当前位置:文档之家› ±1100kV直流换流变压器

±1100kV直流换流变压器

±1100kV直流换流变压器
±1100kV直流换流变压器

±1100kV直流换流变压器

一、产品简介

±1100kV特高压直流输电技术是一个全新的电压等级,也是目前世界输电技术的最高点,而且新疆电网已经以750kV交流电压等级和西北电网联网,若实现交直流并行输电,网侧电压将采用750kV,阀侧电压将达到±1100kV。此产品将依托国家电网公司准东送出±1100 kV

特高压直流输电工程开发研制。

±1100kV直流系统拟采用每极双十二脉动换流器“550kV+550kV”串联的接线方案,如图1所示。额定直流电流:4750A。考虑投入备用冷却设备后、在当地最高环境温度下,直流系统的最大电流达到5000A。主回路考虑直流系统双极运行方式,1100kV直流额定输送功率

10450MW。

图1 “550kV+550kV”换流器接线方案

换流变压器电气接线与每个12 脉动阀组相连的有6台换流变压器,图1中的“换流变HY”和“换流变LY”各3台,换流变压器的阀

侧绕组采用星形连接,“换流变HD”和“换流变LD”各3台,阀侧绕组采用三角形连接。从高压端到低压端换流变压器阀侧绕组连接方式依次为星形接线-三角形接线-星形接线-三角形接线。

二、技术介绍

(一)产品技术特点

1、节能、环保、高效。

目前,我国电力电压等级最高的直流输电项目为±800kV特高压直流输变电工程,但新疆能源基地距离中东部用电负荷中心超过2400公里,若采用±800kV特高压直流输电技术,电力外送损耗可能超过10%,因此,±1100kV直流输电技术,是我国实现远距离大容量输电的重大战略举措,更加节能、环保、高效。

2、传输容量大,建设成本降低。

±1100kV直流输电与±800kV直流输电、两个±500kV直流输电比较:

1)输送容量大幅提升。

2)占地面积小。

3)输电线路造价低, 输电用电缆与±800kV相近,比±800kV总体输送容量高,比两个±500kV输电线路造价少一半。

3、结构环保

±1100kV直流换流变压器产品采用全密封结构,变压器油无渗漏的特点,对环境无污染,符合国家环保政策的要求。

(二)技术难点及解决方案

1、±1100kV换流变压器运输

±1100kV换流变按两种运输方式考虑:

1) 线圈等组部件分散运输到现场,在换流站附件建设组装厂房,现场组装换流变压器。

2)“水路+公路”运输方式,长度13.0m、宽度5.2m、高度5.2m、最大运输重量480吨。

由于电压等级和容量的双重提升,运输已经成为首要解决的大问题。经初步计算,无论铁心采用两柱还是三柱,都无法整体运输,需考虑解体运输。这将会带来现场搭建临时厂房、设干燥炉、以及现场组装、现场试验等一系列问题。

2、绝缘问题

绝缘问题存在两大难点。阀侧电压±1100kV换流变压器主绝缘结构和网侧电压750kV端部出线结构以及±1100 kV阀侧出线绝缘。

±1100kV换流变压器除了要经受住长期工作电压、短时感应试验电压(ACSD)、长时感应试验电压(ACLD)、长时交流外施耐压、操作冲击试验、雷电冲击试验等的考验外,还要经受直流两小时的直流耐压和近四小时的极性反转试验。线圈间和端部绝缘结构的可靠性设计非常关键,利用电场分析程序计算在各种绝缘试验情况下的各油隙、绝缘纸板及电极表面场强,我们将通过合理选择主、纵绝缘裕度,布置角环位置、数目及选择合适的角环圆角值来保证其绝缘可靠性,全面分析沿电力线各油隙的电场分布以及沿绝缘纸板的爬电强度,通过优化绝缘结构消除整个绝缘系统中的薄弱环节。

3、试验装备及能力

目前试验大厅的接地系统和屏蔽系统按照±1100 kV换流变压器的水平进行设计和建设,由于±1100 kV换流变压器阀侧电压较高,当时对试验系统在原有的基础上进行了全面的升级建设。其主要设备的相关技术参数全部是特变电工自行提出与制造厂家共同研制和制造的,这些设备的电压等级多为国内或世界同行电压等级最高的。进行±1100 kV换流变压器的试验,还需对试验大厅和试验系统进行全面的升级。

(三)行业技术水平

对于±500kV换流变压器,国内外制造技术成熟,如中国南方电网公司的贵广一回、贵广二回,中国国家电网公司的三常项目、呼辽项目、德宝项目等。

对于±800kV级换流变压器, 世界范围内只有中国应用。已经运行的三条线路为中国南方电网公司的云广直流输电工程、中国国家电网公司的向上直流输电工程、锦屏直流输电工程,正在建设的中国南方电网公司的糯扎渡直流输电工程、中国国家电网公司的哈密直流输电工程、溪洛渡直流工程等。以上产品的国外生产厂家主要有德国Siemens、瑞典ABB,国内生产厂家有特变电工股份有限公司、西电西变、保定天威保变公司等。

而对于±1100kV级换流变压器无论是在国外还是在国内,都是第一次制造,缺乏成熟的经验。必须解决一系列关键问题:高电压绝缘及局放问题;750kV网侧中性点有载开关问题;试验技术等。还要考虑换流变压器的漏磁通、谐波及温升的控制;直流偏磁及噪声控制;抗短路性能和机械强度以及运输问题。对于以上问题,高电压绝缘以及运输问题尤其具有挑战性。特变电工将不遗余力地开发研制。

三、社会效益

1、该项目将成为我国及世界特高压直流电网建设的最高电压等级项目,将大力推动特高压直流项目的国产化进程,成为未来特高压直流输电工程用电力设备设计制造的领先水平。

2、为国家实施“西电东送”、“南北互供”、“全国联网”、“疆电外送”能源优化配置战略提供国产装备保障。

3、该项目的研究成果及±1100kV换流变压器成功开发将为建设全国性输电网络提供有力保障,实现更大范围的资源优化配置,极大地缓解中国目前的能源输送压力,保障国民经济持续、稳定发展。进一步提升国际竞争力,将为我国电网和装备制造业带来巨大的经济效益。

换流变压器与交流系统的主变压器比较

换流变压器与交流系统的主变压器比较 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1>包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在较优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1 换流变压器的特点以及对保护带来的影响

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n 1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

直流输电换流变压器基础知识

第一章换流变结构 一、换流变概述 通常,我们把用于直流输电的主变压器称为换流变压器。它在交流电网与直流线路之间起连接和协调作用,将电能由交流系统传输到直流系统或由直流系统传输到交流系统。换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中换流、逆变两端接口的核心设备。 直流输电系统的接线方式有多种,目前常见的接线方式如图1-1所示。 图1-1 两个六脉冲换流桥构成一个单极十二脉动接线,这两个六脉冲换流桥分别由Yy与Yd联结的换流变压器供电。两个单极叠加在一起构成一个双极。每极所用的换流变压器可以由下述方式实现,两台三相双绕组变压器(一个Yy联结,一个Yd联结)或三台单相三绕

组变压器(一个网侧绕组和两个阀侧绕组,一个Y接,一个D接)或六台单相双绕组变压器(三个Yy 单相,三个Yd单相)。由建设规模的大小及直流电压等级可以确定换流变压器的大致型式。选择不同的型式主要受运输尺寸的限制,其次是考虑备用变容量的大小,当然,备用变容量越小越经济。 当直流输送容量较大时可采用每级两组基本换流单元的接线方式,此种接线方式有串联和并联两种方式。如目前在建的±800kv项目即采用了串联方式,其基本接线原理见图2。 800(HY) 600(HD) 400(L Y) 200(LD) 图1-2

图1-3 单相双绕组换流变压器外形 图1-4 单相三绕组换流变压器外形

图1-5 云广±800kV项目高端(800kV)换流变压器外形 二、绕组的常见类型 换流变中的绕组按照其连接的系统不同,通常可分为连接交流系统的网绕组及调压绕组;连接换流阀的阀绕组。绕组的排列方式通常有以下两种:铁心柱→阀绕组→网绕组→调压绕组;铁心柱→调压绕组→网绕组→阀绕组。 1.网绕组 目前,我公司的网绕组主要采用轴向纠结加连续式结构。与传统的纠结或内屏连续式不同,轴向纠结采用特殊的阶梯导线绕制n个双饼构成n/2个纠结单元。纠结绕制和换位示意见下图。

特高压换流变压器现场局部放电试验技术分析 田丰

特高压换流变压器现场局部放电试验技术分析田丰 发表时间:2018-06-25T16:23:05.960Z 来源:《电力设备》2018年第4期作者:田丰 [导读] 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。 (保定天威保变电气股份有限公司河北保定 071056) 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。本文针对这个问题分析了特高压换流变压器现场ACLD试验、特高压换流变压器现场局部放电检测干扰源及抗干扰措施,以期望对特高压换流变压器现场局部放电试验提供借鉴和参考。 关键词:特高压;换流变压器;局部放电试验 1 引言 直流输电系统中的重要设备是特高压换流变压器,特高压换流变压器的运行状态直接对整个系统的安全性产生影响,换流变压器的安全运行状态主要取决于换流变压器本身的绝缘性能。通过现场的长时交流感应耐压试验可以对换流变压器本身的运输和绝缘缺陷进行检测,例如可以检测气泡、杂质和悬浮电位的放电缺陷等,这些项目的检测对换流变压器的安全运行是非常重要的。 2 特高压换流变压器现场ACLD试验分析 在进行特高压换流变压器现场ACLD试验的时候要对现场的干扰因素进行充分的考虑,因为试验现场电压高、环境复杂,某种程度来说现场的干扰因素是决定试验成功与否的重要条件。特高压换流变压器现场ACLD试验局部放电测试中要对干扰信号进行充分识别,对干扰信号的传播途径进行研究并制定出抑制干扰进行的策略。 本文主要根据±800kv换流变压器现场ACLD试验局部放电检测干扰信号进行研究,并根据试验中出现的情况制定出相应的抗干扰措施。±800kv直流输电工程主要包括HY和HD两个换流现场,是ACLD试验中的重要试验场地,其中HY换流变从阀侧加压。现场ACLD试验可以在很大程度上避免出现现场拆装的施工过程,不仅规避了风险同时节约了工程费用。本文中的实验采用的是JFD-4000局部放电系统进行多端测量。 3 特高压换流变压器现场局部放电检测干扰源及抗干扰措施分析 3.1 空间电磁波干扰分析 电力系统中的载波通信、高频保护信号和无线电广播等空间电磁波会产生高频正弦波对正常的波形产生干扰,这些干扰波往往具有固定的谐振频率和频带宽度,此次试验通过对局部放电检测仪设置软硬件滤波系统控制空间电磁波的干扰。软件内部设置的FIR可以通过滤波器和减法器等实现自动滤波的功能,硬件上设置的高通滤波器低通滤波档位可以实现滤波的功能。现场测量时需要根据局部放实来对系统的灵敏度和背景噪声进行测量,从而系统就可以选择合适的低频和高频滤波档位,来对测量中的干扰信号进行避开。这个过程不适宜选择宽度小的测量频带,因为过窄的测量频带对有效放电信号可以产生一定的忽略,因此在选择局部放电检测仪测量带的宽度时候一般不得小于100kHz。 通过这个过程将数据采集系统采集到具有局部放电信号和周期性干扰信号的输入列输入一系列的多通带FIR滤波器,最后输出的就是具有周期性的干扰信号,然后再使用减法器对干扰信号与输入列进行相减,从而是系统可以最大限度地避免干扰频率,最终输出局部放电信号。 3.2 电晕干扰分析 试验中的回路如果处于高电位的导电部分就会产生电晕放电现象,例如试验中使用的法兰、金属盖帽、试验变压器和耦合电容器的端部都是特别容易产生电晕的部分。另外,如果试验回路中如果有地方的连接处接触不良地方也是特别容易产生电晕的部分。电晕干扰的特点是会随着试验电压的升高而增大的,在局部放电检测中电晕干扰是非常明显的。 对高压端电晕放电的抑制的最好方法是选用合适的屏蔽环、罩、球等。检查所有的连接部位,从而保证连接处的接触良好从此来消除系统中的接触放电的现象发生。在选用屏蔽罩的时候要检验屏蔽罩的上部是否为半球形、下部是否为单环形。屏蔽双环必须由两个圆形的单环组成,并且屏蔽罩和屏蔽双环表面的最大强度不得大于1.5MV/m。屏蔽罩场的计算可以通过相应的公式来计算。 采用的高压导线和连接线按防晕设计中导线和连接的直径必须足够大,从而保证表面的最大场强不得大于1.5MV/m,这里场强可以采用原著对平板电机的场强计算公式来计算。 3.3 脉冲型干扰分析 脉冲型干扰在时域上是持续时间较短的脉冲信号,在频域上则是频率成分的款待信号,因而脉冲型干扰具有局部放电信号的大部分特征。因而在进行局部放电试验中,高频脉冲型干扰的波形和频率特征与放电脉冲极为相似,甚至在一般状态下很难区分,唯有使用三维图谱观察才能比较明显地对脉冲型干扰进行区分。高频脉冲型干扰大致可以分为三类:固定相位的脉冲干扰;与电压相位有时间相关规律的干扰;随机出现的干扰脉冲。脉冲型干扰在时域上呈离散型,针对这一特性应该采用时域开窗法来进行抑制,时域开窗也有硬件和软件之分,硬件方法主要有差动平衡阀和脉冲鉴别法。两者都是利用两个测量点之间的脉冲差来对外部干扰进行抑制。但是在实际应用中,由于进入两脉冲的脉冲干扰的来源和途径具有差异性,因而脉冲干扰在相位和幅值上的差别也是非常大的,因而采用的单一的方法是无法对所有脉冲干扰进行抑制的,可以采用超声波来进行识别提高识别的精确性。 随机干扰出现的相位、次数和量值具有很大的不确定性,并且非常容易出现相位错乱与局部放电相混合的现象,但是这种脉冲具有一个特点就是次数和零值与相位相当。在检测的时候直接对相位进行检测就可以起到很好的检测效果。 3.4 检测阻抗引起的干扰分析 在对换流变压器现场局部放电进行试验的过程中由于施加在变压器套管上的电压会很高,如果流经局部放电检测的阻抗电流较小就容易产生超过其本身的电流,在这种情况下就会引起检测阻抗的磁饱和,因此在测量电压时要检测阻抗内的磁饱和会产生谐波的影响。相关的试验证明这种谐波的幅值与所选用的检测阻抗的通流强度有关,如果系统选用的检测阻抗具有较大的调节上限,那么系统中能够通过的电流能力就强,产生谐波的可能性就越小。如果局部放电检测回路的灵敏可测性降低,那么检测就必须根据局部放电试验的具体情况来做相应的调整。 现场试验的时候应该根据试验回路的等效调节电容来选用测量阻抗,从而对局部放电信号进行排除,可以提高系统的抗干扰水平。如果测量回路的相关系数一经确定,测量回路的谐振电容就可以通过相应的公式来计算。根据所计算出来的电容公式来对系统的电感和电流

换流变压器教学教材

换流变压器

精品文档 一、换流变压器 1、定义: 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。 2、换流变压器在直流输电系统中的作用: (1)、传送电力;(2)、把交流系统电压变换到换流器所需的换相电压;(3)、利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;(4)、将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;(5)、换流变压器的漏抗可起到限制故障电流的作用;(6)、对沿着交流线路侵入到换流站的雷电冲击过电压波起缓冲抑制的作用。 3、换流变压器的特点及要求: (1)漏抗 以往由于晶闸管的额定电流和过负荷能力有限,为了限制阀臂短路和直流母线短路的故障电流,换流变压器的漏抗一般比普通电力变压器的大,一般为15-20%, 有些工程甚至超过20%。随着晶闸管的额定电流及其承受浪涌电流能力的提高,换流变压器的漏抗可按对应的容量和绝缘水平合理选择,阻抗相应降低,通常为12-18%,因此,设备主参数、绝缘水平、换流器无功消耗及能耗等都可相应降低,同时,换流器的运行性能也有所改进。 为减少非特征谐波,换流变压器的三相漏抗平衡度要求比普通电力变压器高,通常漏抗公差不大于2%。如果运输条件允许,工程多采用单相三绕组换流变压器结构,进一步减少十二脉动换流单元中换流变压器六个阻抗值的差别。(2)绝缘 换流变压器阀侧绕组和套管是在交流和直流电压共同作用之下工作的,由于油、纸两种绝缘材质的电导系数与介电系数之比差别很大,油纸复合绝缘中直流场强按电导系数分布,交流场强则按介电系数分布。当直流电压极性迅速变化时,会使油隙绝缘受到很大的电应力。在套管与底座的连接部分,由于绝缘结构复杂,这一问题最为严重。越接近直流两极的阀侧绕组对地电压越高,在设计时必然增大绕组端部与铁芯轭部的距离,使绕组端部的辐向漏磁和局部损耗增加,因谐波漏磁而引起的损耗则增加更多。作为阀侧绕组外绝缘的套管,其爬电距离要考虑到直流电压的分量,为了避免雨天时在直流电压作用下,由于不均匀湿闪而造成的闪络故障,一般阀侧套管均伸入阀厅。干式合成套管已得到实际应用。为了抗震,套管法兰盘处一般装有振动阻尼装置。(3)谐波 换流变压器漏磁的谐波分量会使变压器的杂散损耗增大,有时可能使某些金属部件和油箱产生局部过热现象。在有较强漏磁通过的部件要用非磁性材料或采用磁屏蔽措施。谐波磁通所引起的磁致伸缩噪声处于听觉较为灵敏的频带,必要时要采取更有效的隔音措施。(4)直流偏磁 换流器触发时刻的间隔不等,交流母线正序二次谐波电压和与直流线路并行的交流线路的感应作用等将在换流变压器阀侧绕组电流中产生直流分量;接地极入地电流引起的地电位变化会在交流侧绕组电流中产生直流分量,二者共 收集于网络,如有侵权请联系管理员删除

±1100kV直流换流变压器

±1100kV直流换流变压器 一、产品简介 ±1100kV特高压直流输电技术是一个全新的电压等级,也是目前世界输电技术的最高点,而且新疆电网已经以750kV交流电压等级和西北电网联网,若实现交直流并行输电,网侧电压将采用750kV,阀侧电压将达到±1100kV。此产品将依托国家电网公司准东送出±1100 kV 特高压直流输电工程开发研制。 ±1100kV直流系统拟采用每极双十二脉动换流器“550kV+550kV”串联的接线方案,如图1所示。额定直流电流:4750A。考虑投入备用冷却设备后、在当地最高环境温度下,直流系统的最大电流达到5000A。主回路考虑直流系统双极运行方式,1100kV直流额定输送功率 10450MW。 图1 “550kV+550kV”换流器接线方案 换流变压器电气接线与每个12 脉动阀组相连的有6台换流变压器,图1中的“换流变HY”和“换流变LY”各3台,换流变压器的阀

侧绕组采用星形连接,“换流变HD”和“换流变LD”各3台,阀侧绕组采用三角形连接。从高压端到低压端换流变压器阀侧绕组连接方式依次为星形接线-三角形接线-星形接线-三角形接线。 二、技术介绍 (一)产品技术特点 1、节能、环保、高效。 目前,我国电力电压等级最高的直流输电项目为±800kV特高压直流输变电工程,但新疆能源基地距离中东部用电负荷中心超过2400公里,若采用±800kV特高压直流输电技术,电力外送损耗可能超过10%,因此,±1100kV直流输电技术,是我国实现远距离大容量输电的重大战略举措,更加节能、环保、高效。 2、传输容量大,建设成本降低。 ±1100kV直流输电与±800kV直流输电、两个±500kV直流输电比较: 1)输送容量大幅提升。 2)占地面积小。 3)输电线路造价低, 输电用电缆与±800kV相近,比±800kV总体输送容量高,比两个±500kV输电线路造价少一半。 3、结构环保 ±1100kV直流换流变压器产品采用全密封结构,变压器油无渗漏的特点,对环境无污染,符合国家环保政策的要求。 (二)技术难点及解决方案 1、±1100kV换流变压器运输 ±1100kV换流变按两种运输方式考虑: 1) 线圈等组部件分散运输到现场,在换流站附件建设组装厂房,现场组装换流变压器。 2)“水路+公路”运输方式,长度13.0m、宽度5.2m、高度5.2m、最大运输重量480吨。

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

4731.±800kV特高压换流站换流变高压电气试验

±800kV特高压换流站换流变高压电气试验 摘要:本文详细介绍了±800kV特高压换流站中换流变的高压电气试验。 关键词:±800kV特高压换流站、换流变、高压电气试验 1引言 向家坝—上海±800kV特高压直流示范工程是“十一五”国家电网规划建设的金沙江一期送电华东直流输电工程,工程的建设符合国家能源战略,是进一步落实国家“西部大开发”战略,实现国家电网西电东送总体规划目标,促进资源优化配置的一项重要举措。也是“十一五”期间扩大川电外送规模,满足华东、华中用电需要的一项工程。向家坝-上海特高压直流示范工程是世界直流输电发展史上的里程碑工程,也是我国特高压输电技术的开创性工程。 ±800kV奉贤换流站工程换流部分采用双极、每极两个十二脉动换流器串联接线,电压配置为“400kV+400kV”,双极共安装24台工作换流变(4个换流器单元,每极高、低端各1组),4台备用换流变(每极高、低端各备用1台),共28台。每极安装Yo-Y-12接线及Yo- -11接线的换流变各2组,每组换流变均由3台容量为297.1MVA的单相油浸式双绕组换流变压器组成,换流变压器采用BOX-IN的封闭安装形式,阀侧套管直接插入阀厅。 2换流变主要高压电气试验项目及方法 2.1 绕组连同套管的直流电阻测量 2.1.1 试验仪器:变压器直流电阻测试仪,测试电流40A。 2.1.2 试验接线: 2.1.3 试验步骤: 被测绕组 a. 检查试验接线。 变压器直流电阻测试仪 测试直流电阻接线图

b. 测量高压绕组在各分接位置的直流电阻。 c. 测量低压绕组直流电阻。 d. 记录数据同时记录变压器的上层油温。 2.1.4 数据分析: a. 相间的最大不平衡率小于2%。 b. 换算到同一温度下,与出厂值比较相应变化小于2%。 c. 最大不平衡率计算公式:(%)=(Rmax-Rmin)/Rave。 d. 温度换算公式:R1=(235+t1)R2/(235+t2) 2.1.5 安全注意事项: a. 测试导线应有足够的截面; b. 测量过程中不得操作变压器的分接开关; c. 测量时应认真记录绕组温度; d. 更换试验接线时,一定要先断开试验电源; e. 变压器本体及高、低压侧出线上禁止有人工作。 2.2 检查所有分接头的电压比 2.2.1 试验仪器:数字式变压器变比测试仪。 2.2.2 试验接线: 将变压器高低压绕组对应接入变比电桥的相应接线端子。 2.2.3 试验步骤: a. 检查试验接线。 b. 按变比测试仪的使用说明书正确操作。 c. 测量各分接位置的变比误差。 2.2.4 数据分析: 实测变比与制造厂铭牌数据相比无明显差别,且应符合电压比的规律;电压比的允许误差在额定分接头位置时为±5% 。 2.2.5 安全注意事项: a. 变压器高、低压侧测试线不能接反; b. 变压器变比测试仪应接地; c. 更换试验接线时,一定要先断开试验电源;

特高压直流输电换流阀短路保护原理及特性研究

特高压直流输电换流阀短路保护原理及特性研究 摘要:随着特高压直流输电(UHVDC)技术的发展,直流输电已经成为了远距离大 容量输电的主要模式,直流输电已得到了越来越广泛的应用。在大电网时代,直 流输电不仅成为交流输电的一种有力补充,而且成为了电力系统中最具有重要经 济和技术意义的环节之一,成为了国内电力科研工作者研究的重要方向。换流器 是高压直流输电系统中最为关键、复杂且昂贵的元件,其故障形式和机理、保护 配置和原理与交流系统有着很大的不同。 关键词:特高压;直流输电;换流阀;短路保护;原理;分析 1导言 特高压直流输电系统以其更远的输送距离,更大的输送功率,更大区域的非 同步互联,更低的功率损耗,灵活的功率调节,更低的线路造价等优势而被越来 越多的应用在电力传输领域。特高压直流输电换流阀的本体,作为关键设备,其 运行稳定性、安全性、可靠性是通过设计、制造、安装、调试的全过程质量控制 才能得以实现的。特高压直流输电换流阀的安装过程,是换流阀从图纸和零部件 完成到实体阀的最后关键阶段,需要对整个安装过程中影响特高压换流阀性能的 关键节点进行合理控制,才能彻底保证特高压换流阀的优良品质,实现更好的长 期稳定运行。 2阀短路保护(VSCP)检测原理 为了保护换流阀免受由于换流变压器压器直流侧短路造成的过应力破坏,特 高压直流输电系统中均设置了阀短路保护;该保护主要通过测量换流变压器压器阀侧电流(IVY,IVD)和直流极母线电流(IDC1/2P)和中性线电流(IDC1/2N),并计算出最大的换流变压器压器电流和最大的直流电流,正常运行时这2个值是平衡的。当 换流变压器压器阀侧电流幅值高于直流电流则可作为阀短路或其他相间短路的判据,在交流侧电流过大时,换流器被立即跳闸。 3特高压直流输电换流阀 特高压直流输电工程通常采用双极十二脉动换流器单元系统,电压等级在 ±800kV及以上,电流可以从4000A到最高6250A。该特高压双极直流输电系统包括2个完整的可独立输电的单极直流系统,即极1直流系统和极2直流系统。每 个完整的单极系统包含2个单极换流器单元,分别安装在整流换流站和逆变换流站。每个换流站内的单极换流器单元由2个12脉动阀组串联组成。一个阀厅仅 包含一个12脉动阀组。因此每个换流站共分四个独立阀厅,即极1高压阀厅、 极1低压阀厅、极2高压阀厅、极2低压阀厅。锡盟站换流阀设备由西安西电电 力系统有限公司自主制造,换流阀采用空气绝缘、水冷却的户内悬吊式双重阀结构。每个阀厅换流阀阀组由6个双重阀阀塔组成。根据电流流向不同,双重阀阀 塔分为2种结构,即电流上结构和电流下结构。阀侧星形接法的3相双重阀阀塔 是其中一种结构,阀侧三角形接法的3相双重阀阀塔是另一种结构。每个阀厅换 流阀阀组通过冷却水管、管母金具、光纤分别与换流阀冷却系统、换流变压器、 换流阀控制单元对应连接。在换流阀整体设计中,综合考虑了各种相关的复杂因素,如过电压与绝缘配合、阀电子电路单元抗电磁干扰、主回路电气件合理布局 和散热、换流阀的防火和抗震等要求、机械性能和电气性能要求、安装维护便捷 要求等,按特定装配工艺,将换流阀的各个组成部件通过标准化作业组装在一起,具有安装快捷,维护方便的特点,有效保证了换流阀和整个直流输电系统的稳定性、可靠性及安全性。

超高压直流系统中的换流变压器保护(新编版)

超高压直流系统中的换流变压器保护(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0608

超高压直流系统中的换流变压器保护(新 编版) 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

换流变压器与电力变压器的比较分析示范文本

换流变压器与电力变压器的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

换流变压器与电力变压器的比较分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 换流变压器是超高压直流输电工程中至关重要的关键 设备,是交、直流输电系统中的换流、逆变两端接口的核 心设备。它的投入和安全运行是工程取得发电效益的关键 和重要保证。换流变压器的关键作用,要求其具有高可靠 性和高技术性能。因为有交、直流电场、磁场的共同作 用,所以换流变压器的结构特殊、复杂,关键技术高难, 对制造环境和加工质量要求严格。开展换流变压器设计制 造关键技术的研究、攻克和制造条件改造工作,不断提高 试验手段,将有利于全面掌握换流变压器的设计制造技 术,实现换流变压器国产化,填补国内空白。同时可促进 国内交、直流输电设备设计制造水平的进一步提高和发

展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;?换流变压器的漏抗可起到限制故障电流的作用;?对沿着交流线路侵入到换流站的

±800kV换流变压器关键技术研究

±800kV换流变压器关键技术研究 可行性报告 一、项目提出的目的及意义 在世界范围内,随着电力工业飞速发展,电力负荷的急剧增长,大型能源基地的建设和输电规模的扩大,电力和电工行业技术水平的提高,推动了特高压输变电技术的发展。 我国一次能源与生产力分布不均衡的格局决定了西电东送、北煤南运的能源流向。水能资源集中于西部和西南部地区,可开发容量占全国的82.9%;煤炭资源集中于华北和西北部地区,占全国的80%。西部地区的经济总量占全国18%,电力消费占22%;中部和东部沿海地区经济总量占全国82%,电力消费占78%。我国经济和社会的快速发展以及用电需求的迅速增长,使得电力供应和煤炭运输日趋紧张,电网的输电压力越来越大,实现电力资源在较大范围优化配置的任务十分紧迫。 当前电网建设面临的困难是:电力消费、装机成倍增长;500kV网络框架已相当密集,短路电流问题十分突出;站址、输电走廊越来越紧张;当前的联网方式、联网规模、输送能力都难以满足大电源集中开发实现远距离大容量输送的要求,更高一级电压输电技术的应用迫在眉睫。特高压输电工程的建设可以节省输电通道、减少占地,降低送电损耗,增加送电容量。大力推进西电东送、南北互济,实现全国联网,建立国家级电力市场,实现更大范围的资源优化配置。 发展特高压已成为我国一项重大技术装备政策,我国现已积累了多项±500kV直流输电工程的设计、建设和运行经验。750kV交流输变电示范工程也正在建设中。急需在±800kV直流特高压输电技术上有所突

破。作为国内仅有两家掌握±500kV直流输电工程设计的企业,特变电工沈变公司应义不容辞承担起这一攻关任务,因此,公司根据国家电网建设的需要,积极开展了特高压直流±800kV换流变压器基础研究和项目攻关,通过项目实施,最终形成适合特高压输变电设备的专有技术,拥有自主知识产权。同时,利用这些技术研制出合格的产品,实现特高压输变电设备国产化,产品推向国内市场,降低电网建设成本,进一步提升我国输变电制造业的整体水平。因此,该项目提出目的和意义重大。 二、与项目相关的国内外发展概况及市场需求分析 1. 国外发展概况 当今世界,各个国家电网的规模都向越来越大的方向发展,大电网、长距离输电、供电早已成为国际趋势。苏联、日本、意大利和美国等曾先后建成交流特高压输电工程及试验工程。前苏联从上世纪70年代末开始1150千伏特高压工程的建设,研制了变压器、电抗器、断路器等全套敞开式特高压设备,先后建成特高压线路2462公里,其中两段共900公里长的输电线路及3个特高压变电站从1985起相继投入商业运行,累计全压运行5年时间。日本自1973年开始研究特高压输电技术,从1990年至今共建成426公里同塔双回特高压输电线路,同时成功研制了全套1000千伏气体绝缘全封闭组合电器,在新榛名试验站累计进行全压考核近5年,运行情况良好。总体上看,经过30多年的研发,特别是国际上几个特高压工程的建设,特高压设备通过了型式试验,并投入试验或商业运行,经受了实际运行考验或长时间带电考核,解决了特高压设备的关键技术问题。 一段时期以来,国内对特高压电网存在巨大争议的一个重要原因就是前苏联和日本的特高压电网并未进入大规模的商业运行甚至降压运行。针对质疑,国际大电网会议秘书长科瓦尔曾说过“日本和前苏联的

基于新型换流变压器的直流输电系统设计

基于新型换流变压器的直流输电系统设计 1 前言 换流变压器及滤波装置是直流输电系统中的重大技术装备。传统的换流变压器及滤波方案虽然广泛应用,但并不完善。传统滤波方案将滤波器安装于交流母线与换流变压器网侧绕组之间。这使得由换流器产生的谐波电流和无功电流均要通过变压器的网侧、阀侧绕组。这必然会在铁心和结构件中通过较强的谐波磁通,使得变压器绝缘强度加大,损耗增加,振动和噪声大。 针对上述问题,本文提出了一种新型换流变压器及其滤波系统,它是利用电磁感应原理在副边绕组间实现谐波磁势平衡的谐波抑制新方法,称之为感应滤波;分析了该滤波新方法的谐波抑制机理;在此基础上,对在建的新型直流输电系统平台的阀侧滤波器进行综合设计。 2 感应滤波的谐波抑制机理 现以图1所示中间引出抽头接单调谐滤波器的单相三绕组变压器为例,阐述利用变压器耦合绕组的安匝平衡作滤波机理的新型滤波方式。图中,1表示一次绕组,2表示二次延边绕组,3表示二次公共绕组,Ih 表示谐波电流源。箭头所示为谐波电流在变压器中的流通路径。 分析可知:在延边绕组2通过谐波电流影响下,公共绕组2和一次绕组1要感生相应的谐波电流,满足以下磁势平衡关系:W2Ih=W3Ih3+W1Ih1 (1) 式中:W1 一次绕组的匝数,W2 二次负载绕组的匝数,W3—二次滤波绕组的匝数。 如果延边绕组2 和公共绕组3 的安匝能保持平衡,则Ih1 =0,就不会在一次绕组感生谐波电流,从而使一次与谐波隔离开来,达到谐波屏蔽的目的。 由此可知,该种滤波方式的实现需要同时满足如下两个条件[3]: (1)图1 变压器二次绕组引出抽头接滤波器,目的是对谐波加以引流,为变压器耦合绕组2、3 的谐波安匝平衡作滤波方式提供前提。引流效果越好,利用耦合绕组的谐波屏蔽效果

浅谈国内换流变压器发展历程

浅谈国内换流变压器发展历程 1. 引言 众所周知,在直流输电系统中,换流变压器是最重要的设备之一,它不仅参与了换流器的交流电与直流电的相互变换,而且还承担着改变交流电压数值、抑制直流短路电流等作用。此外特高压换流变压器容量大,由其组成的换流站额定功率为5200~6400MW,额定电流为3250~4000A。换流变压器的额定电压分为±800kV、±600kV、±400kV、±200kV 四档,型式为单相、双绕组、油浸式,设备复杂,投资昂贵,单台平均突破4000万元。西门子公司提供向上线的±800kV换流变压器单台售价高达1亿元。因此,换流变压器的可靠性、可用率以及投资对整个直流输电系统起着关键性的影响。 2. 发展历程 2.1 三峡工程 我国换流变压器的研制与生产始于20世纪70年代末。当时,西安西电变压器厂(以下简称西变)为我国第一条自行设计的舟山直流输电线路成功地提供了±100kV换流变压器。80年代,西变结合葛上±500kV直流输电工程,引进了ABB公司的HVDC换流变压器的设计制造技术,在此基础上,西变承接了该工程使用的换流变压器全部设计和制造任务。 我国掌握换流变压器设计制造技术应该归功于三峡工程的建设。三峡工程开建前,我国并不具备三峡直流工程换流变压器的设计制造能力。为使国家重大装备制造的核心技术不再受制于别人,三峡建委决定三峡直流工程设备实行国际采购,并制定了“技贸结合、技术引进、联合设计、合作制造”的技术路线,运用国际招标的方式引进关键技术后消化吸收再创新,逐步实现我国换流变压器的国产化,同时选择我国最具优势的沈阳变压器厂和西安变压器厂作为引进技术的受让方。 西变合作生产三常线送端龙泉换流站±500kV单相双绕组、容量297.5MVA、电压比(525/3)/(210.4/3)kV的换流变压器(其中Y/Y联结和Y/D联结各一台);沈变合作生产三常线政平换流站±500kV单相双绕组、容量283.7MVA、电压比(500/3×1.25%)/(200.4/3)kV的换

换流变压器

中国 西电集团
西安西电变压器有限责任公司
换流变压器讲座及青藏工程介绍
西安西电变压器有限责任公司
1

中国 西电集团
西安西电变压器有限责任公司
换流变压器
一、什么是换流变压器(功能与特点 )
换流变压器是与换流阀一起实现交流电网与直流电网连接 及交流电与直流电之间的相互变换的变压器。 高压直流输电系统一般都采用每极一组12脉动换流器结构 ,所以换流变压器还为两个串联的6脉动换流变压器之间提供 30°的相角差,从而形成12脉动换流变压器结构。换流变压器 的阻抗限制了阀臂短路和直流母线上短路的故障电流,使换流 阀免遭损坏。
2

中国 西电集团
西安西电变压器有限责任公司
二、换流变压器与普通电力变的异同
换流变压器与普通的电力变压器在工作原理和基本结构上 是相同的。 由于换流变压器(阀侧绕组)在整流回路的电气连接位置 及换流变压器的负载特性是与普通的电力变压器不同,使得换 流变压器在绝缘结构、电磁回路的设计上比普通的电力变压器 更复杂,如直流电压、极性反转电压、谐波电流、直流偏磁、 有载调压等问题。当然,在产品生产和验收中要增加与之相对 应的验证试验。
3

中国 西电集团
西安西电变压器有限责任公司
换流变压器与普通电力变的异同
普通电力变压器 工作原理 相同点 基本结构 在系统的电 气连接(阀 侧绕组) 负载特性 电磁感应原理
换流变压器 电磁感应原理
铁心、线圈、器身(主绝 铁心、线圈、器身(主绝缘) 缘)、引线、冷却和和控制 、引线、冷却和和控制保护系 保护系统 统 绝缘结构 主要考虑交流电压(工频电 除考虑交流电压还要考虑直流 压、雷电和操作过电压) 电压(包括极性反转电压) 非正弦波电流(含谐波电流)
不同点
电、磁回路 正弦波电流
4

超高压直流系统中的换流变压器保护

安全管理编号:LX-FS-A17585 超高压直流系统中的换流变压器保 护 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

超高压直流系统中的换流变压器保 护 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。

换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。

换流变压器与电力变压器的比较分析标准版本

文件编号:RHD-QB-K5575 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换流变压器与电力变压器的比较分析标准版本

换流变压器与电力变压器的比较分 析标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中的换流、逆变两端接口的核心设备。它的投入和安全运行是工程取得发电效益的关键和重要保证。换流变压器的关键作用,要求其具有高可靠性和高技术性能。因为有交、直流电场、磁场的共同作用,所以换流变压器的结构特殊、复杂,关键技术高难,对制造环境和加工质量要求严格。开展换流变压器设计制造关键技术的研究、攻克和制造条件改造工作,不断提高试验手段,将有利于全面掌握换流变压器的设计制造技术,实现换流

变压器国产化,填补国内空白。同时可促进国内交、直流输电设备设计制造水平的进一步提高和发展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔

高压直流输电中谐波对换流变压器差动保护的影响_乔小敏

第37卷第10期电力系统保护与控制Vol.37 No.10 2009年5月16日 Power System Protection and Control May 16,2009 高压直流输电中谐波对换流变压器差动保护的影响 乔小敏,王增平,文俊 (华北电力大学电气与电子工程学院,北京102206) 摘要:由于高压直流输电系统特有的优点,使高压直流输电系统得到越来越广泛的应用。但高压直流输电系统具有其本身的特点,使得换流变压器与普通电力变压器在构造上有一些不同,高压直流输电系统中换流器是非线性元件,产生大量谐波,谐波对换流变压器保护动作有影响,再加上直流控制系统对故障的控制和调节作用,导致换流变压器和传统电力变压器保护存在差异。基于PSCAD/EMTDC仿真程序研究了CIGRE直流输电标准测试系统在正常运行,换流变压器内部故障和整流侧换流阀短路典型故障情况下的特点。并用Matlab分析了各种情况下的数据,并得出换流变压器差流中谐波的特点及对换流变压器差动保护的影响。 关键词: 高压直流输电; 换流变压器; 差动保护; PSCAD/EMTDC仿真; Matlab Influence of converter transformer differential protection by harmonic in HVDC transmission system QIAO Xiao-min,WANG Zeng-ping,WEN Jun (North China Electric Power University,Beijing 102206,China) Abstract: As the special merits of HVDC system, it becomes more and more popular.In HVDC system the valve is non-linear component and brings out a lot of harmonic,which affects the protection of the converter transformer. The converter transformer has something different with power transformer in structure,in addition,the control and adjust action to fault from the direct current control systems,which makes the protection exist differences between the converter transformer and the power transformer.This paper researches different typical conditions of the CIGRE HVDC standard test system based on PSCAD/EMTDC simulator, which includes good running, internal fault of the converter transformer and valve fault at rectifier.Finally,it analyzes the data of different conditions and draws the conclusion of the differential current harmonic traits and the converter transformer differential protection influenced by harmonic. Key words: HVDC transmission system; converter transformer; differential protection; PSCAD/EMTDC ; Matlab 中图分类号: TM77 文献标识码:A 文章编号: 1674-3415(2009)10-0111-04 0 引言 高压直流输电由于其特有的优点,得到了越来越广泛的应用。这些优点包括:不须考虑稳定性问题;线路故障恢复能力较强;调节速度快,更有利于交流系统的稳定;减少互联交流系统的短路容量;可实现电力系统之间的非同步联网;超过一定距离建设投资更经济等[1]。中国的高压直流输电发展迅速, 相继建成投产了天广(天生桥-广州)、三常(三峡-常州)、三广(三峡-广东)和贵广(贵州-广东)等多项高压直流输电项目。 高压直流输电系统中,换流变压器是最重要的设备之一,它处于交流电和直流电互相交换的核心位置。可以提供相位差为30度的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,使直流系统运行在最优状态。 高压直流输电的另一主要设备换流器是非线性元件,对交流侧来说是主要的谐波电流源,产生大量的谐波对换流变压器保护,特别是对依靠谐波原理闭锁的保护产生影响。 换流变压器配置的主保护有比率差动、差动速断、工频变化量比率差动、零序比率差动保护,后备保护包括过流、零序过流、过电压、零序过电压保护等。 换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。差动保护作为换流变压器的主保护,其可靠安全动作对整个直流输电系统的安全稳定可靠运行至关重要。 1 CIGRE直流输电标准测试系统简介

相关主题
文本预览
相关文档 最新文档