当前位置:文档之家› 移动通信天馈系统

移动通信天馈系统

移动通信天馈系统
移动通信天馈系统

一引言 (2)

二基站天馈系统组成及匹配原理 (2)

1 基站天馈系统的组成 (2)

2.匹配原理 (3)

三天馈系统不匹配对移动通信系统的影响 (4)

1.不匹配对发射功率的影响 (4)

2.不匹配对通信质量的影响 (4)

3.不匹配对基站设备的影响 (4)

四影响天馈线系统匹配的主要因素及解决方法 (4)

1.影响天馈线系统匹配的主要因素 (4)

2.解决天馈系统不匹配的方法 (5)

3.现场检测天馈线系统方法 (5)

4.测试案例 (6)

i n

t h

e i r

b e

i n 移动通信天馈系统

天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系统的影响,最大限度发挥天馈系统的性能。

一 引言

天馈系统是指天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化和水平极化。 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。天馈系统主要包括天线和馈线系统两大类。

二 基站天馈系统组成及匹配原理

基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。

1 基站天馈系统的组成

图1 是基站天馈系统示意图,其组成主要包括以下几部分:

(1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线;

(2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2馈线,长度一般为3m 。

(3)主馈线,目前用于移动基站的馈线主要有7/8_馈线、5/4_馈线、15/8馈线;(4)接头密封件,用于室外跳线两端接头(与天线和主馈线相接)的密封,常用的材料有绝缘防水胶带(3M2228)和PVC 绝缘胶带(3M33+);

(5)室内超柔跳线,用于主馈线(经避雷器)与基站主设备之间的连接,常用的跳线采用1/2〞超柔馈线,长度一般为2~3m ;

(6)其他配件,主要有接地装置(7/8〞馈线接地件)、7/8〞馈线卡子、走线架、

馈线过窗器、防雷保护器(避雷器)、各种尼龙扎带等。

2.匹配原理

所谓匹配就是馈线终端所接负载阻抗Z等于馈线特性阻抗Z。匹配原理是在传输系统中的阻抗不连续处引入匹配设备,在原来的不连续的基础上而引入另一种不连续性,使它产生的反射波,正好与原来的反射波干涉抵消,从而达到阻抗匹配。当使用的终端负载是天线时,如果天线振子较粗,输入阻抗随频率的变化就较小,容易和馈线保持匹配,这时振子的工作频率范围就较宽。反之,则较窄。

在实际工作中,天线的输入阻抗还会受周围物体存在和杂散电容的影响。为了使馈线与天线严格匹配,在架设天线时还需要通过测量,适当地调整天线的结构,或加装匹配装置。

天馈系统匹配性能好坏一般用反射系数或驻波比的大小来衡量,通常采用驻波比。终端负载阻抗和特性阻抗越接近,反射系数越小,驻波比越接近于1,匹配也就越好。

三天馈系统不匹配对移动通信系统的影响

在移动通信系统中,天馈系统对系统的影响最为敏感和直接,而天馈系统匹配好坏对移动通信质量的影响尤其显著,概括起来主要有以下几个方面:

1.不匹配对发射功率的影响

当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。其结果是降低了发射机的有效功率,缩小了单基站的有效覆盖面积。

2.不匹配对通信质量的影响

天馈线系统不匹配会对基站覆盖、手机语音质量、无线数据速率产生一定影响,一般手机会出现接收电平低、回声、上网速度慢等现象。

3.不匹配对基站设备的影响

天馈线系统不匹配对基站功放器件寿命影响比较大,馈线的回波电压过大加快基站功放器件老化,天馈线系统严重不匹配时会使功放器件烧毁。

四影响天馈线系统匹配的主要因素及解决方法

1.影响天馈线系统匹配的主要因素

我们知道天馈系统的匹配是由各个部件的矢量叠加和馈线衰减的有机结合,既有天馈器件自身的影响,也有器件安装组合工艺的影响。根据实际工作经验,影响天馈线系统匹配因素主要有以下方面:

(1)天线驻波。天线驻波是出厂必须检测的一项天线电气性能指标,天线驻波高低直接影响天馈系统整体性能,以前天线出厂驻波比要求小于1.5,现在随着天线厂家技术水平不断提高,加上通信运营商对天线指标要求越来越高,天线出厂驻波比一般小于1.3。

(2)馈线驻波。馈线质量好坏对驻波影响较大,一般7/8〞馈线损耗要求小于

0.4dB/10m,驻波比小于1.1。

(3)跳线驻波。跳线驻波比小于1.1。1/2〞跳线的单次弯曲半径应_20cm;多次

弯曲半径应_30cm;跳线与馈线的接头处应固定牢靠,防止晃动;跳线与天线、馈线的接头应连接可靠,密封良好;跳线应用扎带绑扎牢固,松紧适宜,严禁

打硬折、死弯,以免损伤跳线。

(4)避雷器驻波。避雷器的VSWR 应小于1.1 的行业标准。室内避雷器安装时,避雷器要与跳线、馈线接口、阻抗匹配。避雷器安装的方向不能弄反,如果机

房有避雷器安装架时,必须要把避雷器固定在安装架上。

(5)7/8〞馈线头的制作,各部件的连接问题。馈线头的制作非常关键,馈线头安

装应严格按照规范来制作,制作馈线接头时,馈线的内芯不得留有任何遗留物。接头必须紧固无松动、无划伤、无露铜、无变型。一般在检查天馈系统时馈线

头安装存在问题最多,严重影响天馈系统质量。

(6)7/8〞馈线的长度及布放工艺。馈线的允许余量为3%,不宜过长,减小馈线

带来的功率损耗。馈线的单次弯曲半径应>30cm,馈线多次弯曲半径>45cm;馈线在布放、拐弯时,弯曲度应圆滑、无硬弯。并避免接触到尖锐物体,防止

划伤进水,造成故障;室外必须用黑扎带,室内必须用白扎带,绑扎时应整齐

美观、工艺良好。

(7)测试时所用的仪表精度或测试方法、测试环境等。在现场测试天馈系统时一般选用SiteMaster 仪器,测试时必须进行测试前仪表校准,避免产生测试误差。为了保证仪表测试准确,应定期将仪表送到国家相关部门检测。

2.解决天馈系统不匹配的方法

(1)把好天馈系统各器件质量关。天线、馈线、各种接头、避雷器和跳线等部件质量存在问题,比如说避雷器以上部分VSWR 也为1.24,避雷器的VSWR1.1,那么天馈系统的驻波为1.36(不考虑之间的插入损耗),如果选用的

避雷器VSWR 为1.05,则整个天馈系统的驻波就下降为1.3。

(2)严格控制安装工艺。做好各种接头;控制好连接接头的力量;馈线不打死弯、长度适中等在做馈线接头时,控制好连接接头的扭矩(一般扭矩为

25~30N.m),最好选用扭矩扳手。如果扭矩过大,会造成接头损伤,致使接

头严重不匹配;如果扭矩过小,接头松动,会产生三阶交调干扰,影响通信质量。

(3)检测天馈系统各器件组合匹配。一般在选用天馈线系统器件时,应做好安装前测试工作,首先进行各器件质量检测看其是否满足要求,其次进行各器件组

合测试,看其匹配情况是否满足要求。

(4)加强对天馈系统的维护。做好基站天馈系统日常维护工作对提高系统匹配至关重要。天馈线系统在运行时受到外力和天气影响,天馈线某部件质量有可能

变坏,增大整个系统不匹配程度。为了提高天馈系统质量,我们应加强日常维

护工作,尤其加强强风雨后的检测。

3.现场检测天馈线系统方法

通常在进行基站天馈线系统安装和维护时,一般都以驻波比检测来衡量天馈线系统匹配的好坏,必要时也须辅以测量基站设备的机顶功率及天线端口的功率来判定。考虑到现场检测的便捷性,主要应采用SiteMasterS311B 手持驻波比/回损故障定位测试仪,在没有该设备的情况下,才考虑使用矢量网络分析仪。以SiteMaster 为例,这时主要应用它的两种测量模式:频域和距离域测量。

频域测量包括驻波比(VSWR)、回波损耗(RL)和馈线损耗(CL)测量。驻波比(VSWR)、回波损耗(RL)是对天馈线好坏的量的描述,而馈线损耗(CL)是表示传输线在某频点的插入损耗。距离域测量通常称为(DTF)故障定位。它可以有回波损耗(RL)和驻波比(VSWR)两种表示形式。两者都可用来找出故障点。但馈线损耗(CL)不会出现在距离域。

通常在基站现场,对天馈线系统一般有以下几种测试:

(1)对新架设的基站,一般情况下,仅对天线+馈线的综合驻波比进行测量,这

时无论是采用SiteMaster 或采用矢量网络分析仪都是比较简单的;

(2)已经运行了一段时间的基站或开通后发现系统工作异常的基站,需要对天馈线系统可能存在的故障进行诊断,此时不仅要测量天线+馈线的综合驻波比,而且需要对天馈线系统进行可能的故障诊断。这时就需要启动SiteMaster 的距离域或矢量网络分析仪的时域测量;必须指出的是,在使用SiteMaster 时,一定要知道,馈线损耗(CL)的测量不能在距离域进行。而必须在频域测量模式下进行。否则就会产生错误。

4.测试案例

下面以一个基站天馈系统的检测为例。

图3 是天线输出端口的驻波比。通过检测天线本身驻波比的电气性能指标,看其测试结

果是否满足要求。(注意:在SiteMaster 校准时,将7/8〞转接头校准进去)

图3天线输出端口的驻波比

图4:是馈线输入端口的驻波比。通过该项测试,可以检测到天馈线系统驻波比,结合天线本身驻波比和馈线长度,看其天馈线系统驻波比测试值

是否符合要求。

图-4

天馈系统基本概念和天线安装规范

天馈系统基本概念和天线安装规范 天馈系统是无线网络规划和优化中关键的一环,包含天线和与之相连传输信号的馈线。天馈系统的各种工程参数在进行网络优化和规划时的设计是影响网络质量的根本因素。因此,理解、学习天馈系统的基本知识是非常重要的。下面就逐一介绍天馈系统的各种概念。 1)天线的基本概念 a)天线辐射电磁波的基本原理(基本电振子的场强叠加); 当导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。在理论上,如果导线无限小时,就形成线电流元, 线电流元又被称为基本电振子。在天线理论中,分析往往都是从基本电振 子开始的,因为任何长度的线天线都可以分解为许多无限小的线电流元; 而这些天线的辐射场强就是线电流元的场强叠加,因此,天线的辐射能力 是随着天线的长度变化而变化的。 根据麦克斯韦方程,考虑线电流元远区场(辐射区)的情况,当两根导线的距离很接近时(左下图),两导线所产生的感应电动势几乎可以 抵消,因此此时产生的总的辐射变得微弱。但如果将两根导线张开(右下 图),这时由于两导线的电流方向相同,由两导线所产生的感应电动势方 向也相同,因而此时产生的辐射较强。 当导线的长度L远小于产生的电磁波的波长时,导线的电流很小,因而所产生的辐射也很微弱.;而当导线的长度增大到可与波长相比拟时, 导线上的电流就显著增加,此时就能形成较强的辐射。我们把能产生较强 辐射的直导线称为振子。 当两根导线的粗细和长度相等时,这样的振子叫做对称振子。当振子的

每臂长度为四分之一波长,全长为二分之一波长时,称为半波对称振子(见下图)。当振子的全长与波长相等的振子,称为全波对称振子。将振子折合起来的,称之为折合振子。 对称振子是工程中用到的最简单的天线,它可以作为独立的天线使用,也可以作为复杂天线阵的组成部分或面天线的馈源。对称振子的方向性比基本电振子强一些,但仍然很弱。因此,为了加强某一方向的辐射强度,往往要把好几副天线摆在一起构成天线阵。在GSM 系统中,我们采用的就是各种类型的天线阵。 b) 天线的方向图和能量辐射方向的控制 在实际的工程中,我们往往需要天线只接受或只向某一个方向发射。因此,我们需要各种各样的具有方向性的天线。天线的方向性就是指天线向一定方向辐射电磁波的能力。对于接收天线而言,方向性表示天线对不同方向传来的电波所具有的接收能力。天线的方向性的特性曲线通常用方向图来表示.如下图所示,这就是工程意义上的典型的方向图。方向图又分为水平方向图和垂直方向图两种。 波长 1/2波长 一个1/2波长的对称振子 在 800MHz 约 200mm 长 400MHz 约 400mm 长

4.6 室外天馈系统

4.6 室外天馈系统 室外天馈系统包括天线、塔放、馈线、跳线和避雷器等,见图4-16。天线知识前面已有介绍,下面介绍一下塔放和馈线。 图4-16 室外天馈系统的组成 4.6.1 塔放 塔放从技术原理上是降低基站接收系统噪声系数,从而提高基站接收系统灵敏度。塔放对上行链路的贡献需根据塔放自身的低噪放大器性能来区分,而不能单看其增益的大小。一般增加了塔放的上下行平衡要根据其实际灵敏度的测试方法进行修正计算。 根据不同频段选用分频段或全频段的塔放。 三工塔放原理见图4-17。该塔放收发信共用(只需要一根馈管),有旁路功能(出故障时自动旁路,此时接收增益为约-2dB。)

图4-17 三工塔放原理 4.6.2 馈线 蜂窝系统整体设计中馈线选取很重要,由于暴露在室外环境中,电缆要能经受水的冲刷。电缆内部压入泡沫作绝缘介质,也可用空气作绝缘介质。空气绝缘的电缆弯曲后易造成短路,因此较少采用。 1. 馈线的使用 常用的馈线有两种,即7/8" 馈线和5/4" 馈线,使用情况如下: (1)GSM900的馈线: 长度小于80m时使用7/8" 馈线;长度大于80m时使用 5/4" 馈线。 (2)GSM1800 的馈线: 长度小于50m时使用7/8" 馈线;长度大于50m时使用 5/4" 馈线。 2. 几种馈线的插损等技术指标

3. 馈线的安装 馈线的安装应使所用的馈线最短和安装、维护方便;馈线弯曲的曲率应该参照馈线厂家的曲率要求。无论天线安装在塔上、屋顶和任何其它位置,其馈线在进入机房时,都应将馈线的外导体良好接地。 4.7 分布式天线系统 随着移动通信的发展,用户对服务质量的要求也随之提高,人们希望任何时候、任何地点都能通话,但由于在某些地点(如大型建筑物内、隧道及地铁等一些多阻挡的复杂区域),如果仅仅靠室外基站天线的覆盖,会有许多信号不能到达的盲点,使得通话中断;在某些区域,由于来自不同基站的信号都较强,会使得移动台频繁切换,从而导致通话中断,有人称之为乒乓效应。为了解决以上问题,产生了分布式天线系统。此外,还可以通过分布式天线系统,把通讯容量过剩小区的能力转移到另一个区域,解决系统容量分配问题。

GSM基站天馈系统优化案例(西安海天)

GSM基站天馈系统优化案例 西安海天天线科技股份公司 网络优化部 2005年1月

一.基站天馈系统优化的背景 (4) 二.基站天馈系统优化实例 (5) 2.1 覆盖问题 (5) 2.1.1 镜泊湖2号、3号基站 (5) 2.1.1.1镜泊湖2号基站优化前(RxLev-Sub)覆盖图 (6) 2.1.1.2镜泊湖2号基站优化后电(RxLev-Sub)覆盖图 (7) 2.1.2 虎峰岭基站 (7) 2.1.2.1 虎峰岭基站优化前电平(RxLev-Sub)覆盖图 (8) 2.2.2.2 虎峰岭基站优化后电平(RxLev-Sub)覆盖图 (9) 2.1.3 八道沟基站(天线选型不当\造成覆盖问题) (9) 2.2 干扰问题 (11) 2.2.1 正定县城2号基站 (11) 2.2.1.1 正定县城2号基站优化前电平(RxLev-Sub)覆盖图 (13) 2.2.1.2 正定县城2号基站优化后电平(RxLev-Sub)覆盖图 (13) 2.2.1.3 正定县城2号站优化前质量(RxQual-Sub)分布图 (14) 2.2.1.4 正定县城2号站优化后质量(RxQual-Sub)分布图 (14) 2.2.2 白城移动大楼基站 (15) 2.2.1.1优化前、后话音信道掉话率对比 (16) 2.2.3永嘉殴北基站 (17) 2.2.3.1测试的问题区域RxQual_Sub分布图(调整前) (18) 2.2.3.2测试的问题区域RxQual_Sub分布图(调整后) (18) 2.3 越区覆盖 (19) 2.3.1 枢纽楼基站 (19) 2.3.1.1优化前卧虹桥路段信号电平覆盖图(RxLev_Sub) (20) 2.3.1.2优化后卧虹桥路段信号电平覆盖图(RxLev_Sub) (21) 2.4 话务均衡 (21) 2.4.1 北山\长白基站 (21) 2.4.1.1 优化前该路段覆盖电平覆盖图(RxLev_Sub) (23)

移动通信的基本概念

移动通信的基本概念 1.移动通信:是指通信双方或至少一方可以在运动中进行信息交换的通信方式。 2.自由空间:是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收,也不发生反射、折射、绕射和散射等现象。3.单工通信:指通信双方设备交替地进行收信和发信。根据通信双方是否使用相同频率,单工制又分为同频单工和双频单工。双工通信:也叫全双工通信,指通信双方收发信机均同时工作。即一方讲话的同时也可以听到对方的讲话,双工制一般使用一对频道。半双工通信:通信双方有一方使用双工方式,而另一方则采用双频单工方式。 4.小区制:是把整个服务区域划分为若干个小区,每个小区分别设置一个基站,负责本区移动通信的联络和控制。同时,又在移动业务交换中心的统一控制下,实现小区之间移动通信的转接以及移动用户与市话用户的联系。 5.小区:指基站使用不同的电磁波覆盖不同的区域,即分为不同的小区,通常一个基站分为三个小区。 6.相邻小区(邻区):两个覆盖有重叠并设置有切换关系的小区,一个小区可以有多个相邻小区。 7.频率复用:相同的频率可以用于覆盖不同的小区,只要这些小

区两两相隔的距离足够远,相互间的干扰就可在接受的围之,这一为整个系统中所有基站选择和分配频率的设计过程叫做频率复用或频率规划。 8.切换(Handover):当移动用户处于通话状态时,如果出现用户从一个小区移动到另一个小区的情况,为了保证通话的连续,系统要将对移动台的连接控制也从一个小区转移至另一个小区。这种将正在处于通话状态的移动台转移到新的业务信道上(新的小区)的过程称为切换。 9.漫游:指移动用户离开了其归属的局而到其它交换局管辖围登记成为移动用户。 10.切换发生的原因:信号的强度或质量,下降到由系统规定的一定参数以下,此时移动台被切换到信号强度较强的相邻小区,这种切换一般由移动台发起。由于某小区业务信道容量全被占用或几乎全被占用,这里移动台被切换到业务信道较空闲的相邻小区,这种一般由上级实体发起。切换与漫游的目的是实现蜂窝移动通信的“无缝隙覆盖”。 11.载波:基站用于传送信息的电磁波的频率。 12.信道(Channel):移动通信中移动台与基站之间的信息通道,分物理信道和逻辑信道。 13.信道号:移动通信使用载频所对应的信道编号。 14.物理信道:是指一个时隙(约577us,156.25个比特)。在GSM900频段的上行(890~915MHz)或下行(935~960MHz) 频率

移动通信天馈系统

一引言 (2) 二基站天馈系统组成及匹配原理 (2) 1 基站天馈系统的组成 (2) 2.匹配原理 (3) 三天馈系统不匹配对移动通信系统的影响 (4) 1.不匹配对发射功率的影响 (4) 2.不匹配对通信质量的影响 (4) 3.不匹配对基站设备的影响 (4) 四影响天馈线系统匹配的主要因素及解决方法 (4) 1.影响天馈线系统匹配的主要因素 (4) 2.解决天馈系统不匹配的方法 (5) 3.现场检测天馈线系统方法 (5) 4.测试案例 (6)

i n t h e i r b e i n 移动通信天馈系统 天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系统的影响,最大限度发挥天馈系统的性能。 一 引言 天馈系统是指天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化和水平极化。 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。天馈系统主要包括天线和馈线系统两大类。 二 基站天馈系统组成及匹配原理 基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 1 基站天馈系统的组成 图1 是基站天馈系统示意图,其组成主要包括以下几部分: (1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线; (2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2馈线,长度一般为3m 。

无线基站室外天馈系统接地

一. 无线基站室外天馈系统接地 (1)室外馈线接地应先去除接地点氧化层,每根接地端子单独压接牢固,并使用防锈漆或黄油对焊接点做防腐防锈处理。馈线接地线不够长时,严禁续接,接地端子应有防腐处理。 (2)馈线的接地线要求顺着馈线下行的方向,不允许出 现“回流”现象;与馈线夹角以不大于15°为宜。 (3)天线安装在铁塔上时,室外部分馈线超过30m 时,至少应有三点接地,即离开天线平台后1m范闱内、离开塔体引至室外走线架前1m范围内和馈线离馈线窗外1m范围内各一次。 (4)如铁塔高度超过60m,馈线应在铁塔中部增加一处接地。 (5)灭线安装在建筑屋顶抱杆并在建筑物屋顼上布放 馈线时,从馈线离丌塔顶放大器TM Bl m处、馈线离开楼顶平台 1m处、馈线进入机房l m处三点接地。 (6)当馈线较短时,可采用一点或两点接地,原则是:馈线长度小于5m时采用一点接地,馈线长度小于20m,大于5m时,可采用两点接地,其他要求不少于三点接地。 (7)若馈线离开铁塔或抱杆后,在楼顶或走线架上布放一段距离后再入审,且这段距离超过20m时,应在楼顶或走线架上每隔20m加一避雷接地夹。 (8)馈线地线必须与接地排或塔体良好接地,不得悬窄不接;在不具备接地铜排的铁塔上,可以使馈线接地端子和塔 放的接地端子分散固定在塔体上,每固定点不得超过2个端子,同时要打磨固定点,去掉镀漆层,做到可靠连接。 (9)所有室外馈线接地卡处均应按规范正确作防水密封处理。 (10)避雷针或与避雷针有电气连接的金属抱杆,应采用直径不小于95ra nl。、多股铜导线或40×4mm的镀锌扁钢可靠接地,严禁采用铝线。 (11)镀锌扁钢接地时,推荐焊接长度不小于100r am,以确保搭接电阻小于0.1Ω。 (12)避雷针与天馈抱杆绝缘安装时,两者在楼项避雷带上的接地点相距5m以上。 (13)塔顶放大器应与抱杆安装牢固,并作可靠的电气连接。 (14)防雷箱的保护地采用截面积不小于1m m2 的股铜线接到接地铜排。 (15)室外信号电缆应采用铠装屏蔽线缆或 穿钢管。屏蔽层两端应接地。 (16)采用钢管时,钢管间的接头采用螺纹连接,连接时中问不町使用绝缘措施,以确保铡管之间的可靠连接(两管间接触电阻<1Ω)。

天馈系统

天馈系统 天馈系统是指天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化和水平极化。 天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。 天馈系统主要包括天线和馈线系统两大类。 天线主要包括 a) 吸盘天线:价格适中、安装方便、增益适中,适合于安装在移动车辆上,或吸附在金属物体上。一般增益在2.6dB、5 dB等几种。

b) 防盗天线:价格适中、安装方便、增益同吸盘天线,安装在金属箱体外时从箱体外无法拆除,故名为防盗天线。 c) 低增益全向天线:增益为3.5dB,安装需有固定支架,适合远距离多点传输。 d) 高增益全向天线:增益为8.5dB,安装需有固定支架,适合远距离多点传输。 e) 定向天线:增益很高,为12dB,安装需有固定支架,适合远距离固定方向传输。馈线主要包括 a) 50―3(阻抗50Ω,截面3)的馈线损耗为0.2dB/m. b) 50―7(阻抗50Ω,截面7)的馈线损耗为0.1dB/m c) 50―9(阻抗50Ω,截面9)的馈线损耗为0.07dB/m。 馈线是连接电台与天线的重要设备。不同粗细、不同质量的馈线对通信距离会产生很大的影响。 信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。 因此,应合理布局尽量缩短馈线长度。 电馈系统原理 传输线的特性阻抗 无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。同轴电缆的特性阻抗的计算公式为:Z0=〔60/√εr〕×Log ( D/d ) [ 欧] 式中:D 为同轴电缆外导体铜网内径;d 为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数。通常Z0 = 50 欧,也有Z0 = 75 欧的。由公式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关. 介质损耗 信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。

2G天馈系统组成

基站天馈系统 参见基站天馈系统示意图,其中主要包括以下几部分: 用于调整天线的俯仰角度,范围为:0°~15 °; (2)室外跳线 用于天线与7/8〞主馈线之间的连接。常用的跳线采用1/2 〞馈线,长度一般为3米。 (3)接头密封件 用于室外跳线两端接头(与天线和主馈线相接)的密封。常用的材料有绝缘防水胶带(3M2228)和PVC绝缘胶带3M33+)。 (4)接地装置(7/8〞馈线接地件) 主要是用来防雷和泄流,安装时与主馈线的外导体直接连接在一起。一般每根馈线装三套,分别装在馈线的上、中、下部位,接地点方向必须顺着电流方向。(5)7/8〞馈线卡子 用于固定主馈线,在垂直方向,每间隔1。5米装一个,水平方向每间隔1米安装一个(在室内的主馈线部分,不需要安装卡子,一般用尼龙白扎带捆扎固定)。常用的7/8〞卡子有两种;双联和三联。7/8〞双联卡子可固定两根馈线;三联卡子可固定三根馈线。 (6)走线架 用于布放主馈线、传输线、电源线及安装馈线卡子。 (7)馈线过窗器 主要用来穿过各类线缆,并可用来防止雨水、鸟类、鼠类及灰尘的进入。

(8)防雷保护器(避雷器) 主要用来防雷和泄流,装在主馈线与室内超柔跳线之间,其接地线穿过过线窗引出室外,与塔体相连或直接接入地网。 (9)室内超柔跳线 用于主馈线(经避雷器)与基站主设备之间的连接,常用的跳线采用1/2〞超柔馈线,长度一般为2~3米。 由于各公司基站主设备的接口及接口位置有所不同,因此室内超柔跳线与主设备连接的接头规格亦有所不同,常用的接头有7/16DIN型、有N型。有直头、亦有弯头。 (10)尼龙黑扎带 主要有两个作用: a.安装主馈线时,临时捆扎固定主馈线,待馈线卡子装好后,再将尼龙扎带剪断去掉。 b.在主馈线的拐弯处,由于不便使用馈线卡子,故用尼龙扎带固定。室外跳线亦用尼龙黑扎带捆扎固定。 (11)尼龙白扎带 用于捆扎固定室内部分的主馈线及室内超柔跳线。

天馈系统的安装流程

天馈系统的安装流程 一、天馈系统安装前的准备 1、基站环境的检查 2、货物的检查 3、工具的准备 4、人员准备 二、天线的组装与安装 1、天线的组装 2、天线的安装 三、馈线布放 1、馈线卡安装 2、馈线头制作 3、馈线布放 4、进馈窗 5、接地制作 6、防水制作 四、自检

一、天馈系统安装前的准备 1、基站环境的检查 在天馈系统安装前,需先就基站的环境进行检查,也就是对施工环境的检查。 1.1 铁塔、抱杆、增高架的检查 检查铁塔平台上、增高架上是否具有天馈安装的抱杆,检查抱杆是否固定牢靠。 1.2 走线架的检查 检查室外走线架是否安装,是否符合要求。 1.3 馈窗的检查 检查馈窗是否有足够的馈线穿线孔供馈线布放使用。 1.4 室内馈线走线位置的检查 检查室内走线架机柜位置,以确定每个扇区的馈线线序。 1.5 安全检查 检查馈窗入线后是否有障碍物。 1.6 确定馈线的长度 馈线的长度以实际长度多预留3%为宜。 2、货物的检查 2.1 天线的检查 打开天线外包装,检查天线表面有无裂缝,接头有无撞坏的痕迹等。若有损伤,应更换天线。 2.2 馈线的检查 检查馈线是否在运输有划伤、变形,若有损伤、变形,应更换馈线。 2.3 附件的检查 检查馈线头、馈线卡是否足够、是否有损坏,1/2跳线是否足够、是否有破损,胶泥、胶带、扎带是否足够使用。 3、工具的准备 滑轮、大绳、罗盘、角度仪、馈线刀、钢锯、32开口扳、13开口扳、大、小开口扳、安全带、安全帽、斜口钳、壁纸刀、内六方、平挫、工具包。 4、人员的准备 人员不许穿宽松衣服及易打滑的鞋;天馈安装现场所有人员必须头戴安全帽;高空作业人员必须佩带安全带。 二、天线的组装与安装 1、天线的组装 1.1 全向天线的组装 (1) 装配全向天线的两个固定夹。 (2) 紧固与天线配合的部分,如图

天馈系统故障处理

天翼网络天馈系统故障处理案例分析 ---连江天馈故障维护经验 一、实施背景 CDMA网络天馈系统的主要功能是作为射频信号发射和接收的通道,将基站调制好的信号有效地发射出去,并接收UE发射的信号。天馈子系统主要包括天线,馈线,跳线和塔放等,天线的类型,增益,覆盖方向,前后比都会影响系统性能,馈线,跳线与天线间的传输损耗也都影响信号的发射和接收,所以天馈系统性能的好坏直接影响了网络的性能和质量。 二、案例主要内容 连江荷山中学基站第2小区出现驻波比告警,派维护人员去处理,到现场测得驻波值1.8,已超过门限值,所以网管收到射频驻波告警,处理后,测得驻波最大值为1.2,告警消失。但几小时后,该小区射频驻波告警再次出现,用DSP VSWR测试仪查得其驻波值,结果VSWR=10。再回到现场检查,天线系统完好,用site master 测得驻波值1.2,告警信息与实际测量值不相符。 三、主要成效 当基站产生射频驻波告警时,表征从WRFU的输出端口一直到天线整个天馈系统处于匹配不良状态,与正常状态相比,上下行的信号功率都会受到额外的衰减,甚至导致上下行链路的中断。 告警可能原因如下:

1.馈线,跳线接头质量不良导致连接处的驻波值异常高。 2.跳线连WRFU的接头拧的不紧导致连接处的驻波值异常高。 3.因来料质量原因或安装时弯曲半径太小,超过要求而引起的跳线内外导体断裂,导致连接处的驻波值异常高。 4.因下雨导致天线内部进水,引起天线的驻波值异常高。 5.因接头处防水处理不当导致下雨时连续进水,导致连接处的驻波值异常高。 6.在天线,跳线,馈线等固定得不是很牢固的情况下,因台风等原因引起连接松动,导致连接处的驻波值异常高。 7.天线接收到异常高的干扰信号,可能出现RTWP上升的情况引 起驻波检测误差过大,会产生驻波误告警。 8.告警门限设置不合理,导致误告警。 处理过程: 1.检测天馈系统。发现室内外馈线都完好,无被破坏的现象。 2.关闭功放,用site master的频域测得该小区的最大驻波值为1.2,小于门限值1.5。 3.检查周围有无干扰源,但没有发现有任何其他有源器件。 4.查看天馈有无经过合路器,发现该站原来是电信和联通共天线站点。于是猜测可能是有人动过该小区的天馈。 5.查看机房进出记录,发现果然有G网维护人员进出过。查其原因,原来也是来处理第一小区的驻波告警。

天馈系统不匹配

天馈系统不匹配对移动通信的影响及解决方法 天馈系统不匹配对移动通信的影响及解决方法 天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系 统的影响,最大限度发挥天馈系统的性能。 一、基站天馈系统组成及匹配原理 基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 1.基站天馈系统的组成 其组成主要包括以下几部分: (1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线; (2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2″馈线,长度 一般为3m; (3)主馈线,目前用于移动基站的馈线主要有7/8″馈线、5/4″馈线、15/8″馈线; (4)接头密封件,用于室外跳线两端接头(与天线和主馈线相接)的密封,常用的材料 有绝缘防水胶带(3M2228)和PVC绝缘胶带(3M33+); (5)室内超柔跳线,用于主馈线(经避雷器)与基站主设备之间的连接,常用的跳线采 用1/2〞超柔馈线,长度一般为2~3m; (6)其他配件,主要有接地装置(7/8〞馈线接地件)、7/8〞馈线卡子、走线架、馈线 过窗器、防雷保护器(避雷器)、各种尼龙扎带等。 2.匹配原理

所谓匹配就是馈线终端所接负载阻抗Z等于馈线特性阻抗Z。匹配原理是在传输系统中的阻抗不连续处引入匹配设备,在原来的不连续的基础上而引入另一种不连续性,使它产生的反射波,正好与原来的反射波干涉抵消,从而达到阻抗匹配。当使用的终端负载是天线时,如果天线振子较粗,输入阻抗随频率的变化就较小,容易和馈线保持匹配,这时振子的工作 频率范围就较宽。反之,则较窄。 在实际工作中,天线的输入阻抗还会受周围物体存在和杂散电容的影响。为了使馈线与天线严格匹配,在架设天线时还需要通过测量,适当地调整天线的结构,或加装匹配装置。 天馈系统匹配性能好坏一般用反射系数或驻波比的大小来衡量,通常采用驻波比。终端负载阻抗和特性阻抗越接近,反射系数越小,驻波比越接近于1,匹配也就越好。 二、天馈系统不匹配对移动通信系统的影响 https://www.doczj.com/doc/344753586.html,*中国网管博客 在移动通信系统中,天馈系统对系统的影响最为敏感和直接,而天馈系统匹配好坏对移动通信质量的影响尤其显著,概括起来主要有以下几个方面。 1.不匹配对发射功率的影响 当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻 抗。 而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。其结果是降低了发射机的有效功率,缩小了单基站的有效覆盖面积。 2.不匹配对通信质量的影响 天馈线系统不匹配会对基站覆盖、手机语音质量、无线数据速率产生一定影响,一般手机会出现接收电平低、回声、上网速度慢等现象。 3.不匹配对基站设备的影响 天馈线系统不匹配对基站功放器件寿命影响比较大,馈线的回波电压过大加快基站功放器件老化,天馈线系统严重不匹配时会使功放器件烧毁。

基站天馈线系统介绍

1.1天线分系统 对于1-4载频3扇区配置,天线分系统的设计是一样的,即采用6付天线,每一扇区2付天线,通过收发共用方式完成射频信号的发射,接收和分集接收的功能。 天馈系统主要包括基站天线、主馈线、跳线、避雷器、及相关天馈附件等,连接示意图如下所示: 图三扇区定向站天馈子系统组成框图 1.1.1基站天线 天线的选型通常根据实际网络规划的要求而定的。基站天线一般有两大类: ?全向天线 ?定向天线。 全向天线为偶极子天线,采用玻璃钢外套封装。 定向天线为板状天线,采用多馈源结构,增益一般为18dBi以上。在3扇区结构中,天

线水平波瓣宽度推荐采用65度,以减少扇区之间的干扰。 2种天线的外观都非常简单,如下图所示: 图全向天线和平板天线 天线的功能描述为: ?对前向链路而言,基站天线是整个BTS的最后端,将已调的模拟前向信号发射到对 应的区域; ?对于反向链路而言,基站天线是最前端,将MS发射的信号接收进来。 输入输出接口 采用单垂直极化基站天线,其输入输出为DIN-F型连接器。 设计要求 ?定向天线: 工作频率范围:1850~1990MHz,824-894MHz 输入阻抗:50Ω 功率容量:≥300W 极化方式:垂直线极化;双倾斜45?极化 输入驻波(VSWR): ≤1.40 水平波瓣宽度(3dB):65?±2.5?;90?±2.5?;105?±2.5?(根据实际网络规划决定) 俯仰波瓣宽度(3dB): 7?~15? 波束控制:俯仰面机械可调,下倾角0?~10? 旁瓣抑制:≥15dB 零点衰落:≥25dB 前后比(F/B):≥25dB 天线增益(Gain): 12.5dBi~18dBi(根据实际网络规划决定) 天线形式:平板天线机械调节(电调节) 三阶互调IMD@2?43dBm: ≤-120dBc

无线通讯系统-基础知识

无线通讯系统 基础知识 一、基本概念 二、电波传输 三、通讯系统中的干扰 四、中继台的关键技术参数与天馈系统 济南欧卡通信科技有限公司

一、基本概念 1、技术体制 FDMA 频分多址专业无线通信 调制类型:16K0F3E (最高音频3KHz+最大频偏5KHz)×2=16KHz 占用带宽: 频分多址是把通讯系统的总频段划分成若干个等间隔的频道,或称信道,分配给不同的用户使用,这些频道互不交叠,其宽度应能传输一路数字语言信息,而相邻的频道之间无明显的串扰,这种通信系统的基站必须同时发射和接收不同频率的信号,任何两个移动用户之间进行通信,都必须经过基站进行中转,因而必须同时占有四个频道才能实现双工通信,不过手机在通信时所占的频道并不是固定指配的,它通常是通信建立阶段由系统控制中心临时分配的,通信结束后,移动台将退出它占有的频道,这些频道可以重新分配给别的用户使用 TDMA 时分多址MOTOTRBO摩托罗拉数字通讯产品 中国移动GSM手机 时分多址的优点:频率利用率高(约为FDMA的4倍) 保密性好 时分多址是把时间分割成周期性的帧(Frame)每一个帧再分割成若干个时隙向基站发送信号,在满足定时和同步的条件下,基站可以分别在各时隙中接收到各移动终端的信号而不混扰。同时,基站发向多个移动终端的信号都按顺序安排在予定的时隙中

传输,各移动终端只要在指定的时隙内接收,就能在合路的信号中把发给它的信号区分并接收下来。 TDMA 较之FDMA 具有通信口号质量高,保密较好,系统容 量较大等优点,但它必须有精确的定时和同步以保证移动终端和基站间正常通信,技术上比较复杂。 CDMA 码分多址 中国联通CDMA 手机 码分多址通信系统中,不同用户传输信息所用的信号不是靠 频率不同或时隙不同来区分,而是用各自不同的编码序列来区分,或者说,靠信号的不同波形来区分。如果从频域或时域来观察,多个CDMA信号是互相重叠的。接收机用相关器可以在多个CDMA信号中选出其中使用预定码型的信号。其它使用不同码型的信号因为和接收机本地产生的码型不同而不能被解调。它们的存在类似于在信道中引入了噪声和干扰,通常称之为多址干扰 2、 分贝(dB ) 分贝表示一种单位,即两种电或声功率之比或两种电压或电流值或类似声量之比;分贝还是一种测量声音相对响度的单位。 这是无线电领域中常用到的一个术语由此派生出dBm 、dBw 、dBv 、dB μv 、dBd 、dBi ……等一系列术语。该术语的引用主要为了计算方便,即利用数学对数原理,将乘除法运算简化为加减法的运算。常用的分贝有dBm 、dBw 、dB μv ,分别定义如下: odBm=1mw 【来由 10lg = odBm 】 1mw 1mw (参照值)

天馈系统介绍

移动通信天馈系统 天馈系统是移动通信系统的重要组成部分,其性能优劣对整体移动通信质量的影响至关重要。根据移动网运行质量统计结果分析,造成移动通信质量指标下降的主要原因来自天馈系统(约占一半以上),而在天馈系统中最为重要的指标就是匹配。因此,我们在无线网络建设和日常维护中,必须高度重视对天馈系统性能的检查,减小天馈系统器件间不匹配对系统的影响,最大限度发挥天馈系统的性能。 一、基站天馈系统组成及匹配原理 基站天馈系统分为天线和馈线系统。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 1.基站天馈系统的组成 图1是基站天馈系统示意图,其组成主要包括以下几部分: (1)天线,用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线; (2)室外跳线,用于天线与7/8〞主馈线之间的连接,常用的跳线采用1/2″馈线,长度一般为3m (3)主馈线,目前用于移动基站的馈线主要有7/8″馈线、5/4″馈线、15/8″馈线; (4)接头密封件,用于室外跳线两端接头(与天线和主馈线相接)的密封,常用的材料有绝缘防水胶带(3M2228)和PVC绝缘胶带(3M33+);

(5)室内超柔跳线,用于主馈线(经避雷器)与基站主设备之间的连接,常用的跳线采用1/2〞超柔馈线,长度一般为2~3m; (6)其他配件,主要有接地装置(7/8〞馈线接地件)、7/8〞馈线卡子、走线架、馈线过窗器、防雷保护器(避雷器)、各种尼龙扎带等。 2.匹配原理 所谓匹配就是馈线终端所接负载阻抗Z等于馈线特性阻抗Z。匹配原理是在传输系统中的阻抗不连续处引入匹配设备,在原来的不连续的基础上而引入另一种不连续性,使它产生的反射波,正好与原来的反射波干涉抵消,从而达到阻抗匹配。当使用的终端负载是天线时,如果天线振子较粗,输入阻抗随频率的变化就较小,容易和馈线保持匹配,这时振子的工作频率范围就较宽。反之,则较窄。 在实际工作中,天线的输入阻抗还会受周围物体存在和杂散电容的影响。为了使馈线与天线严格匹配,在架设天线时还需要通过测量,适当地调整天线的结构,或加装匹配装置。 天馈系统匹配性能好坏一般用反射系数或驻波比的大小来衡量,通常采用驻波比。终端负载阻抗和特性阻抗越接近,反射系数越小,驻波比越接近于1,匹配也就越好。 二、天馈系统不匹配对移动通信系统的影响 在移动通信系统中,天馈系统对系统的影响最为敏感和直接,而天馈系统匹配好坏对移动通信质量的影响尤其显著,概括起来主要有以下几个方面。 1.不匹配对发射功率的影响 当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。 而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。入射波的一部分能量反射回来形成反射波。其结果是降低了发射机的有效功率,缩小了单基站的有效覆盖面积。 2.不匹配对通信质量的影响 天馈线系统不匹配会对基站覆盖、手机语音质量、无线数据速率产生一定影响,一般手机会出现接收电平低、回声、上网速度慢等现象。 3.不匹配对基站设备的影响 天馈线系统不匹配对基站功放器件寿命影响比较大,馈线的回波电压过大加快基站功放器件老化,天馈线系统严重不匹配时会使功放器件烧毁。

无线网络的天馈系统技术特点的分析

无线网络的天馈系统技术特点的分析 天馈技术是,通过在AP上延伸出长距离的电缆和吸顶天线,来扩展无线信号覆盖范围。一般一层楼,甚至多层楼只部署一个AP,然后通过延长电缆和吸顶天线充当延长天线,将无线覆盖到楼内其它地方。 ●天馈技术的优点: 1)由于一层楼,只部署一个AP发射器,将降低无线网络的部署成本; 2)天馈天线可以支持手机信号的延伸,可以将WIFI信号和GSM、3G信号共用一个天线延伸。 ●天馈技术的不足: 1)“天馈系统”技术从根本来讲,相当于“无线HUB”,一般一个楼层只部署一个AP,所有的楼层无线终端用户,都集中在一个AP接入,共 享一个无线带宽;而且天馈系统对WIFI带宽损失严重。当一个楼层用 户并发超过30个时候,平均每个用户并发带宽仅2.5M左右; 2)无线带宽损失严重。按目前支持无线最大带宽的802.11n协议的AP,理论带宽为300M。由于“天馈系统”只有一根天线,不支持802.11n的 MIMO双天线技术,所以带宽损失一半,只有150M。 3)无线信号衰减严重,合路的技术思路是将WLAN的无线射频信号通过合路器馈入室内GSM、3G覆盖系统,各频段信号共用天馈进行覆盖。由于 采用将多频段信号合路到一个天线上,实际信号要衰减30%~50%。见 下图:

4)在此种情况下,未来用户数量增加或者是进行多媒体业务,比如大图像传输、高清视频编辑和无线采播、编播系统,无线审片系统等应用, 时会面临很大的无线带宽瓶颈。 5)无法实现无线定位,“无线三角定位”需要一层楼至少三颗AP,而天馈技术,一层楼AP最多为一颗,是无法实现无线定位功能。对于的“贵 重资产定位管理”、“访客安全定位管理”、非法入侵无线信号定位, 等应用都无法实现; ●中央电视台的无线技术选择: 中央电视台新办公大楼(北京东三环“裤衩楼”),因为涉及到中央电视台业务用的无线办公系统(无线OA、无线wifi语音、无线编审片等),所以承建方北京网通也采用了“AP独立部署”的方式,而不是传统的“天馈系统”接入方式。 其主要是担心的就是“天馈线系统”部署方案,无线带宽和通信质量无法满足未来央视的多媒体无线业务需求。 ●北京国际机场的无线技术选择: 北京国际机场为提供旅客使用的的无线网络接入(Airport Free WiFi)和员工管理使用的无线网络,专门组织中国移动北京分公司在机场的做无线WLAN 测试。 当采用“天馈系统”接入部署测试的时候,见下图:

基站天馈系统

项目主题:天馈系统的组成及对各部分的要求 1 天馈系统的组成及对各部分的要求 基站天馈系统分为天线、馈线系统和馈线系统支撑、固定、保护装置。天线本身性能直接影响整个天馈系统性能并起着决定性作用;馈线系统在安装时匹配好坏,直接影响天线性能的发挥。 图1 天馈系统示意图 (1)馈线(Feeder) 馈线:是在发射设备和天线之间传输信号的导线。均匀的特性阻抗和高回损是馈线最重要的传输特征。按特点:标准型馈线,低损耗型馈线,超柔型馈线(2)跳线 机顶跳线:NodeB与主馈之间,一般使用 2m的1/2 "超柔跳线; 天馈跳线:天线与主馈线,一般使用3m的 1/2 "的超柔跳线; (3)合路器(Combiner) 合路器:是将两种或多种不同频段制式的信号合路的射频器件;合路器的插损一般小于0.6dB;插损是指接入某一器件而在传输线路上带来的衰减; (4)电桥(Hybrid Coupler) 电桥:是同频段的合分路器,主要用于基站不同载频的合路。其输入端口以及输出端端口之间的隔离度都大于20dB以上。 (5)塔放(TMA)

塔顶放大器:是一个低噪声放大器,安装在天线的下面,补偿上行信号在馈线中的损耗,从而降低系统的噪声系数,提高基站灵敏度,扩大上行覆盖半径。主要用于解决移动通信基站上行覆盖受限。 TMA弥补馈线损耗,降低基站合成噪声系数,改善上行覆盖。建议在馈线长度超过50m,使用塔放,可以补偿馈线损耗3dB左右。 塔放为塔顶设备,选用塔放使系统可靠性有所降低,维护存困难增加。增加天馈下行通道的插损,使下行可用有效功率降低,影响下行覆盖。 (6)避雷器 工作原理与带通滤波器类似:在工作频段,相当于在主同轴线并连了一个无限大阻抗;而在闪电最具破坏能力的100kHz或更低频段,表现出频率选择性,具有很强的衰减,使其破坏性的能量转向接地装置而不致对设备造成损害。 (7)接头、馈线卡、接地线 N型系列接头:是一种具有螺纹连接结构的中大功率连接器,具有抗振性强、可靠性高、机械和电气性能优良等特点,广泛用于振动和环境恶劣条件下的无线电设备和仪器中连接射频同轴电缆用。 馈线卡一般用来固定馈线位置,保证馈线的安装可靠和美观等,馈线卡一般根据孔位划分为两联馈线卡和三联馈线卡。 馈线和天线设备等会应用到接地卡,起到安全和防雷作用 (8)天线 用于接收和发送无线信号,常见的有单极化天线、双极化天线和全向天线;

天馈系统

一、天馈系统安装规范: (一)天线: 1、抱杆: 安装天线的载体,其安装位置应距塔身距离(全向)>3米,定向>1米,接地、固定都应符合要求。抱杆的高度应比天线长10cm以上。抱杆垂直度、方位角符合设计要求。 2、天线的安装要求: 基站使用的天线规格、型号符合设计要求,天线安装的俯仰角、方位角正确(使用罗盘等工具测量。一般情况下方位角偏差不能大于5度;俯仰角必须符合设计或局方要求),天线的软跳线应与塔抱杆使用专用扎带连接牢固。 (1)在天线的直线距离400M内无障碍物。 (2)GSM900系统两接收天线间距4M和DCS1800间距大于2M。 (3)铁塔的避雷装置应符合要求,所装天线应置避雷针的450保护范围内。 (4)全向天线要求铁塔塔身间距不小于2米,定向天线要求不小于0.5米;全向天线底部抱箍与抱杆底部相持平,定向天线顶部应比抱杆顶部低10cm以上。 (5)天线安装要求垂直,其高度、倾角、方位角及小区位置必须于频率规划(设计)一致。 (6)同一扇区两天线间隔>4米,邻扇区天线间隔>1米。 (7)同一水平面天线与其他设备天线间隔>8米,同一垂直天线与其它设备天线的间隔>2米。 3.GPS天线安装标准 (1)GPS天线安装应牢固,应用螺栓固定。所有外部接头都必须使用黑色防水胶带保护,胶带需将接头全部覆盖,并在接头两端延长 5 厘米,中间不能有缝隙。 (2)GPS 天线应与地平面垂直,夹角应为90°± 2° (3)GPS天线安装在铁塔上,应距铁塔边缘0.5米,应在铁塔南侧(北半球或与铁塔平行),以保证GPS天线至少可以接收四颗卫星。 (4)GPS 天线在所属区域不是最高点。 (5)GPS天线不能安装在铁塔顶端。

天馈系统安装规范(修订版)

西安海天天线科技股份有限公司天馈系统安装规范 天馈系统安装规范(GSM/CDMA) 西安海天天线科技股份有限公司 2002年12月

郑重声明: 为确保通信网络的运行质量和天馈系统的规范化安装,特制定以下安装规范,要求海天公司工程人员在有关天馈系统的安装和服务工作中严格遵守;同时,凡使用海天公司天馈产品的单位,在自行安装时也必须严格遵循以下安装规范,否则由于安装不规范所引起的质量事故,海天公司概不承担任何法律和经济责任。 西安海天天线科技股份有限公司 2002年12月15日一.天支(抱杆) 1.天支的位置应与设计相符。 2.天支应保证施工人员安装天线、馈线、跳线时的安全和方便。3.天支安装必须垂直。(允许误差0.5°) 4.全向站天支到塔身的距离应大于3米。 5.定向站天支应符合定向天线安装距离要求(且使用标准天支、天支长3米)。 二.天线安装 1)全向天线 1.铁塔顶平台安装全向天线时,天线水平间距必须大于4m。

2.全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m。 3.同平台全向天线与其它天线的间距应大于1.5m。 4.上下平台全向天线的垂直距离应大于1m。 5.天线的固定底座上平面应与天支的顶端平行。(允许误差±5cm) 6.全向天线安装时必须保证天线竖直。(允许误差±0.5°) 7、天线的接口是天线和跳线的连接口,并非承重口。安装时不能直接和7/8″馈线连接,应先与1/2″跳线连接,再连接7/8″馈线。 严禁用天线和7/8″馈线直接相连,并用天线吊装馈线 选用1/2″跳线时,根据铁塔及安装平台的规格选用1.5米、 2.0米、 3.0米、5.0米、6.0米等相应规格的1/2″跳线,以确 保网络优化中天线的方位角和俯仰角有充足的调整余地。 2)定向天线 1.同一小区两单极化天线在辐射方向上间距应大于4m。(最小不小于3.5m) 2.相邻小区间两天线间距应大于0.5m。 3.上下平台间天线垂直分极距离应大于1m。 4.天线安装完成后,必须保证(定向)天线在辐射面方向上天线的水平瓣宽角度范围内,无任何障碍物阻挡或影响。 5.应确保同一小区两面单极化天线的方位角和俯仰角相同(方位角

相关主题
文本预览
相关文档 最新文档