当前位置:文档之家› 集成模拟乘法器

集成模拟乘法器

集成模拟乘法器
集成模拟乘法器

图6 载波信号输入仿真波形

图11 仿真波形m a>1

仿真电路设计失真分析

由于通过对仿真电路图进行分析发现此设计电路的仿真输出波形存在一定的失真,

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

8.模拟乘法器的应用-乘积型混频器

模拟乘法器的应用 ——乘积型混频器 学号:200800120228 姓名:辛义磊仪器编号:30 一、实验目的 1、掌握集成模拟乘法器的工作原理及其特点 2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法 二、实验仪器 低频信号发生器 高频信号发生器 频率计 稳压电源 万用表 示波器 三、实验原理与实验电路 集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。 MC1496的内部电路继引脚排列如图所示

MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz以下的频率。双差分对模拟乘法器MC1496/1596的差值输出电流为 MC1595是差值输出电流为 式中,错误!未找到引用源。为乘法器的乘法系数。 MC1496/1596使用时,VT 1至VT 6 的基极均需外加偏置电压。 实验电路 四、实验步骤

检查电路无误后接通电源,完成如下操作: 1、 当本振信号的频率为43 .4=L f MHz 、振幅为5 .0≤-p p V V ,输入信号的频率 为4 =C f MHz ,振幅为50 ≤-p p V mV 时,观察并测绘输入输出信号波形,记 录I L C f f f 、、。 2、当本振信号的频率为43.4=L f MHz 、振幅为5.0≤-p p V V ,输入信号的振幅为 50 ≤-p p V mV 时,改变输入信号频率C f (在3.9-4.1MHz 之间,每隔200kHz 测量 一次),测量输出信号的频率和幅度,记录在表格中,并由此计算带通滤波器的 通频带宽度。 f c 3.9MHz 4.0MHz 4.1MHz f 4.43 MHz 4.43 MHz 4.43 MHz v 500mV 500mV 500mV 3、保持两输入信号的频率及本振信号幅度不变,改变输入信号振幅V sm (峰峰值在40-100mV 之间变化)的大小,逐渐测量输入V sm 和中频输出V im 。将测量及计算结果填入表格中,并完成下列任务: ①计算混频增益A vc 。将混频电压增益A vc 定义为变频器中频输出电压幅值与输入信号幅值之比,以分贝表示为sm vc V V A Im lg 20= ②作出V sm 和V im 的关系曲线 V sm 40 mV 60 mV 80 mV 100mV V im 60mV 85mV 100mV 120mV 五、思考题

《集成电路原理及应用》课后答案

集成电路原理及应用(第3版) 谭博学 苗汇静 主编 课后习题答案 第二章 模拟集成电路的线性应用 2.9 试分析图1所示电路是什么电路,有何特点?图中设 3 4 21R R R R =。 (图1) 解:第一级运放为同相放大器。对A 1:由“虚断”和“虚短”得 i 1=i 2,v -1=v +1=u 1i , 则u 1i = 1211R R R u o +,即11 21)1(i o u R R u +=, 对A 2:由“虚断”和“虚短”得 i 3=i 4,v -2=v +2=u 2i , 则 4 2321R u u R u u o i i o -=-,即1342 34)1(o i o u R R u R R u -+= 代入u 1o 得))(1( 123 4 i i o u u R R u -+=, 因两个输入信号均从同相端输入,所以输入阻抗比较高。该电路为高输入阻抗的差动放大器。 2.11 求图3所示电路的增益A f ,并说明该电路完成什么功能。

解:该电路由两个集成运放构成,A1为主放大器接成反相运算放大器,A2为辅助放大器,A2也接成反相放大器,利用A2对A1构成正反馈,是整个电路向信号源索取的电流极少。 主放大器A 1:由“虚断”和“虚短”得 2 1R u R u o i -= ,则A f =121o o i i u u R u u R ===- 辅助放大器A2的电压放大倍数:221222 2o o VF i o u u R A u u R = ==- 该电路为自举电路,目的是提高电路的输入电阻。 由1i i i i U U R I I I = = - 由 12i o U U R R =-和321 2o U U R R =-得32i U U = 所以 1i i i U U I R R = - 因此1 1 i i i U RR R I R R = = - 当1R R =时,i R →∞,1I I = 2.12 求图4所示电路输出电压与输入电压的表达式,并说明该电路完成什么功能。

实验四 集成电路模拟乘法器的应用

实验四集成电路模拟乘法器的应用 模拟乘法器是利用晶体管的非线性特性,经过电路上的巧妙设计,在输出中仅保留两路输入信号中由非线性部分产生的信号的乘积项,从而获得良好的乘积特性的集成器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。本实验仅介绍MC1496集成模拟乘法器。 一、实验目的 1.了解模拟乘法器(MC1496)的组成结构与工作原理,掌握其调整与特性参数的测量方法。 2.掌握利用乘法器实现振幅调制(AM与DSB)、同步检波、混频、倍频等几种频率变换电路的原理及设计方法。 3.学会综合地、系统地应用已学到模电、数电与高频电子线路的知识,掌握对振幅调制、同步检波、鉴频、混频和倍频电路的设计与仿真技能,提高独立解决问题的能力。二、实验设备与仪器 高频实验箱 WHLG-2 一台 数字双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 数字万用表一块 三、实验任务与要求 1、模拟乘法器1496的构成、基本原理说明 ①集成模拟乘法器的内部结构 MC1496集成模拟乘法器的内部电路结构和引脚排列如图4-1所示。 图4-1 MC1496的内部电路及引脚图

MC1496是双平衡四象限模拟乘法器。其中V1、V2与V3、V4组成双差分放大器,V5、V6组成的单差分放大器用以激励V1~V4。V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。引脚8与10接输入电压C u ,1与4接另一输入电压t u ,输出电压o u 从引脚6与12输出。引脚2与3外接电阻R E ,对差分放大器V5、V6产生串联电流负反馈,以扩展输入电压y u 的线性动态范围。引脚14为负电源端(双电源供电时)或接地端(单电源供电时),引脚5外接电阻R5。用来调节偏置电流I 5及镜像电流I 0的值。 ② 集成模拟乘法器的1496偏置电压与电流的确定 ● 静态偏置电压的确定 静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集—基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。根据MC1496的特性参数,对于图4-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即: 12641108,,u u u u u u === ?? ? ?? ≥-≥≥-≥≥-≥V u u u V V u u u u V V u u u u V 7.2),(157.2),(),(152),(),(1554141108108126 ● 静态偏置电流的确定 一般情况下,晶体管的基极电流很小,对于图4-1,三对差分放大器的基极电流I 8、I 10、I 1和I 4可以忽略不计,因此器件的静态偏置电流主要由恒流源的值确定。当器件为单电源工作时,引脚14接地,5脚通过一电阻R 5接正电源(+U CC 的典型值为+12V ),由于I 0是I 5的镜像电流,所以改变电阻R 5可以调节I 0的大小,即: 当器件为双电源工作时,引脚14接负电源-U EE (一般接-8V),5脚通过一电阻R 5接地,因此,改变R 5也可以调节I 0的大小,即: 则: 当V EE =-8V ,I 5=1mA 时,可算得: R 5={(8-0.75)/(1X10-3 )}-500=6.75K Ω 取标称电阻,则R5=6.8K Ω 根据MC1496的性能参数,器件的静态电流小于4mA ,一般取mA I I 150==左右。 此时,器件的总耗散功率可由下式估算: ) ()(214551465u u I u u I P D -+-= PD 应小于器件的最大允许耗散功率(33mW )。 ● 负载电阻RC 的选择 Ω +-= ≈5007.0550R V u I I CC Ω +--= ≈5007.0550R V u I I EE Ω--= 5007 .05 5I V R EE

集成模拟乘法器及其应用-集成电路

第6章 集成模拟乘法器及其应用 6.1集成模拟乘法器 教学要求: 1.掌握集成模拟乘法器的基本工作原理; 2.理解变跨导模拟乘法器的基本原理; 3.了解单片集成模拟乘法器的外部管脚排列及外接电路特点。 一、集成模拟乘法器的工作原理 (一)模拟乘法器的基本特性 模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。其符号如下图所示,K 为乘法器的增益系数。 1.模拟乘法器的类型 理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。 实际乘法器—u x = 0 , u y = 0 时,u O 1 0,此时的输出电压称为输出输出失调电压。u x = 0,u y 1 0 (或 u y = 0,u x 1 0)时,u O 1 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。 (二)变跨导模拟乘法器的基本工作原理 变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示。

在室温下,K为常数,可见输出电压u 与输入电压u y、u x的乘积成正比,所以差分放大电路具有乘法功 O 能。但u y必须为正才能正常工作,故为二象限乘法器。当u Y较小时,相乘结果误差较大,因I C3随u Y而变,其比值为电导量,称变跨导乘法器 . 二、单片集成模拟乘法器 实用变跨导模拟乘法器由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平 衡模拟乘法器。属于这一类的单片集成模拟乘法器有MC1496、MC1595等。MC1496内部电路如下图所示。

集成电路模拟乘法器的应用

课程设计任务书 题目集成电路模拟乘法器的应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一.主要内容 用集成模拟乘法器MC1496设计调幅器和同步检波器二.基本要求 1:电源电压12v 集成模拟乘法器 MC1496 载波频率 f c=5MHZ 调制信号频率 fΩ=1KHZ 2:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 3:设计时间为一周。 三.主要参考资料 1:李银华电子线路设计指导北京航天航空大学出版社2005.6 2:谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3:张肃文高频电子线路高等教育出版社2004.11 完成期限: 指导教师签名: 课程负责人签名: 年月日 目录

第一章mc1496的介绍 第一节模拟乘法器的内部结构及原理 (4) 第二节 mc1496的引脚图及其功能 (5) 第三节 mc1496的内部结构及原理 (6) 第二章 mc1496构成调幅器 第一节调幅器的基本介绍 (10) 第二节振幅调制器的原理图 (12) 第三节振幅调制器的数据说明 (14) 第三章 mc1496构成同步检波器 第一节同步检波器的基本介绍 (14) 第二节振幅同步检波器的原理图 (15) 第三节振幅同步检波器的数据说明 (16) 第四章设计体会 (18) 主要参考文献 振幅调制器的原理图 振幅同步检波器的原理图

摘要 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。集成模拟乘法器MC1496是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上经过非线性变换电路,产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。调制器主要由三部分构成:高频振荡器(产生5MH的正弦信号)、正弦RL信号发生器(产生1KH 的正弦信号)、mc1496构成的振幅调制部分。 检波是从调幅波中取出低频信号的解调过程。它主要也由三部分组成:形成本地载波信号、mc1496构成的同步检波部分,LC二阶低通滤波器。我们可用框图概括调制——解调的过程:

模拟乘法器的应用

随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和检波电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 作调幅时,高频信号加到输入端,低频信号加到Y输入端;作检波时,同步信号加到X输入端,已调信号加到Y输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。还需注意:(1)Y端 有关,否则输出波输入信号幅度不应超过允许的线性范围,其大小与反馈电阻R Y 形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出。信息传输系统中,检波是用以实现电信号远距离传输及信道复用的重要手段。由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。 关键词:模拟乘法器,调幅器,检波器,MC1496

第一章、集成模拟乘法器的工作原理 (2) 第一节、模拟乘法器的基本特性 (2) 一、模拟乘法器的类型 (2) 第二节、变跨导模拟乘法器的基本工作原理 (2) 第三节、单片集成模拟乘法器 (3) 第二章、集成模拟乘法器的应用 (4) 第一节、基本运算电路 (4) 一、平方运算 (4) 二、除法运算器 (5) 三、平方根运算 (5) 四、压控增益 (5) 第二节、倍频、混频与鉴相 (6) 一、倍频电路 (6) 二、混频电路 (6) 三、鉴相电路 (6) 第三节、调幅与解调 (7) 一、信息传输的基本概念 (7) 二、调幅原理 (8) 三、采用乘法器实现解调(检波) (10) 第三章、MC1496模拟乘法器构成的振幅器 (10) 第一节、振幅调制的基本概念 (10) 第二节、抑制载波振幅调制 (13) 第三节、有载波振幅调制 (14) 第四章、MC1496模拟乘法器构成的同步检波器 (14) 总结 (18) 参考文献 (18) 附录 (19)

模拟乘法器

沈阳大学科技工程学院 模拟乘法器 1.课程设计目的 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。 在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了方案,按照设计的电路图在Multisim 仿真软件中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结。 2.设计方案论证 2.1 乘法器常规调幅的设计作用 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和解调电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 2.2乘法器常规调幅设计 调制就是指携带有用信息的调制信号去控制高频载波信号解调是调制的逆过程,将有用的低频信号从高频载波中还原出来。调幅过程是非线性变换的过程。 普通调幅是用需传送的信息(调制信号))(t u Ω去控制高频载波)(t u c 的振幅,使其随调制信号)(t u Ω的规律而变化。 调幅时,载波的频率和相位不变,而振幅将随调制信号线性变化。若载波信号为 t U t u c cm c ωcos )(=,调制信号为)(t u Ω。则普通调幅波的振幅为: )()(t u k U t U a cm cm Ω+=

模拟乘法器ADL5391的原理与应用

模拟乘法器ADL5391的原理与应用邮件群发 模拟乘法器是现代信号处理系统的重要组成单元,它广泛应用于锁相环、混频器、滤波器等信号处理电路中。ADL5391是美国ADI公司推出的宽频带、高性能、超对称的模拟乘法器。它具有2 GHz的可用带宽,是此前所有模拟乘法器所无法相比的。同时,ADL5391也是目前速度最快的模拟乘法器芯片之一。它将所有电路集成于一块芯片之中,使得ADL5391具有极高的速度。在文中的应用实例中,设计了一种基于ADL5 391的二倍频电路,可对输入的信号进行准确的二倍频,电路性能稳定,可广泛应用于混频、倍频、脉冲调制等领域。 1 ADL5391的主要特性 ADL5391凝聚了ADI公司三十年的先进模拟乘法器技术经验,其主要特性如下: 1)DC至2 GHz对称乘法器,传递函数为VW=αx(VXxVY),1 V+Vz; 2)独特的设计确保了X、Y的绝对对称,X、Y的幅度,时间响应相同; 3)可调、不随温度而变化、增益调整为α; 4)完全差分输入,输出或单端操作; 5)低噪声和高输出线性度; 6)单电源供电:4(5,5(5 V,130 mA; 7)3x3 mm、16引脚小型LFCSP封装。 2 ADL5391的工作原理 ADL5391的功能结构框图如图1所示,传递函数由下式给出: W=aXY,U+Z (1) 其中:X和Y是被乘数;U是乘法器的比例因子;α是乘法器增益;W是乘法器

的输出;Z是一个求和输入。所有的变量和比例因子单位都是伏特。 ADL5391最重大的改进就是采用了新型乘法器内核架构,它与自1970年开始使用的传统架构明显不同。传统的模拟乘法器(如AD835)几乎完全由吉尔伯特单元的拓扑结构或与其相近的电路实现。X和Y不对称的信号路径造成了X和Y之间幅度和时延的不平衡,这在高频时会出现问题。在ADL5391中,新型的乘法器内核提供了X和Y之间绝对的对称,尽量减小吉尔伯特单元中本身的差异。 ADL5391的功能结构框图展示了主乘法器单元和反馈乘法器单元,其中主乘法器用于接收X和Y输入信号,反馈乘法器位于反馈路径上,围绕在积分缓冲区附近,它的输入量是输出信号与求和输入信号之差(W-Z),和内部比例参考值。其中,反馈乘法器和主乘法器是相同的,由于该反馈乘法器基本上补偿了主乘法器上产生的缺损,因此常见的噪声、漂移或失真基本上被限制在了一阶。 3 ADL5391的应用实例 ADL5391主要运用于高频信号的运算和处理,如宽带的乘法和加法,高频模拟调制,自适应天线,平方律探测器,倍频等。以下给出了基于ADL5391的宽带乘法器电路,并且设计了基于该模拟乘法器的二倍频电路,并对其分别进行了性能测试。

模拟集成电路原理及应用题

模拟集成电路原理与应用试题库 一.填空题▲ 1、增强型MOSFET的工作特征中,当V GS>V T和0<V DS<(V GS-V T)时,工作于区,i D受 和的控制。 2、常用MOS单元电路有:电流源电路.基本放大电路和等。电流源电路是利用i D的微小变化 可引起的特点制成阻值很大的交流电阻,作为差动放大器的进而得到很 大的共模抑制比。 3、MOS模拟集成电路中的基本单元有、和MOS输出级电路。 4.MOS集成运算放大器的基本应用有反相放大电路、电路、电路、和电路等。理想运放工作于线性状态时,为分析方便,输入端近似看成和。 5、CMOS开关电路是由NMOS和组合而成,他克服了NMOS模拟开关电路R ON随vi的增大而的缺点,扩大了输入信号范围。 6、利用集成运放进行信号的放大、、减法、和积分运算的电路称为放大器的 应用,而能完成信号的比较、乘法、和产生各种波形的电路称为放大器的非线性应用。 7、利用MOSFET的开关特性,可有模拟开关的四种基本应用,即单刀单掷、、 和. 8、集成电压比较器用于比较相对大小的电路,是一种模拟输入、的 模拟电路采用高增益的集成运放可用来比较信号。 9、直接采用集成电压比较器,能获得更高的,而且使用更为方便,集成电压比较器 已成为模拟集成电路中的重要。 10、变换电路属于非线性变换电路,其传输函数随输入信号的、频率或改变而变,使输出信号波形不同于波形。 11、利用集成运算放大器或专用模拟集成电路,配以少量的外接元件可以构成各种类型的信号 发生器和具有各种功能的变换电路,信号发生器分为正弦波和非正弦波两大类。 12.模拟集成电路构成的正弦波发生器,工作频率多是在1MH z以下,其电路的组成通常由工作 在线性放大状态的和及三部分构成,选用不同移相选频网 络便构成不同类型的正弦波发生器。 13、非正弦波发生器通常由运放构成的(又称斯密特触发器)和有源或无源积分器电 路构成,不同形式的便构成各种不同类型的非正弦波发生器。 14、三角波发生器通常由运放构成的和有源或无源积分电路等组成。改变 值,可以改变三角波和方波的幅值。 15、用集成运放构成的单稳或双稳触发器,温度稳定性好,脉宽调节范围大,调试简单方便,常用 于脉冲整形,定时及延时电路。 16、运放组成的双稳态触发器实际上是由具有二极管双向限幅的构成当无触发脉 冲时,电路处于某一状态。 17、VFC是变换电路,即它的输出信号频率与输入信号成正比,故又称 为。 18、VFC主要由积分器、自动复位开关电路组成,专用模拟集成VFC转换器,其 性能稳定、灵敏度高、小。各种类型的VFC主要区别在于复位方法和复位时间不同而已。 19、绝对值变换电路又称、其输出电压等于绝对值。采用绝对值电路能把双极 性输入信号变成信号。其组成是在线性检波器的基础上加一级电路。如要 改变输出电压的极性只需将电路中的对调即可。 20、定时电路又称为,它是一种将模拟电路和制作在同一硅片上的新 颖的模拟集成电路。以其独特的优点取代传统的机械式。 21、目前国内外生产的定时电路主要分为定时器和两大类。定时电路以单定

高频,模拟乘法器汇总

实验课程名称:高频电子线路

MC1496 是目前常用的平衡调制/解调器。它的典型应用 包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、 鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图 如图1(a)(b)所示 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 MC1496内部结构multisim电路图和电路模块如图2所示。

图2 MC1496的内部电路及电路模块引脚图 2、AM与DSB电路的设计与仿真 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。 利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为: 若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。输出信号表达式为: 普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图3所示 图3 ① AM与DSB电路的设计 查集成模拟乘法器MC1496 应用资料(附录1),得典型应用电路如图4所示。

《集成电路原理及应用》课后答案..

集成电路原理及应用(第2版) 谭博学 苗汇静 主编 课后习题答案 第二章 模拟集成电路的线性应用 2.9 试分析图1所示电路是什么电路,有何特点?图中设 3 4 21R R R R = 。 (图1) 解:第一级运放为同相放大器。对A 1:由“虚断”和“虚短”得 i 1=i 2,v -1=v +1=u 1i , 则u 1i = 1211R R R u o +,即11 21)1(i o u R R u +=, 对A 2:由“虚断”和“虚短”得 i 3=i 4,v -2=v +2=u 2i , 则 4 2321R u u R u u o i i o -=-,即1342 34)1(o i o u R R u R R u -+= 代入u 1o 得))(1( 123 4 i i o u u R R u -+=, 因两个输入信号均从同相端输入,所以输入阻抗比较高。该电路为高输入阻抗的差动放大器。 2.11 求图3所示电路的增益A f ,并说明该电路完成什么功能。

解:该电路由两个集成运放构成,A1为主放大器接成反相运算放大器,A2为辅助放大器,A2也接成反相放大器,利用A2对A1构成正反馈,是整个电路向信号源索取的电流极少。 主放大器A 1:由“虚断”和“虚短”得 2 1R u R u o i -= ,则A f =121o o i i u u R u u R ===- 辅助放大器A2的电压放大倍数:221222 2o o VF i o u u R A u u R = ==- 该电路为自举电路,目的是提高电路的输入电阻。 由1i i i i U U R I I I = = - 由 12i o U U R R =-和321 2o U U R R =-得32i U U = 所以 1i i i U U I R R = - 因此1 1 i i i U RR R I R R = = - 当1R R =时,i R →∞,1I I = 2.12 求图4所示电路输出电压与输入电压的表达式,并说明该电路完成什么功能。 解:对A 1:由“虚断”和“虚短”得 R u R u o i 1 1-=,即u 1o =-u 1i 。A 1为倒相器

模拟乘法器应用实验实验报告

模拟乘法器应用实验实验报告 姓名:王攀 学号:04085037 实验目的: (1)了解模拟乘法器的工作原理 (2)学会利用模拟乘法器完成平衡调制、混频、倍频、同步检波、鉴相及鉴频等功能。 实验仪器: 高频信号发生器QF1055A 一台; 超高频毫伏表DA22A 一台; 频率特性测试仪BT-3C 一台; 直流稳压电源HY1711-2 一台; 数字示波器TDS210 一台. 实验原理: 实验电路如图1所示。该电路可用来实现普通调幅、平衡调制、混频、倍频、同步检波等功能。图中R L为负载电阻,R B是偏置电阻,R E是负载反馈电阻,R W和R1、R2组成平衡调节电路,调节R W,可使1、4两脚的直流电位差为零,从

而满足平衡调幅的需要,若1、4脚直流电位差不为零,则1、4输入包括调制信号和直流分量两部分,此时可实现普通调幅波,电感L1和C1、C2组成BPF以混频输出所需的465KHz 中频信号,同步检波可用前边的限幅器(未给处)和模拟乘法器及低通滤波器(L2 C3 C4)构成。 图1.模拟乘法器应用电路一:振幅调制、混频等 实验内容: 1.实验前,所有实验先进行计算机仿真,研究载波、调 制信号大小及频率变化,直流分量大小对已调信号的 影响。 2.用模拟乘法器MC1596实现正弦调幅。分别加入 f x=500KHz,U x=100mV,f y=10KHz,U y=0.2V的信号时 调电位器R W工作在不平衡状态时便可产生含载波的

正弦调幅信号。 a:保持U x(t)不变,改变U y值:50mV、100mV、150mV、200mV、250mV时,观察U o(t)的变化,并作出m~U y(t)关系曲线(*m指以调信号的调幅系数测试时可用公式m=(A-B)/(A+B)) b:保持U y(t)不变,f y由小到大变化时,输出波形又如何变化? 3.用模拟乘法器MC1596实现平衡调幅波。 a:调平衡:将乘法器y输入端接地,即U y(t)=0,x输入端加入f x=500KHz,U x=50mV的输入信号,调电位器R W 使U o(t)=0。 b:分别加入f x=500KHz,U x=50mV;f y=50KHz,U y=200mV的信号时,微调R W即可得到平衡的双边带信号,描绘U o(t)的波形,要特别注意调制信号过零时载波倒相现象。 4.用MC1596实现倍频:调整模拟乘法器仍工作在平衡状态,在x输入端和y输入端同时加f i=200KHz,U i=50mV 信号,微调R w,用示波器双踪观察U o(t) 和U i(t)的关系,即有f o=2f i。

第7章 集成模拟乘法器

93 第七章 集成模拟乘法器及其应用 7.1 电路如图P7.1所示,试写出输出电压u O 与输入 u I 的关系式。 解:322)(I I I O u K Ku Ku u == 7.2 电路如图P7.2 所示,乘法器的增益系数K=0.1V -1, 试求:(1)u 1=2V 、u 2=4V 时,u O =?(2)u 1=-2V 、u 2=4V 时, u O =?(3)u 1=2V 、u 2=-4V 时,u O =? 解:(1)12'u u Ku u O O ?==,所以 V Ku u u O 541.0221?=×?=?= (2)V Ku u u O 54 1.0221=×=?= (3)因u 2为负极性,运放工作在正反馈状态,故电路不能正常工作。 7.3 电路如图P7.3(a)、(b)所示,求输出电压u O 的表达式,并说明对输入电压u 1、u 2有什么要求? 解:(a)由集成运放可得u 1=u N 由乘法器可得 2 122 R R R u Ku u O N += 由此可得输出电压表达式为 图P7.1 图P7.2

94 2 1221u u KR R R u O ?+= 可见输出电压u O 与两个输入电压u 1、u 2之商成正比,实现了除法运算。 当u 2为正极性,乘法器输出电压的极性决定于u 1,集成运放构成负反馈;当u 2为负极性,乘法器输出电压的极性与u 1相反,运放构成正反馈而处于锁定状态,电路工作不正常。所以图6.5(a)电路要实现除法运算,要求u 2必须为正极性,u 1可正可负。 (b)由集成运放可知,u 1=u N ,由乘法器可知,u N =Ku O u 2,所以输出电压 2 1Ku u u O = 为除法运算。同样,为了使运放工作在负反馈状态,要求u 2为正极性,u 1可正可负。 7.4 电路如图P7.4所示,已知模拟乘法器的增益系数 K=0.1V -1,当u 1=2V 时,求u O =?,当u 1=-2V 时,u O 为多少? 解:2 21R Ku R u O I ?= 故 I I I O u u u K R R u 2010 1.02012?=×?=?=,要求u I 为负值。 当u I =2V 时,电路不能正常工作;当u I =-2V 时, V 32.6)2(20u O =?×?= 7.5 正电压开方运算电路如图P7.5所示,试证明u I >0时输出电压等于 I O u KR R u 1 2=

2018-10-18模拟集成电路分析与设计习题

2018年10月18日模拟集成电路分析与设计作业题(共2页) 姓名: 学号: 班级: 评分: 1.采用电流源负载的共源级增益是: 。 2.在差动信号中,中心电位称为 。 3.在GS TH V V <时,器件并没有被彻底关断,D I 也不是无限小,而是与成指数关系。这一效应称为 。 4.共源共栅放大器结构的一个重要特性就是输出阻抗( )。 A. 低 B.一般 C.高 D. 很高 5.随着微电子工艺水平提高,特征尺寸不断减小,这时电路的工作电压会( ) A.不断提高 B. 不断降低 C.可大可小 D. 不变 6.NMOS 管的导电沟道中依靠 导电,PMOS 管的导电沟道中依靠 导电。( ) A.电子、空穴 B. 负电荷、正电荷 C. 空穴、电子 D. 正电荷、负电荷 7.在差分电路中, 可采用恒流源替换”长尾”电阻. 这时要求替换”长尾”的恒流源的输出电阻( )。 A .可高可低 B.越低越好 C. 没有要求 D. 越高越好 8.如图1,/50/0.5W L =,假设3DS V V =,当||GS V 从0上升到3V 时,画出NFET 的漏电流GS V 变化曲线。(考虑沟道长度调制效应和有效沟道长度。) 2350//n cm V s μ=60.0810D L m -=?190.1,910n ox V t m λ--==? 1208.85410/F m ε-=?2 3.9 sio ε= 2032 3.83710/sio ox ox C F m t εε-==? x V 图1

9.请把图2箭头所指位置的名称在方框中写出。 图2 10.请写出对应公式并在坐标系中画出曲线。 /W L m g /W L D I

集成电路的发展及应用

集成电路的发展及应用内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

集成电路的发展及应用 【摘要】集成电路是现代电子电路中的核心器件,广泛应用于各种电子设备中。本文阐述了集成电路的发展历程、趋势和有关应用。 【关键词】集成电路;发展;应用 0 引言 集成电路是相对于分立电路而言,它把晶体管、场效应管、二极管、电阻、电容等元件以及相互之间的连接制作在一块半导体芯片上,组成一个不可分割的整体,使之具有特定的功能。目前集成电路已成为现代电子电路中的核心器件,广泛应用于各种电子设备中。 1 集成电路的发展 科学研究和生产的需要推动着电子技术的发展,而电子器件和电路的改进又带来了科学技术和工业生产水平的进一步提高。1906年,第一个电子管诞生,从而引发了无线电技术的发展。但是由于电子管存在一些明显的缺点,如体积大、功耗大、寿命短、电源利用效率低等,很快就不适应发展的需要。1947年晶体管被发明,成为微电子技术发展中的第一个里程碑。晶体管弥补了电子管的不足,但很快又遇到了新的麻烦。在实际应用中,工程师们需要手工连接各种分立元件,非常麻烦,于是人们开始寻找新的方法。1960年世界上第一块硅集成电路被成功制造。1966年第一块公认的大规模集成电路制造成功。随着电子技术的不断发展,超大规模集成电路应运而生。1977年超大规模集成电路面世,一个硅晶片中集成有15万个以上的晶体管,1988年,16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,从而进入超大规模集成电路阶段。1997年300MHz

奔腾Ⅱ问世,从而让计算机的发展如虎添翼,超大规模集成电路的发展又达到一个新的高度。2009年,intel酷睿i系列全新推出,采用了领先的32纳米工艺。目前22纳米工艺也逐渐被各国研发成功。采用22纳米集成电路技术可以在一根头发丝的横截面上集成大约1000万个晶体管,从而使集成电路产品的功能更多样化,速度更快,成本更低。由此集成电路的发展大致经历了如下过程:电子管――晶体管――集成电路――超大规模集成电路。 中国集成电路产业起步于20世纪60年代中期,1976年,中国科学院计算机研究所研制成功1000万次大型电子计算机;1986年,电子部提出集成电路技术“531”发展战略,即推进5微米技术,开发3微米技术,进行1微米技术科技攻关;1995年,电子部提出“九五”集成电路发展战略;在2003年,中国半导体占世界半导体销售额的9%,电子市场达到860亿美元,中国成为世界第二大半导体市场。2013年,中国集成电路产业销售额达到亿元,同比增长%。我国集成电路产业近年来发展非常迅速,以集成电路技术为核心的ICT产业,已经替代了汽车、钢铁等一些传统的产业成为国内经济新的快速增长点,在国民经济发展的地位也越来越重要。 随着集成电路技术的不断发展,集成电路中晶体管的数目不断增加,器件特征尺寸不断缩小;不同类型的集成电路相互镶嵌,实现从集成电路(IC)到系统集成(IS)的过渡;微细加工技术的不断成熟和应用领域的不断扩大,将带动一系列交叉学科及其有关技术的发展。总之,集成电路的发展趋势将呈现小型化、系统化和关联性的态势。 2 集成电路的应用

相关主题
文本预览
相关文档 最新文档