当前位置:文档之家› 有限差分方法

有限差分方法

有限差分方法
有限差分方法

完整版有限差分方法概述.doc

有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较 早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分 为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上 述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后 差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。 1.基本思想 有限差分算法的基本思想是把连续的定解区域用有限个离散点 构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即 所谓的有限差分法。 2.技术要点 如何根据问题的特点将定解区域作网格剖分;如何把原微分

有限差分法

有限差分法 finite difference method 用差分代替微分,是有限差分法的基本出发点。是一种微分方程和积分微分方程数值解的方 把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。 最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。

有限差分方法计算欧式期权价格

假设当前股票价格为50美元,股票价格波动率sigma=0.3;以该股票为标的资产的欧式看跌期权的执行价格为50美元,期权有效期为5个月;市场上的无风险利率为10%。利用显示差分格式为该期权进行定价。 %%% 显示法求解欧式看跌期权%%% s0=50; %股价 k=50; %执行价 r=0.1; %无风险利率 T=5/12; %存续期 sigma=0.3; %股票波动率 Smax=100; %确定股票价格最大价格 ds=2; %确定股价离散步长 dt=5/1200; %确定时间离散步长 M=round(Smax/ds); %计算股价离散步数,对Smax/ds取整运算 ds=Smax/M; %计算股价离散实际步长 N=round(T/dt); %计算时间离散步数 dt=T/N; %计算时间离散实际步长 matval=zeros(M+1,N+1); vets=linspace(0,Smax,M+1); %将区间[0,Smax]分成M段 veti=0:N; vetj=0:M; %建立偏微分方程边界条件 matval(:,N+1)=max(k-vets,0); matval(1,:)=k*exp(-r*dt*(N-veti)); matval(M+1,:)=0; %确定叠代矩阵系数 a=0.5*dt*(sigma^2*vetj-r).*vetj; b=1-dt*(sigma^2*vetj.^2+r); c=0.5*dt*(sigma^2*vetj+r).*vetj; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% L=zeros(M-1,M+1); for i=2:M %%建立递推关系 L(i-1,i-1)=a(i); L(i-1,i)=b(i); L(i-1,i+1)=c(i); end for i=N:-1:1 matval(2:M,i)=L*matval(:,i+1); end matval %寻找期权价格进行插值。 Jdown=floor(s0/ds);

差分方法

一、差分方法 1.1 导数的差分公式 在x 附近对()f x 展开,由泰勒展开公式 ()()()f x h f x f x h '+≈+ 得到前差公式为 ()() ()f x h f x f x h +-'= 同理也可以得到后差公式 ()() ()f x f x h f x h --'= 由后差分公式可以得到二阶导数的差分公式为 2 ()()()2()() ()f x h f x f x h f x f x h f x h h ''+-+-+-''= = 叫中心差分公式。 利用这些公式可以将微分方程写成差分方程。 1.2 热传导方程的差分公式 热传导方程是 2t xx u a u = 可以写成差分形式 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t u x t u x x t a t x +?-+?-+-?≈?? 即 []2 2 (,)(,)(,)2(,)(,)()t u x t t u x t a u x x t u x t u x x t x ?+?≈+ +?-+-?? 令 ,,0,1,2,...,1x i x t i t i n =?=?=- 上式可以写为(显示格式) []2 2 (,1)(,)(1,)2(,)(1,)()t u i j u i j a u i j u i j u i j x ?+=+ +-+-? 可以证明,上式的稳定条件为 2 2 ()2x t a ??≤,即 221()2t a x ?≤? 稳定且非振荡的条件为

22 1 ()4 t a x ?≤? 截断误差为 2((),)O x t ?? 另一种格式为 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t t u x t t u x x t t a t x +?-+?+?-+?+-?+?≈?? 即 22 22()()(,1,1)2(,1)(1,1)(,)x x u i j u i j u i j u i j a t a t ????-++--++++=-????? ? 该式称为隐式格式。对任何步长都是恒稳定的。在t ?上取值的唯一限制是,要将截断误差 保持在合理的程度上从而节约计算时间。 截断误差为 2((),)O x t ??。 二、一维热传导方问题 2.1 无限长细杆的热传导 无限长细杆的热传导的定解问题是 2(,0)()t xx u a u u x x ??=? =? 利用Fourier 变换求得问题的解是 2 2()4(,)()x a t u x t d ξ?ξξ--+∞ -∞?? =???? 其中取初始温度分布如下: 1,01()0,0,1x x x x ?≤≤?=? <>? 这是在区间0—1之间高度为1的一个矩形脉冲,于是得到 2 (,)u x t ξ=? 可以用图1所示的瀑布图来表示稳定随时间与空间的变化。 从图中可以看到,在开始时,温度分布是原点附近的一个脉冲状得分布,随着时间的增加,热量向两边传播,形成一个平缓的波包,不难想象如果时间足够长,最终杆上的温度会全

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02 211=++++--k k k k a a a λ λλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 () 0 i i x λ= ()k i ,,2,1 = (4.3) 时,可以唯一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ 重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

差分方程方法

第三章 差分方程方法 3.1 差分方程的平衡点及其稳定性 设有未知序列{}n x ,称 0),,,;(1=++k n n n x x x n F (3.1) 为k 阶差分方程。若有)(n x x n =,满足 0))(,),1(),(;(=++k n x n x n x n F 则称)(n x x n =是差分方程(3.1)的解,包含k 个任意常数的解称为(3.1)的通解, 110,,,-k x x x 为已知时,称其为(3.1)的初始条件,通解中的任意常数都由初始条件确定后 的解称为(3.1)的特解。 形如 )()()(11n f x n a x n a x n k k n k n =+++-++ (3.2) 的差分方程,称为k 阶线性差分方程。)(n a i 为已知系数,且0)(≠n a k 。 若差分方程(3.2)中的0)(=n f ,则称差分方程(3.2)为k 阶齐次线性差分方程,否则称为k 阶非齐次线性差分方程。 若有常数α是差分方程(3.1)的解,即0),,,;(=ααα n F ,则称α是差分方程(3.1)的平衡点,又对差分方程(3.1)的任意由初始条件确定的解)(n x x n =,都有 )(∞→→n x n α,则称这个平衡点α是稳定的。 若110,,,-k x x x 已知,则形如),,,;(11-+++=k n n n k n x x x n g x 的差分方程的解可以在计算机上实现。下面给出理论上需要的一些特殊差分方程的解。 一阶常系数线性差分方程 b x x n n =++α1, (3.3) (其中b ,α为常数,且0,1-≠α)的通解为 )1()(++-=a b C x n n α (3.4) 易知)1(+αb 是方程(3.3)的平衡点,由(3.4)式知,当且仅当1<α时,)1(+αb 是稳定的平衡点。

二维问题的有限差分方法

西北农林科技大学实习报告 学院:理学院 专业年级:信计061 姓名:袁金龙 学号:15206012 课程:微分方程数值解 报告日期:2008-12-3 实习二、二维问题的有限差分方法 一) 实习问题: 二维经典初边值问题: 2 22 2,01(,0),01(0,)(1,)0,01x u u te t t t u x x x u t u t t ???=+<≤?????=<

一维导热方程有限差分法matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

研究有限差分格式稳定性的其他方法 - 报告

2015 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:偏微分方程数值解法 学生所在院(系):理学院数学系 学生所在学科:数学 学生姓名:H i t e r 学号:1X S012000 学生类别: 考核结果阅卷人

研究有限差分格式稳定性的其他方法 摘要 偏微分方程的求解一直是大家比较关心的一个问题,而有限差分格式则是求解偏微分方程时常用并且有效的一个方法。因此,研究有限差分格式的性质就显得尤为重要。在课上我们已经跟着老师学习了运用Fourier方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt启示型方法、直接方法(或称矩阵方法)和能量不等式方法。 关键字:偏微分方程;有限差分格式;稳定性 Abstract The solution of partial differential equations has been more concerned with a problem, and the finite difference scheme is a common and effective method for solving partial differential equations. Therefore, it is very important to study the character of the finite difference scheme. We have followed the teacher to learn the use of Fourier method of finite difference scheme stability, but in a lot of research on the stability of finite difference scheme is only used Fourier method is not enough, so in this paper, will introduce the other three kinds of commonly used in the study of finite difference scheme stability method, respectively is: Hirt enlightenment method, direct method (or matrix method) and energy inequality method. Key words: partial differential equation; finite difference scheme; stability 1 前言 微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。在课上我们已经跟着老师学习了运用Fourier方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt 启示型方法、直接方法和能量不等式方法。 2 Hirt启示性方法 2.1 方法概述 Hirt启示性方法是一种近似分析方法。主要是把差分格式在某确定点上作泰勒级数近似

多期双重差分法,政策实施时间不同的处理方法

多期双重差分法,政策实施时间不同的处理方法 今天,计量经济圈主要给圈友引荐一些平时在咱们社群问得比较多的问题——多期双重差分法和一些要点。我们想检验修建地铁对城市环境污染的影响,那么我们想到的是使用DID方法来得到因果关系。但是,我们有疑惑的地方是,各个城市修地铁的时间有先有后,而标准的双重差分方法一般要求t为同一时间点,比如20xx年。 对于这个问题,我们可以采用多期DID方法,将所有还没有修建地铁的城市作为控制组,把已经修建地铁的城市作为处理组,即使最终所有城市都修建了地铁,我们也可以把还没有修建地铁之时的城市作为控制组。 简单点讲,就是每个修建地铁的城市的DID交互项在数据中显示的不一样,因为DID交互项是两个虚拟变量的乘积:treated(是不是修建了地铁)和time(修建地铁的时间)。 这个DID的交互项等于1的情况是,这个城市在具体某年修建了地铁,而对于在修建地铁之前的年份,这个城市的DID 交互项等于0。这就表明,我们在多期DID使用中不再有统一的政策实施年份,而是允许每个城市都有自己的政策实施年份。 这样是不是有助于解决我们遇到的大部分问题。对于那些压根到目前为止都没有地铁的城市,那他的DID(自然不用说)

就是等于0,因为他的treated始终是为0,属于我们的控制组样本。注意,现在就是一个普通的xtreg回归,但是这里有些地方需要注意。第一,我们平时经常看到的 treated+time+treated*time+协变量的标准DID组合已经不见了,现在只剩下了treated*time这个DID交互项和协变量了。第二,我们尽量控制一下城市的个体效应和时间效应,来消除那些会影响DID交互项估计的不可观测因素和时间效应。下面这个多期DID模型就是如此的,αt是时间效应,βi 是城市效应,Xit是随着时间变动的协变量,BC*After就属于咱们感兴趣的DID估计量。 第三,这里面的treated(就是BC)虚拟变量当然可以灵活地替换为其他连续变量,比如,我们不仅对是否修建地铁对环境影响感兴趣,更是对修建地铁的里程对环境影响感兴趣。我们可以把BC替换成地铁的里程(length),然后我们的准DID 交互项就是length*After。这种DID设置的灵活性让这种方法有很大的适用性。 如果有时候我们不知道处理组具体怎么选择,那该如何设计方法呢?比如我们想要研究一下,美国政府对那些破产的按揭房(金融危机之后的事情)兴起了一个维护修理的政策举动,那这些房子就不至于破败不堪而影响了周围房子的价格。此时,我们就想看看这个政策举动对周围房子的价格的影响,但我们并不知道到底多远的距离才叫“周围”。

Fluent菜鸟入门(已经排版)

KINHIE Fluent菜鸟指南 Fluent 160问 Eric 2009-12-8

如何入门 学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件: 第一,具有流体力学的基础,第二,有FLUENT安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 CFD计算中涉及到的流体及流动的基本概念和术语 理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

有限差分法实验报告材料(参考)

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

差分方程基本概念和方法

差分方程基本概念和方法 考察定义在整数集上的函数,(),,2,1,0,1,2, n x f n n ==-- 函数()n x f n =在n 时刻的一阶差分定义为: 1(1)()n n n x x x f n f n ?+=-=+- 函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分: 21212n n n n n n x x x x x x ???+++=-=-+ 同理可依次定义k 阶差分 k n x ? 定义1.含有自变量n ,未知函数n x 以及n x 的差分2,, n n x x ??的函数方程, 称为常 差分方程,简称为差分方程。出现在差分方程中的差分的最高阶数,称为差分方 程的阶。 k 阶差分方程的一般形式为 (,,, ,)0k n n n F n x x x ??= 其中(,,,,)k n n n F n x x x ??为,,, k n n n n x x x ??的已知函数,且至少k n x ?要在式中出 现。 定义2.含有自变量n 和两个或两个以上函数值1,, n n x x +的函数方程,称为(常) 差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。 k 阶差分方程的一般形式为 1(,,, ,)0n n n k F n x x x ++= 其中1(,,,,)n n n k F n x x x ++为1,,, n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定 要出现。 定义3.如果将已知函数()n x n ?=代入上述差分方程,使其对0,1,2, n =成为恒 等式,则称()n x n ?=为差分方程的解。如果差分方程的解中含有k 个独立的任意

时域有限差分法(FDTD算法)的基本原理及仿真

时域有限差分法(FDTD算法)的基本原理及仿真

时域有限差分法(FDTD 算法) 时域有限差分法是1966年K.S.Yee 发表在AP 上的一篇论文建立起来的,后被称为Yee 网格空间离散方式。这种方法通过将Maxwell 旋度方程转化为有限差分式而直接在时域求解, 通过建立时间离散的递进序列, 在相互交织的网格空间中交替计算电场和磁场。 FDTD 算法的基本思想是把带时间变量的Maxwell 旋度方程转化为差分形式,模拟出电子脉冲和理想导体作用的时域响应。需要考虑的三点是差分格式、解的稳定性、吸收边界条件。有限差分通常采用的步骤是:采用一定的网格划分方式离散化场域;对场内的偏微分方程及各种边界条件进行差分离散化处理,建立差分格式,得到差分方程组;结合选定的代数方程组的解法,编制程序,求边值问题的数值解。 1.FDTD 的基本原理 FDTD 方法由Maxwell 旋度方程的微分形式出发,利用二阶精度的中心差分近似,直接将微分运算转换为差分运算,这样达到了在一定体积内和一段时间上对连续电磁场数据的抽样压缩。 Maxwell 方程的旋度方程组为: E E H σε +??=??t H H E m t σμ-??-=?? (1) 在直角坐标系中,(1)式可化为如下六个标量方程: ???????????+??=??-??+??=??-??+??=??-??z z x y y y z x x x y z E t E y H x H E t E x H z H E t E z H y H σεσεσε,????? ??? ??? -??-=??-??-??-=??-??-??-=??-??z m z x y y m y z x x m x y z H t H y E x E H t H x E z E H t H z E y E σμσμσμ (2) 上面的六个偏微分方程是FDTD 算法的基础。 Yee 首先在空间上建立矩形差分网格,在时刻t n ?时刻,F(x,y,z)可以写成 ),,(),,,(),,,(k j i F t n z k y j x i F t z y x F n =????= (3) 用中心差分取二阶精度: 对空间离散: ()[] 2 ),,21(),,21() ,,,(x O x k j i F k j i F x t z y x F n n x i x ?+?--+≈???= ()[] 2 ),21,(),21,() ,,,(y O y k j i F k j i F y t z y x F n n y j y ?+?--+≈???= ()[] 2 )21,,()21,,() ,,,(z O z k j i F k j i F z t z y x F n n z k z ?+?--+≈???=

相关主题
文本预览
相关文档 最新文档