《66kV及以下架空电力线路设计规范》GB50061-2010; 2. 《圆线同心绞架空导线》GB/T 1170-2008; 3.《110kV~750 kV架空输电线路设计规范》GB 50545-2010。

三、计算 1.导线最大使用张力 根据《66kV及以下架空电力线路设计规范》GB50061-2010的第5.2.3“导线或地线的最大使用张力不应大于绞线瞬时破坏张力的40%”的要求,JL/G1A-240/30的导线最大使用张力为 75.19kN×95%×40%=28.572kN。 2.绝缘子及连接金具的机械强度 根据《66kV及以下架空电力线路设计规范》GB50061-2010的第5.36.1 ”。 “绝缘子和金具的机械强度应按下式验算:kFkF U 2.1合成绝缘子的额定破坏机械强度的选择:

广东电网有限责任集团公司输电线路悬式绝缘子选型导则

广电生〔2016〕114号附件 广东电网有限责任公司 输电线路悬式绝缘子选型导则 广东电网有限责任公司 2016年12月

目录 前言 (1) 修编说明 (2) 1 范围 (4) 2 规范性引用文件 (4) 3 定义和术语 (5) 3.1 电弧距离 (5) 3.2 爬电距离 (5) 3.3 统一爬电比距 (5) 3.4 现场污秽度 (5) 3.5 现场污秽度等级 (5) 3.6 爬电距离有效系数 (5) 3.7 爬电系数 (6) 3.8 沿海强风区 (6) 3.9 重要交叉跨越 (6) 4 外绝缘配置原则 (6) 4.1 一般规定 (6) 4.2 统一爬电比距配置要求 (6) 4.3 不同污区统一爬电比距配置要求 (7) 4.4 不同类型绝缘子爬电距离有效系数K (7) 5 绝缘子使用原则 (7) 5.1 一般规定 (7) 5.2 悬垂串绝缘子选择 (8) 5.3 耐张串绝缘子选择 (8) 5.4 双联串绝缘子选择 (8) 5.5 特殊区段绝缘子选择 (8) 5.6 绝缘子伞型选择 (9) 6 绝缘子入网条件 (9) 6.1 玻璃绝缘子 (9) 6.2 复合绝缘子 (9)

前言 本导则根据国内输电线路悬式绝缘子的生产制造技术水平、应用情况、运行经验,国家、行业及南方电网公司相关制度、标准,以及南方电网公司、广东电网有限责任公司对输电线路悬式绝缘子管理的要求,对输电线路外绝缘配置、悬式绝缘子选型使用原则以及入网条件进行了规范。 本导则主要起草人:陈剑光、张英、黄振、彭向阳、周华敏、朱文卫。 本导则由广东电网有限责任公司生产设备管理部部提出、归口并解释。 本导则自发布之日起实施。执行中的问题和意见,请及时反馈至公司生产设备管理部。

1-09-1000kV特高压交流输电线路绝缘子片数选择

1000kV特高压交流输电线路绝缘子片数选择 纪新元 [摘要] 根据近几年科研试验成果,文中列出了各型绝缘子的运行性能比较及其污耐压试验数据及曲线,综合归纳了按污秽条件选择绝缘子片数的方法,并在此基础上,对当前1000kV线路绝缘配置进行了说明。 [关键词]1000kV特高压输电线路污秽试验绝缘子片数选择 1 引言 1000kV交流特高压输电线路是当前国际上交流最高电压级的输电线路。早在1985年,前苏联就建成一条1150kV单回路输电线路,总长达1900km,其中约900km按1150kV电压运行,至1991年由于前苏联解体和经济衰退,导致该段线路降压至500kV运行。日本于1988年开始建设1000kV线路。共建成两段全长238km的1000kV双回路特高压线路,建成后降压为500kV运行。其它如美国、意大利和加拿大均建有该电压级的试验线路。 我国从2005年着手研究。并于2007年开始建设1000kV晋东南—南阳—荆州单回路特高压输电线路,全长约654km。现正设计1000淮南—上海双回路特高压输电线路,全长约640km。 1000kV交流特高压单、双回输电线路的建设,塔头绝缘设计是关键技术之一,而绝缘子片数选择则是塔头绝缘设计中的重要环节,为此,我国科研及设计单位进行了大量的调查研究及科学试验,取得了一定的成果,为我国特高压线路的设计提供了有力的科学依据。 本文综合了近几年来我国科研、制造及设计单位的研究成果,对1000kV线路绝缘片数的选择进行了论述,供广大读者参考。 2 绝缘子型式选择 目前我国输电线路大量使用的绝缘子主要有盘型悬式瓷绝缘子、盘型悬式玻璃绝缘子及复合绝缘子三大类。现将其运行情况及污闪性能简介如下。 2.1 我国绝缘子运行情况浅述 2.1.1 盘型悬式瓷绝缘子

广东电网公司悬式绝缘子选型及爬电比距配置导则

电网公司悬式绝缘子选型及爬电比距配置导则 1 总则 本导则规定了选择悬式绝缘子形状和类型及爬电比距配置时所遵循的原则。 本导则适用于玻璃绝缘子、复合绝缘子和瓷绝缘子。 设计单位、基建单位和运行单位在35kV及以上线路选择绝缘子时必须严格执行本导则。运行线路调爬时可参照本导则选择绝缘子。 2 规性引用文件 《Selection and dimensioning of high-voltage insulators for polluted conditions -Part 1: Definitions, information and general principles》(IEC 60815:2006)《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》(GB/T 16434-2010)《高压输变电设备的绝缘配合》(GB311.1-1997) 《架空送电线路运行规程》(DL/T741-2001) 《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997) 《标称电压高于1000V交流架空线路用复合绝缘子使用导则》(DL/T864-2004) 《盘形悬式绝缘子劣化检测规程》(DL/T626-2005) 《污秽地区绝缘子使用导则》(JB/T5895-1991) 《高压线路用棒形悬式复合绝缘子――尺寸与特性》(JB/T8460-1996) 《110~500kV架空送电线路设计技术规程》(DL/T5092-1999) 《高压架空线路和变电站污区分级与外绝缘选择标准》(Q/GDW152-2006) 3 术语和定义 3.1 爬电距离有效系数K 钟罩型、深棱型等防污型绝缘子的污耐受电压要高于普通型绝缘子,但污耐受电压提高的程度不一定与爬电距离成正比。爬电距离有效系数表示爬电距离的有效性,与绝缘子外形、污秽程度等因素有关(参见GB/T 16434-1996附录D)。

浅谈高压架空输电线路绝缘子的选用_姜海生

浅谈高压架空输电线路绝缘子的选用X 姜海生 (内蒙古电力勘测设计院,内蒙古,呼和浩特 010020) 摘 要:本文首先论述了绝缘子在架空输电线路中的重要作用,然后对现有的几种绝缘子优缺点进行了详细论述,最后提出了在工程中选用绝缘子的几点建议。 关键词:架空输电线路;绝缘子;选用 绝缘子是架空输电线路主要构件之一,它的正确选用直接关系到电网的安全和稳定运行。随着高压架空输电线路的大规模建设,对绝缘子的需求越来越多,要求也越来越高,并要求运行维护工作量尽量减少。随着电力系统主网架向大容量、特高压方向发展,绝缘子安全稳定的运行和减少运行维护及停电检修更显得极为重要。 绝缘子质量的优劣对确保安全供电关系极大,因其性能老化或者损坏都可能造成突然事故。架空线路运行中出现闪络、掉线、爆炸、漏电等事故,都可能造成大面积停电,给国民经济带来巨大的损失。不仅如此,绝缘子的使用寿命对于降低输电线路的运行费用进而为企业节约生产成本也有重要的意义。 绝缘子的发展主要依赖于绝缘材料的发展,目前国内外应用的绝缘子主要有盘形瓷绝缘子、钢化玻璃绝缘子、长棒形瓷绝缘子、有机复合材料制造的复合绝缘子和瓷复合绝缘子。不同材料的绝缘子不仅具有不同性能且价格各异。 悬式盘形瓷绝缘子已有100多年的历史,具有长久的运行经验。钢化玻璃制造绝缘子是上世纪三十年代以后发展起来的,五十年代开始生产和使用,具有一些瓷绝缘子所不具备的优良性能近年来受到电力部门的欢迎。长棒形瓷绝缘子是一种非击穿型绝缘子,早在1936年德国就研制开发成功并使用,已在30多个国家和地区有50年以上的良好运行记录,我国1997年开始在华东地区500kV线路上使用。有机复合绝缘子(又称合成绝缘子)是从上世纪六七十年代才开始生产的,合成绝缘子属非击穿型绝缘子,耐污型好,易维护,在污秽较重地区近年来被大量使用。瓷芯复合伞裙耐污盘形悬式绝缘子(简称瓷复合绝缘子),是在瓷盘表面以及相关界面采用特殊工艺加工,硅橡胶复合外套是采用严密包履热硫化一次成型工艺,由于硅橡胶复合外套具有良好的憎水性和憎水性的迁移性,因而抗污闪能力强,是一种新型绝缘子。 下面结合国内绝缘子现状及国内外的研究情况及发展方向,对以上五种不同类型的绝缘子性能优劣进行论述。 1 盘形瓷绝缘子 瓷是由石英砂、粘土、长石、氧化铝等原料经球磨、纸浆、练泥、成型、上釉和烧结成瓷件。它的烧结与固相反应是在低于固态物质的熔点或熔融温度下进行的(高硅瓷的成瓷温度是1300℃)。成瓷后的显微结构由多晶体、玻璃相和气孔组成,属于一种多晶体的非均质材料,晶相的数量和特性决定了瓷具有高的机械性能和较好的绝缘性能,这种材料的优良性能,使得该种绝缘材料得以长久使用,经久不衰。其主要优缺点如下: 优点 具有长久丰富的运行经验和稳定性能,具有良好的绝缘性能、耐气候性、耐热性,组装灵活,且有多种造型,其中双伞型及三伞型产品爬距大,具有自洁性能好、自清洗能力强的特点,适合干旱、少雨、风沙大等气候条件的地区。 缺点 属可击穿型,随运行时间的延长,其绝缘性能会逐渐降低,机电性能下降,即“老化”现象,且不易发现,为发现并剔除这些绝缘子,线路运行部门每年要花大量的人力和物力,必须登杆定期逐片检测零值,而且由于测试仪器及测试人员的技术水平或者个别绝缘子误检、漏检,都会给线路留下隐患,若线路正常运行条件尚不至造成危害,但当遇有污闪或雷击等突发情况,则易导致绝缘子掉线事故发生。其老化率属于后期暴露,随运行时间延长,老化率呈上升趋势,当老化率高达不能承受时,只好采取更换,在线路日后运行中需要增加更换绝缘子的费用(绝缘子本体、施工、线路停电等),需要定期清扫。2 玻璃绝缘子 玻璃由石英砂、白云石、长石和化工原料(碳酸钾、钠)等高温熔融(硅酸盐玻璃溶制约1500℃)成液 120内蒙古石油化工 2007年第3期 X收稿日期:2007-01-07

特高压交流输电线路的绝缘子如何选型

特高压交流输电线路绝缘子选型 绝缘子的选型是特高压输电线路绝缘配合最为重要的内容之一。合理确定绝缘子的型式对于在保证电力系统运行的可靠性的同时,控制设备制造成本有着重要意义。 特高压线路绝缘子主要有玻璃绝缘子、复合绝缘子以及瓷绝缘子,在我国特高压线路中均得到实际应用。我们就三种绝缘子分别从预期寿命、失效率和检出率以及电气性能等方面进行讨论,给出特高压绝缘子的选型建议。 1、预期寿命 瓷绝缘子的绝缘部件由无机材料氧化铝陶瓷制成,该材料具有优良的抗老化能力和化学稳定性。玻璃绝缘子是以钢化玻璃为绝缘体,通过水泥胶合剂与其他金属吊挂件装配而成,并采用“热钢化”工艺,赋予了玻璃表层高达100~250MPa的永久预应力,使钢化玻璃的强度增大,热稳定性提高,抗老化性加强,寿命延长。 根据我国对已运行5~30年的玻璃和瓷绝缘子进行的机电性能跟踪对比试验,玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘件;运行经验表明,玻璃绝缘子运行40a,机电性能变化不大,而瓷绝缘子平均寿命周期为15~25a。 复合绝缘子外绝缘采用有机材料硅橡胶,在电晕放电、紫外线辐射、潮湿环境、温度变化以及化学腐蚀等因素用下比较容易老化,对其使用寿命研究需长时间的跟踪观察,目前复合绝缘子只有20多年的运行经验,尚无足够数据支撑。从国内外运行经验来看,只要复合绝缘子能够保证出厂质量,使用寿命达到10a是没有问题的。 2、失效率和检出率 瓷绝缘子的失效表现形式为经过长时间运行后,材料老化,绝缘性能降到很低甚至为零。这种低值或者零值绝缘子无法从外表看出来,需要通过试验检测查出。 玻璃绝缘子失效表现为零值自破,即玻璃绝缘子在绝缘性能失去时,玻璃伞盘会爆裂破损。玻璃绝缘子在自破后,维修人员可以直接用肉眼观察到破碎的玻璃伞盘,所以玻璃绝缘子的失效检出率比瓷绝缘子高很多,通常认为玻璃绝缘子是不需要进行零值检测的,其维护检测工作量也比瓷绝缘子小得多。另有统计表明,国产玻璃绝缘子在其寿命周期内平均失效率为比瓷绝缘子低1~2个数量级。 复合绝缘子内绝缘距离和外绝缘距离几乎相等。结构上属于不可击穿型绝缘子,不存在零值绝缘子的问题,也就不需要零值检测。但是复合绝缘子的失效表现形式为伞裙硅橡胶蚀损以及隐蔽的“界面击穿”,无法直接观察,必须使用仪器逐只检测及更换,导致维护工作量及费用增加。 3、电气性能

输电线路绝缘子选择及计算

1 绝缘子选型 1.1 绝缘子材质 我国主要生产的绝缘子主要有盘形瓷绝缘子、盘形玻璃绝缘子及复合绝缘子 1.2 各类绝缘子特性 绝缘子的性能比较 表1-1 不同类型线路绝缘子的性能比较 3 污区划分

3.1 沿线污秽调查 3.1.1 走廊沿线污源分布情况 本次对待建1000kV特高压中线工程线路走廊沿线进行了污染情况调查。湖北省境内绝大部分地区为自然污秽,包括生活污染、公路扬尘、农村施用农药、化肥以及烧山积肥的灰尘;工业污秽主要集中在宜城市板桥镇,分布有石灰厂、水泥厂、采石场等重点污源。河南省境内线路附近分布较多乡镇,主要的自然污秽来自居民区的生活污染和农田施用的化肥等,线路跨越铁路、高速公路、土路若干,加上风沙扬尘等也会对线路造成一定的污染;工业污源主要有采石场、石灰厂、水泥厂、铝铁厂、炼钢厂、火电厂等。山西省境内沿线分布储煤厂、炼焦厂、炼铁厂、火电厂、砖厂等,小型煤矿区和炼铁高炉更是星罗棋布,大气污染十分严重。另外1000kV特高压中线工程线路平行或跨越的500kV线路有:斗樊线、双玉Ⅰ、Ⅱ回、樊白Ⅰ、Ⅱ回、姚白线、白郑线、牡嵩线、沁获线、榆临线;跨越铁路七条、已建成高速公路六条、国道和省道若干。 (1) 化工污秽 该线路走廊附近的化工污源主要集中在河南省和山西省,主要有沁阳市碳素有限公司(1500万kg/a)、孟县化肥厂(6000万kg/a)、偃师市山化县化工厂、南阳石蜡精细化工厂(12000万kg/a)、南阳市金马石化有限公司(600万kg/a)、长治化工有限公司、钟祥市华毅化工有限公司(18000万kg/a)等。另外晋城市规划中的野川、马村化工园区,工厂十分集中,规模现在大约为30000万kg/a,随着发展,其规模将进一步扩大。 (2) 冶金污秽 冶金污秽主要包括铝厂、炼铁厂、炼钢厂等。根据调研情况,主要

电气知识总结-绝缘子选取

绝缘配合设计 爬电比距法其实是泄露比距法: n≥γU e01 注:n-海拔1000m时每联绝缘子所需片数; γ-爬电比距(cm/kV); 参照:《110kV-750kV架空输电线路设计规范》GB 50545-2010 P55 附录B 高压架空线路污秽分级标准例:三级:(2.50-3.20),四级:(3.20-3.80) U-系统标称电压(kV); 参照:《标准电压》GB/T 156-2007 P1 3.3 系统标称电压:用以标志或识别系统电压的给定值(及额定电压):例:110kV Le-单片悬式绝缘子的几何爬电距离(cm); 参照:1.《污秽条件下使用的高压绝缘子的选择和尺寸确定第1部分:定义、信息和一般原则》GBT 26218.1-2010 P2 绝缘子正常承载运行电压的两部件间沿绝缘件表面的最短距离或最短距离的和。 2.参照招标物料U70B/146(玻璃)=320mm U70B/146D(瓷质双伞)=450mm Ke-绝缘子爬电距离的有效系数,主要由各种绝缘子几何爬电距离在实验和运行中污秽耐压的有效性来确定;并以XP-70、XP-160型绝 缘子为基础,其中: 1.普通型、草帽型Ke值取为1; 2.双层伞型、大小伞型Ke值取为1; 3.钟罩防污型、深棱伞≤C级时Ke 值取为0.9;≥C级时Ke值取为0.8

统一爬电比距法:爬电距离与绝缘子两端最高运行电压之比。 n≥KγU 3K e L01 K-系数110-220kV系统K为1.15, 330-500kV系统K=1.1。 相电压为线电压/3 参照: 1.k值参考《标准电压》GB 156-2007 P.3/4 2.对于三相交流系统,相关标准的爬电比距系指线电压为计算技术的值,而统一爬电比距系指绝缘子两端的电压。因此,对于交流系统,应按相对电压为计算基础。 :

架空输电线路绝缘子结构设计研究 梁超

架空输电线路绝缘子结构设计研究梁超 发表时间:2019-07-05T11:17:23.180Z 来源:《电力设备》2019年第4期作者:梁超 [导读] 摘要:绝缘子作为输电线路安全运行的重要设备之一,其各种技术性能应得到严格的保证。 (国网吕梁供电公司山西吕梁 033000) 摘要:绝缘子作为输电线路安全运行的重要设备之一,其各种技术性能应得到严格的保证。正确的选择和设计架空线路的绝缘子串对维护电力系统正常运作有着极其重要的作用。对架空输电线路绝缘子结构三维设计进行初步探讨研究,重点阐述绝缘串虚拟装配情况,已达到研究结果。 关键词:绝缘子;绝缘子串;结构设计 1 对绝缘子可靠性评价的五项准则 运行的可靠性是决定绝缘子生命力的关键。最好的评价是大量绝缘子在输电线路上长期运行的统计结果和可靠性试验所反映出来的性能水平。因此,评价绝缘子应遵循下述准则: 1.1绝缘子寿命周期 产品在标准规定的使用条件下,能够保持其性能不低于出厂和标准的最低使用年限为“寿命周期”,此项指标不仅反映绝缘子的安全使用期,也能反映输电线路投资的经济性。我国曾先后多次对运行5-30年的玻璃和瓷绝缘子进行机电性能跟踪对比试验。结果表明:玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘体。玻璃绝缘子的寿命周期可达40年,而瓷绝缘子除全面采用国外先进制造技术后有可能较大幅度地延长其寿命周期外,其平均寿命周期仅为15-25年,复合绝缘子经历了“三代”的发展。但从迄今世界范围内的试验及运行结果分析来看,其平均寿命周期只有7年。 1.2绝缘子失效率 运行中年失效绝缘子件数与运行绝缘子总件数之比称为年失效率。据国家电力科学院调查统计,国产瓷质绝缘子的失效率一般在0.1%-0.3%之间,国产钢化玻璃绝缘子的失效率一般在0.01%-0.04%之间。对于复合绝缘子,由于复合材料配方和制造工艺还不能安全定型,其失效率很难预测。 1.3绝缘子失效检出率 绝缘子失效后能否检测出来的检出率对线路安全运行的影响是比失效率本身更为重要的因素,检出率取决于绝缘子失效的表现形式和失效的原因。玻璃绝缘子失效的表现形式是“自动破碎”和“零值自破”,这两种表现形式极大的方便电力线路工程线路故障点的查找检修。“自破”不是老化,而是玻璃绝缘子失效的唯一表现形式,所以只需凭借目测就可方便地检测出失效的绝缘子,其失效检出率可达百分之百,瓷绝缘子失效的表现形式为头部隐蔽“零值”或“低值”,复合绝缘子失效的主要表现形式为伞裙蚀损以及隐蔽的复合“界面击穿”,此外,瓷和复合绝缘子失效的原因是材料的老化,而老化程度是时间的函数。老化是隐蔽的,因此给线路巡检与测量故障点带来极大的困难,造成检出率极低,对于复合绝缘子,实际上根本无法检测。 1.4绝缘子事故率 年掉线次数与运行绝缘子件数之比称为年事故率。绝缘子掉串是架空输电线路最为严重的事故之一。对于EHV输电,若造成大面积、长时间停电,后果则不堪设想。 国产玻璃绝缘子30年来的运行经验证明:在220-500KV的输电线路上,从来没有因为玻璃绝缘子失效而发生过掉线事故。而国产瓷绝缘子掉线事故率则高达2×10-5。前苏联的研究指出,即使失效率相同,瓷绝缘子较玻璃绝缘子的事故率也至少高一个数量级。由于复合绝缘子为长棒式,掉线事故一般很少发生。但导致内绝缘击穿、芯棒断裂和强度下降的因素始终存在,一旦失效,事故概率会高于由多个元件组成的绝缘子串。 1.5绝缘子可靠性试验 为对绝缘子进行可靠性评价,国内外曾对玻璃绝缘子和瓷绝缘子作过各种方式的加速寿命试验和强制老化试验及耐压试验。如:陡波试验、热机试验、耐电弧强度试验、1500万次低频(18.5HZ)和200万次高频(185-200HZ)振动疲劳试验及内水压试验,都从不同角度得出结论:与玻璃绝缘子相反,绝大多数瓷绝缘子都不能通过这些试验。对于复合绝缘子,可靠性试验则还是一个有待于继续探索的课题。 2 绝缘子的特点和技术条件 绝缘子在架空输电线路中起着两个基本作用,即支撑导线和防止电流回地。在整条线路的运行寿命中,这两个作用必须得到保证,绝缘子不应该由于环境和电负荷条件发生变化导致的各种机电应力而失效。绝缘子承受的机械负荷除了导线和金属附件的重量之外,还必须承受恶劣天气情况下的风载荷、雪载荷、导线舞动以及运输安装过程中操作不当引起的冲击负荷。从电气角度来说,绝缘子不仅要使导线与地绝缘,还必须耐受雷电和开关操作引起的过电压冲击,当因电压冲击而发生闪络时引起的局部过热不应导致绝缘子绝缘性能。所有的外部因素都会对绝缘子的性能产生影响。 2.1特点 (1)瓷质绝缘子。原料丰富,制造简易,价格低廉,使用方便。国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)玻璃绝缘子。是以钢化玻璃为介质而制作成的,价格比瓷质略高,使用方便。在运行中一旦发生低值和零值时能自爆,不用检测它的零值就能发现缺陷以利更换。遇到雷击及污闪不会发生掉串事故,在Ⅰ、Ⅱ级污区已普遍使用。 (3)合成绝缘子。在Ⅲ级及以上污区已普遍使用,它的主要特点如下有3点: 1)由硅橡胶为基体的高分子聚合物制成的伞盘具有良好的憎水性和憎水迁移性,因而能承受很高的污闪电压。 2)棒芯采用环氧玻璃纤维制成,具有很高的抗拉强度(一般都大于600Mpa),采用φ50mm的芯棒时机械负荷能承受100t,芯棒还具有良好的减震性、抗蠕变性、抗疲劳断裂性。 3)体积小、质量轻(其质量为瓷质串约1/7),具有弹性和抗击穿性,不需检测零值,对110kV以上的,使用时配有1~2只均压环。(4)瓷质棒型绝缘子。瓷质棒型绝缘子电气性能非常好,被称为不击穿绝缘子。它不易老化、容易清扫、结构简单、安装方便、能

线路绝缘子选择分析

哈尔滨电业局(以下简称哈局)现管辖的66kV及以上线路103条,总长度2765.384k m,杆塔总数为10870基,各类绝缘子457269片。自哈尔滨地区在1980年发生大面积污闪事故以后,哈局采取监测盐密、调整线路爬距、涂硅油及定期清扫等措施,取得了较好的防污闪效果。但春、秋两季的防污清扫不但消耗大量人力、物力,而且要安排停电,既影响工农业生产及人民生活用电,又降低了线路的供电可靠率指标。为了防止线路发生污秽闪络事故,减少线路绝缘清扫的停电次数,有必要对线路的绝缘配合设计进行探讨。 1 输电线路绝缘子的积污规律 哈局送电线路大多采用X-4.5绝缘子。污区采用XWP-7型防污绝缘子,近年来在II、III级污区开始采用合成绝缘子。 文献[1]介绍了华东地区多年试验的X-4.5和XWP-7型绝缘子的长期积污规律。指出两种绝缘子的积污规律基本相似:约在运行2a后积污达到饱和值,运行1a的盐密值基本是饱和值的50%,饱和后污秽绝缘子的表面积污受雨水冲刷及风吹的影响,盐密呈现波动,但一般不会超过饱和值。 合成绝缘子在我国运行时间较短,对积污规律的探索及实验工作有待加强,文献[2]介绍了抚顺防污实验站做的近3a的X-4.5型和合成绝缘子积污对比实验结果。结果表明,运行近1a的合成绝缘子的盐密值为普通X-4.5绝缘子盐密值的2.25倍,运行近1.5a为2.54倍,运行2.5a时为2.10倍,运行2.5a的合成缘子与运行1.5a的合成绝缘子盐密比较接近,说明合成绝缘子的积污规律与普通绝缘子的积污规律相近,即运行约2a的积污达到饱和值,合成绝缘子的盐密可取为普通悬式绝缘子的2.5倍。 2 线路外绝缘设计原则 目前,我国线路绝缘设计是按输电线路1a进行1次人工清扫的原则设计的。按《架空送电线路设计规程》设计的哈局66kV及220kV线路直线塔绝缘子片数分别为5片和1 3片,并据此确定塔头尺寸。 而美国、日本等国家的线路绝缘是按长期有效的原则来设计的,设计的线路一般不需要绝缘清扫。以日本500kV线路在不同污秽区的绝缘配合设计为例,绝缘子使用个数见表1。 表 从表1可知,日本的500kV送电线路是根据线路所在地区的污秽程度确定线路绝缘子的 使用片数,然后根据绝缘子串的片数来确定塔头尺寸。 哈局已运行的送电线路杆塔的塔头尺寸已经确定,受塔头尺寸限制,仅靠增加绝缘子数

输电线路绝缘子清扫项目

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 输电线路绝缘子清扫项目 投标申请人资格预审文件招标人:广东电网公司清远供电局 招标代理:广州灏天工程顾问有限公司 2014 年 5 月

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 一、工程概况: 1、工程名称:输电线路绝缘子清扫项目 2、工程规模:本工程对清远供电局2014年输电线路绝缘子清扫项目施工,具体建设规模详见如下: 3、工程地址:清远市 4、计划工期:计划工期150日历天,具体的开工日期、竣工日期以签订合同为准。 二、资格预审文件资料应按如下顺序和格式提交( 缺项应说明原因): 1、封面(按附件1格式); 2、目录; 3、资格预审申请书(按附件2格式); 4、法定代表人证明书(按附件3格式)、法定代表人授权委托书及身份证复印件(按附件4格式); 5、营业执照副本、企业资质等级证书、企业《安全生产许可证》、组织机构代码证及税务登记证等资料复印件(原件备查); 6、公司业绩及获奖情况: 6.1 2011-2013年度企业承担类似工程业绩情况一览表(按附件5格式); 6.2 2011-2013年度企业承担类似工程业绩(施工合同复印件等,以有效证明文件的复印件为准)(按一览表顺序提供,原件备查); 7、拟派本工程的项目负责人必须是机电或电力专业壹级注册建造师证,并在投标申请报名单位注册: 7.1 简介 7.2 项目负责人资格、职称证书、安全生产考核合格证(B类)(原件备查); 7.3 2011-2013年项目负责人承担类似工程业绩情况一览表(按附件6格式填写); 7.4 2011-2013年项目负责人承担类似工程业绩复印件(按一览表顺序提供,原件备查); 8、企业资信证明 8.1 2012年度由会计师事务所提供的财务审计报告(原件备查);

500kV输电线路绝缘子的选择和应用

500k V输电线路绝缘子的选择和应用 薛 彬* 李晓红 藏国民 (内蒙古超高压供电局,内蒙古 呼和浩特 010080) 摘 要:主要论述了瓷绝缘子、钢化玻璃绝缘子及硅橡胶复合绝缘子的优缺点,并对比三种材质绝缘子之间的各项电气、机械性能。根据三种绝缘子自身特点及性能对比分析来确定在不同地区绝缘子的选择。 关键词:送电线路;绝缘子;污秽等级;击穿电压 送电线路运行中发生事故,除了倒杆塔、断线、外力破坏,就是从绝缘子串上发生事故了,根据运行统计,发生在内蒙古500k V输电线路的故障90%以上是从绝缘子上引发的,如雷击、污闪、鸟害、掉串等等。因此合理、有效地选用绝缘子种类、型号是线路运行减少事故和工作量的有效途径。 目前内蒙古500k V输电线路上使用的绝缘子主要有硅橡胶复合绝缘子、瓷质绝缘子、钢化玻璃绝缘子三种,各类绝缘子产品都有自己的优、缺点、电气及污秽特性和合适使用范围等,因此在线路上正确选用绝缘子种类和型号,是减少绝缘子故障跳闸概率和检修清扫维护工作量的有效措施。下面将几种常用绝缘子的特性和适用范围描述如下。 一、硅橡胶复合绝缘子的特性 1.优点 (1)强度高、质量轻。合成绝缘子所用的玻璃钢芯棒的纵向抗拉强度很高,一般在600M P a以上,是瓷的5~10倍,与优质碳素钢的强度相当。另外,芯棒材料的比重仅为2.0,比钢轻得多;伞裙材料的比重也小于2.0,一次合成绝缘子能比较容易地制造出规定机械负荷数千牛的强度等级,质量仅有盘形绝缘子的10%~15%。尤其500k V输电线路多在山区,在检修更换及事故抢险工作中,合成绝缘子的重量轻,不怕摔损的特点是其它绝缘子无法比拟的。 (2)无零值。合成绝缘子属于棒形绝缘子结构,其内、外极间距几乎相等,一般不发生内部绝缘击穿,也不需要检修零值检测工作。 (3)污闪电压高。合成绝缘子的伞裙护套材料都是有机高分子材料,表面能低,有很强的增水性。落在裙表面的水份都凝成许多彼此分离的细小水珠,而不形成连续的水膜导电层,因而泄露电流小,难以形成局部电弧,不容易发生沿面污秽闪络。另外由于芯棒强度高,合成绝缘子的杆径和伞径都比瓷绝缘子串小得多,形状系数大,在表面同样脏污和表面电导率相同的条件下,它的表面电阻比形状系数小的瓷绝缘子串高。绝缘子污闪电压和表面电阻有直接关系,表面电阻大,泄漏电流小,相应的污闪电压也就高。试验室试验结果和运行经验都证实合成绝缘子的污闪性能提高,很少发生污闪事故。 (4)运行维护简便。污闪性能高,不用进行污秽清扫,也不用检测零值,使维护工作量大大地减少。 2.缺点 (1)耐雷水平低。由于复合绝缘子必须靠两端安装金属均压环来改善绝缘子串的分布电压,保护过电压短路、闪络时电弧对硅橡胶伞裙灼伤,保护两端芯棒、金具连接处不因漏电起痕及电蚀损破坏密封性能,以及绝缘子伞盘直径较小等因素,因此在同等结构高度情况下,复合绝缘子的耐雷水平要比瓷质、玻璃绝缘子低10%~30%左右 。 图1 复合绝缘子芯棒脆断照片 (2)使用寿命难以评定。硅橡胶伞裙材料在气候因素和电弧作用下易发生老化、材料电蚀损和漏电起痕等质变,会导致因界面的电击穿、损坏密封及芯棒脆断掉串事故,目前还缺乏在线和离线检测手段,它的运行寿命也难以评估,目前估计其运行寿命只能达到瓷质、玻璃绝缘子的二分之一(早期的复合绝缘子有的运行3~5年就出现脆化、硬化、粉化、开裂等现象,或在雾雨等湿沉降气候下发生放电、憎水性减弱等)。到了运行寿命进行全部更换的工作量也是相当大的。 497 中国电力教育 2008年研究综述与技术论坛专刊*作者简介:薛彬,男,内蒙古超高压供电局丰镇输电所,助理工程师。

广东电网有限责任公司输电线路悬式绝缘子选型导则

11号附201广电生〕广东电网有限责任公司

输电线路悬式绝缘子选型导则广东电网有限责任公司月122016年 目录 前言.............................................................. 1 修编说明............................................................ 2 1 范围.............................................................. 4 2 规范性引用文件.................................................... 4 3 定义和术语........................................................ 5 3.1 电弧距离 (5) 3.2 爬电距离 (5) 3.3 统一爬电比距 (5) 3.4 现场污秽度 (5) 3.5 现场污秽度等级 (5) 3.6 爬电距离有效系数 (5) 3.7 爬电系数 (6) 3.8 沿海强风区 (6) 3.9 重要交叉跨越 (6) 4 外绝缘配置原则.................................................... 6 4.1 一般规定 (6) 4.2 统一爬电比距配置要求 (6) 4.3 不同污区统一爬电比距配置要求 (7) 4.4 不同类型绝缘子爬电距离有效系数K (7) 5 绝缘子使用原则.................................................... 7 5.1 一般规定 (7) 5.2 悬垂串绝缘子选择 (8) 5.3 耐张串绝缘子选择 (8) 5.4 双联串绝缘子选择 (8) 5.5 特殊区段绝缘子选择 (8) 5.6 绝缘子伞型选择 (9) 6 绝缘子入网条件....................................................

复合绝缘子选择原则,复合绝缘子的选用

复合绝缘子选择原则,复合绝缘子的选用 5.1 一般原则 在新建扩建或改建输变电工程中,绝缘子的选择应遵循“技术成熟、工艺先进、质量可靠、有 运行经验”的原则。新产品批量使用之前,试运行时间不得少于1年。220kV及以下产品试运行数量不小于200支·年;330kV及以上产品试运行数量不小于90支·年。 5.2 材料 绝缘子伞裙和护套材料应满足本标准4.3条的要求。 绝缘子芯棒应满足本标准4.4条的要求。 5.3 绝缘子伞裙形状 5.3.1 伞间最小距离(C) 对大小伞推荐C值应不小于70mm,对等径伞推荐C值应不小于40mmo 5.3.2 爬电系数(CF) 对I、II级污级,推荐CF应不大于3.2;对III.W级污级,推荐CF应不大于3.5. 5.4 均压装置 复合绝缘子端部应有良好的屏蔽措施,应正确选择和使用均压装置。110kV及以下电压等级产品 可仅在高压端安装一个均压装置,但高压端均压装置与接地端应满足工颇电弧对绝级子的要求。220kV及以上电压等级产品在高压端和接

地端各安装一个均压装置。 5.5 电气特性 绝缘水平的选择必须满足GB311.1和DLfr620的要求,同时应考虑使用环境和运行条件,包括其 重要性、可靠性、运行与维护的经济性以及污染变化等。 在给定等值附盐密度下,人工污秽工频耐受电压应满足长时工作电压对其要求:或按JB/I'8460的 要求进行选择。 5.6 机械特性 5.6.1 额定机械拉伸负荷等级 绝缘子的额定机械拉伸负荷宜从下列等级中选取: 70,1 00,1 20,1 60 (180),2 10 (240),3 00, 400和530kN。绝缘子承受的最大负荷一般宜不大于其额定负荷的1/30 5.6.2 试验负荷的规定 对新投入运行的500kV电压等级产品,应按附录B中B.4条进行机械破坏负荷试验,其破坏负荷 的平均值减去3倍标准偏差应不小于额定机械负荷。对5.6.1条中的180kN和240kN两个等级的额定 机械负荷为160kN和210kN e 绝缘子在使用中若受到明显压缩、扭转、弯曲等力时,试验负荷值应由供需双方协商解决。

绝缘子选择

第五章杆塔荷载及强度校验 第四节避雷线与导线线间距离校验 字体大小小中大 避雷线(也称架空地线)的作用是防雷。本节主要从满足防雷需要的角度讨论避雷线 的布置以及避雷线与导线的配合。这也是决定杆头尺寸的一个方面。 实际上,本章第一节所介绍的杆塔头部尺寸的确定、导线的线间距离、避雷线在塔头 的布置要求等均属于线路设计的绝缘配合内容。下面就避雷线与导线线间距离校验作进一步介绍。 一、绝缘子的选择 有关绝缘子的作用及种类在第一章已作过介绍, 下面说明有关悬式绝缘子的选择要求。 绝缘子在工作中受各种大气环境的影响,并可能受到工作电压、内部过电压和大气过电压的作用。因而要求在这三种电压作用以及相关的环境之下能够正常工作或保持一定的绝缘水平。 1.按正常工作电压决定每串绝缘子的片数 三种电压以工作电压数值为最低。但是,工作电压一年四季长期作用于绝缘子,当绝缘子表面被污染,特别是积了导电污秽又受潮时,在工作电压长时间作用下绝缘子可能因表明污秽不均匀发热、局部烘干后烘干带被击穿、泄漏电流加大导致热游离而发生污闪。污闪电压和污秽性质、程度有关,和受潮状况等因素有关,它具有统计规律。 为了防止污闪的发生,目前采用的主要方法是保持绝缘子串有一定的泄漏距离。根据污染程度、性质的不同,把污秽地区分成等级,按不同的污秽区规定不同的泄漏距离。单位泄漏距离也叫泄漏比距,它表示线路绝缘或设备外绝缘泄漏距离与线路额定线电压的比值。 我国的规定值见表5-4所示。

绝缘子串的泄漏距离应满足下式 (5-12) 式中 D―绝缘子串的泄漏距离,cm ; U―线路额定电压,KV ; d―泄漏比距,cm/KV 。 知道每片绝缘子的泄漏电流距离,即可决定绝缘子的片数n 。 绝缘子的泄漏电流距离指两极间沿绝缘件外表面轮廓的最短距离。 直线杆塔每串绝缘子片数为 n =D/S (5—13) 式中 D —绝缘子串应有的泄漏距离,cm ; S —每片绝缘子的泄漏距离,cm ; n —直线杆绝缘子串的绝缘子片数。 2.根据内部过电压决定绝缘子片数 绝缘子串在内部过电压下不应发生闪络,概率应很低。因此要求绝缘子串的操作冲击湿闪电压大于操作过电压的数值。 如果绝缘子手册或产品目录上设有操作冲击湿闪电压,或对于220KV 及以下线路,可以用于工频湿闪电压换算成操作冲击湿闪电压。这时,绝缘子串的工频湿闪电压应满足下式:

输电线路绝缘子选择与计算

精心整理 1绝缘子选型 1.1绝缘子材质 我国主要生产的绝缘子主要有盘形瓷绝缘子、盘形玻璃绝缘子及复合绝缘子 1.2各类绝缘子特性 绝缘子的性能比较 3.1沿线污秽调查 3.1.1走廊沿线污源分布情况 本次对待建1000kV特高压中线工程线路走廊沿线进行了污染情况调查。湖北省境内绝大部分地区为自然污秽,包括生活污染、公路扬尘、农村施用农药、化肥以及烧山积肥的灰尘;工业污秽主要集中在宜城市板桥镇,分布有石灰厂、水泥厂、采石场等重点污源。河南省境内线路附近分布较多乡镇,主要的自然污秽来自居民区的生活污染和农田施用的化肥等,线路跨越铁路、高速公路、土路若干,加上风沙扬尘等也会对线路造成一定的污染;工业污源主要有采石场、石灰厂、水泥厂、铝铁厂、炼钢厂、火电厂等。山西省境内沿线分布储煤厂、炼焦厂、炼铁厂、火电厂、砖厂等,小型煤矿区和炼铁高炉更是星罗棋布,大气污染十分严重。另外1000kV特高压中线工程线路平行或

跨越的500kV线路有:斗樊线、双玉Ⅰ、Ⅱ回、樊白Ⅰ、Ⅱ回、姚白线、白郑线、牡嵩线、沁获线、榆临线;跨越铁路七条、已建成高速公路六条、国道和省道若干。 (1)化工污秽 该线路走廊附近的化工污源主要集中在河南省和山西省,主要有沁阳市碳素有限公司(1500万 kg/a)、孟县化肥厂(6000万kg/a)、偃师市山化县化工厂、南阳石蜡精细化工厂(12000万kg/a)、南阳市金马石化有限公司(600万kg/a)、长治化工有限公司、钟祥市华毅化工有限公司(18000万kg/a)等。另外晋城市规划中的野川、马村化工园区,工厂十分集中,规模现在大约为30000万kg/a,随着发展,其规模将进一步扩大。 (2)冶金污秽 冶金污秽主要包括铝厂、炼铁厂、炼钢厂等。根据调研情况,主要有巩义市回锅镇的铝加工基地、 从测量结果和上图可知,污秽物中Ca+离子含量远大于Na+、K+、Mg2+离子含量,尤其是炼焦厂、水泥厂和化肥厂,都大于100mg/L。污秽物中的Na+和K+含量基本相等,其中以火电厂和炼钢厂

超高压输电线路绝缘子的可靠性评价(通用版)

超高压输电线路绝缘子的可靠性评价(通用版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0123

超高压输电线路绝缘子的可靠性评价(通 用版) 摘要:文章提出和论述了评价超高压(EHV)输电线路绝缘子可靠性的五项准则:寿命周期、失效率、失效检出率、事故率和可靠性试验。并由此得出结论:为提高EHV输电线路的可靠性,应优先采用玻璃绝缘子,集中力量研制复合绝缘子,加大改造力度以提高瓷绝缘子的制造水平。 关键词:超高压输电绝缘子可靠性评价 线路绝缘子性能的优劣直接影响到输电线路,特别是超高压(EHV)输电线路运行的可靠性和经济性。因此,如何评价EHV输电绝缘子的可靠性,已成为电力部门和绝缘子制造部门尤为关注的问题。 在架空输电线路上现在使用的有三种材料绝缘子——瓷绝缘子、玻璃绝缘子和有机复合绝缘子。我国目前的生产现状是以生产

和使用瓷绝缘子为主,玻璃绝缘子国内生产能力只占国内绝缘子总需求量的20%;我国复合绝缘子的研制起步较晚,由于近年来国内外在此技术上的进展较快,生产和使用量已呈上升态势。 1对绝缘子可靠性评价的五项准则 运行的可靠性是决定绝缘子生命力的关键。最好的评价应是大量绝缘子在输电线路上长期运行的统计结果和可靠性试验所反映出来的性能水平。因此,评价绝缘子应遵循下述准则: (1)寿命周期 产品在标准规定的使用条件下,能够保持其性能不低于出厂标准的最低使用年限为“寿命周期”。此项指标不仅反映绝缘子的安全使用期,也能反映输电线路投资的经济性。我国曾先后多次对运行5~30年的玻璃和瓷绝缘子进行机电性能跟踪对比试验。结果表明:玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘件[1]。玻璃绝缘子的寿命周期可达40年,而瓷绝缘子除全面采用国外先进制造技术后有可能较大幅度地延长其寿命周期外,其平均寿命周期仅为15~25年;复合绝缘子经历了“三代”的发展,

输电线路绝缘子选择与计算

1 绝缘子选型 绝缘子材质 我国主要生产的绝缘子主要有盘形瓷绝缘子、盘形玻璃绝缘子及复合绝缘子 各类绝缘子特性 绝缘子的性能比较 表1-1 不同类型线路绝缘子的性能比较 3 污区划分

沿线污秽调查 走廊沿线污源分布情况 本次对待建1000kV特高压中线工程线路走廊沿线进行了污染情况调查。湖北省境内绝大部分地区为自然污秽,包括生活污染、公路扬尘、农村施用农药、化肥以及烧山积肥的灰尘;工业污秽主要集中在宜城市板桥镇,分布有石灰厂、水泥厂、采石场等重点污源。河南省境内线路附近分布较多乡镇,主要的自然污秽来自居民区的生活污染和农田施用的化肥等,线路跨越铁路、高速公路、土路若干,加上风沙扬尘等也会对线路造成一定的污染;工业污源主要有采石场、石灰厂、水泥厂、铝铁厂、炼钢厂、火电厂等。山西省境内沿线分布储煤厂、炼焦厂、炼铁厂、火电厂、砖厂等,小型煤矿区和炼铁高炉更是星罗棋布,大气污染十分严重。另外1000kV特高压中线工程线路平行或跨越的500kV线路有:斗樊线、双玉Ⅰ、Ⅱ回、樊白Ⅰ、Ⅱ回、姚白线、白郑线、牡嵩线、沁获线、榆临线;跨越铁路七条、已建成高速公路六条、国道和省道若干。 (1) 化工污秽 该线路走廊附近的化工污源主要集中在河南省和山西省,主要有沁阳市碳素有限公司(1500万kg/a)、孟县化肥厂(6000万kg/a)、偃师市山化县化工厂、南阳石蜡精细化工厂(12000万kg/a)、南阳市金马石化有限公司(600万kg/a)、长治化工有限公司、钟祥市华毅化工有限公司(18000万kg/a)等。另外晋城市规划中的野川、马村化工园区,工厂十分集中,规模现在大约为30000万kg/a,随着发展,其规模将进一步扩大。 (2) 冶金污秽 冶金污秽主要包括铝厂、炼铁厂、炼钢厂等。根据调研情况,主要

相关主题
文本预览
相关文档 最新文档