当前位置:文档之家› 导热系数测量实验报告

导热系数测量实验报告

导热系数测量实验报告
导热系数测量实验报告

导热系数测量实验报告

篇一:导热系数实验报告

实验用稳态平板法测定不良导体的导热系数实验报告

一、实验目的.

(1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材.

实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理.

导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为

dT

dQ=?λ ?????????

---------------------------------------------()

它表示在dt时间内通过dS面积的

热量dQλ为导热系数,它的大小由物体????dT

本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行.

在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为???

?????? ---------------------------------------------()式中,???为匀质圆板两板面的恒定温差,若把()式写成

?Q=?λ

??????

=?λ?? ---------------------------------------------()的形式,那么???便为待测物的导热速率,只要知道了导热速率,由()式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1>??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B的导热速率等于C 的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???.

因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ??????

???

???

部全

=

??部全

---------------------------------------------()

式中,???为??部面积的散热速率,???为??全面积的散热速率.而散热速率???就

???

???

???

等于()式中的导热速率,这样()式便可写作

???

?????? =?λ?? 部---------------------------------------------()设下铜盘直径为D,厚度为δ,那么有

??部??全

??2

=?? +??????

??2

=2?? +??????

---------------------------------------------()

???

由比热容的基本定义c=

Δ????Δ??‘

,得ΔQ=cmΔ??’,故

???cmΔ??’= 全---------------------------------------------()将()式、()式代入()式得?????+4?? =?????? 部---------------------------------------------()将()式代入()式得

λ=

?????????

????/2

---------------------------------------------()

式中,m为下铜盘的质量,c为下铜盘的比热容. 四、实验内容.

(1)用游标卡尺多次测量下铜盘的直径D、厚度δ和待测物厚度L,然后取其平均值.下铜盘质量m由天平测出,其比热容c=×102??? kg?℃ ?1.

(2)实验时,先将待测样品放在散热盘P上面,然后将发热铝盘A放在样品盘P上方,再调节三个螺栓,使样品盘的上下两个表面与发热铝盘A和散热铜盘P紧密接触.

(3)将集成温度传感器插入散热盘P侧面的小孔中,并将集成温度传感器接线连接到仪器面板的传感器插座.用专用导线将仪器机箱后部插座与加热组件圆铝盘上的插座加以连接.为了保证温度测量的准确性,采用同一个温度传感器测温,在需要测量发热盘A和散热盘P 温度时,采用手动操作,变换温度传感器的测温对象.

(4)接通电源,在“温度控制”仪表上设置加温的上限温度.按加热开关,如

果仪器上限温度设置为100℃,那么当传感器的温度达到100℃,大约加热40分钟后,发热铝盘A、散热铜盘P的温度不再上升时,说明系统已达到稳态,这时每间隔5分钟测量并记录??1和??2的值.

(5)测量散热盘在稳态值??2附近的散热速率.移开发热铝盘A,取下待测盘,并将发热铝盘A的底面和铜盘P直接接触,当P盘的温度上升到高于稳态值??2值若干度(例如5℃左右)后,再将发热铝盘A移开,让散热铜盘P自然冷却.这时候,每隔30s记录此时的??2值并记录.

五、实验数据记录与处理.

表一下铜盘直径、厚度,待测物厚度实验结果记录表

下铜盘质量为m=655 g.

取平均值,稳态时,??1=℃、??2=℃.

表三测下铜盘散热速率实验结果记录表

利用作图法求下铜盘的散热速率

得下铜盘散热速率为K=????1. 由(2.。)式,得待测样品的导热系数为?????????

λ==

12六、误差分析.

(1)系统误差

1.由于实验仪器本身存在的缺陷,如加热铝盘的保温性能不佳,导致产生误差.

2.未考虑待测样品侧面向周围环境散发热量所导致的实验误差.

3.环境温度改变导致实验中系统难以达到稳态. (2)偶然误差

1.在用游标卡尺测量铜盘和待测盘直径与厚度时,由于人为原因导致的测量不准确.可通过多测几次取平均值的方法来减小该误差.

2.降温过程中观察温度示数时造成的实验误差. 七、实验结论.

在误差允许范围内,通过稳态平板法测得该待测样品的导热系数为

λ=

王飞虎物理学弘毅班

2015301020170

篇二:大学物理实验报告-金属导热系数的测量

大学物理实验报告

课程名称:大学物理实验

实验名称:金属导热系数的测量

学院名称:机电工程学院

专业班级:车辆工程151班

学生姓名:吴倩萍

学号:5902415034

实验地点:基础实验大楼D103

实验时间:第一周周三下午15:45开始

一、实验目的:

用稳态法测定金属良导热体的导热系数,并与理论值进行比较。

二、实验仪器:

TC-3型导热系数测定仪、杜瓦瓶、游标卡尺。

三、实验原理:

1882年法国数学、物理学家傅里叶给出了一个热传导的基本公式——傅里

叶导热方程。该方程表明,取两个垂直于热传导方向、彼此间相距为h、温度分别为T1、T2的平行平面(设T1>T2),若平面面积均为S,在?t时间内通过面积S的热量?Q?QT1?T2

??S?th

?Q

(8-2),式中?t为热流量,λ为该物质的热导率(又称作导热系数)。

λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是W/。本实验仪器如图所示。在支架D上先放置散热盘P,在散热盘P的上面放上待测样品B,再把带发热器的圆铜盘A放在B上,发热器通电后,热量从A盘传到B盘,再传到P盘,在样品B上、下分别有一小孔,可用热电偶测出其温度T1和T2。由式(8-1)可以知道,单位时间通过待测样品B任一圆截面的热流量为

?QT1?T2

???RB2(8-2),式中RB为样品半?thB

径,hB为样品上、下小孔之间的距离,当热传导达到稳定状态时,T1和T2的值不变,于是通过B盘上表面的热流量与由铜盘P向周围散热的速率相等,因此,可通过铜盘P在稳定温度T3时的散热速率来

?Q

求出热流量?t。实验中,在读得稳定时的T1、T2和T3后,即可将B

盘移去,而使A盘的底面与铜盘P 直接接触。当铜盘P的温度上升到高于稳定时的值T3若干摄氏度后,再将圆盘A移开,让铜盘P自然冷却,观察其温度T随时间t的变化情况,然后由此求出铜盘在

?T

T3的冷却速率?t

T?T2

,而

mc

?T?t

T?T2

?

?Q

?t(m为铜盘P的质量,c为铜

材的比热容),就是铜盘P在温度为T3时的散热速率。但要注意,这

?T

样求出的?t是铜盘的全部表面暴露于空气中的冷却速率,其散热表

面积为2πR2P+2πRPh(其中RP与hP分别为铜盘的半径与厚度)。然而,P 在观察测试样品的稳态传热时,P盘的上表面(面积为πR2P)是被样品覆盖着的。考虑到物体的冷却速率与它的表面积成正比,则稳态时

2

?Q?T

?mc2?t?t(8-3)P铜盘散热速率的表达式应作如下修正

将式(8-3)带入式(8-2),得

??mc

?T?hB1

?2

?t?RB(8-4)

四、实验内容:

1、先将

块树脂圆环套在金属圆筒两端,并在金属圆筒两端涂

上导

热硅胶,然后置于加热盘A和散热盘P之间,调节散热盘P下方的三颗螺丝,使金属圆筒与加热盘A及散热盘P 紧密接触。

2、在杜瓦瓶中放入冰水混合物,将热电偶的冷端插入杜瓦瓶中,热端分别插入金属圆筒侧面上、下的小孔中,并分别将热电偶的接线连接到导热系数测定仪的传感器Ⅰ、Ⅱ上。

3、接通电源,将加热开关置于高档,放传感器Ⅰ的温度T1对应的热电势约为时,再将加热开关置于低档,约40min。

4、待达到稳态时(T1与T2的数值在10min内的变化小于),每隔2min记

录T1和T2的值。5、测量记录散热盘P的温度T3。

6、测量散热盘P在稳态值T2附近的散热速率:移开加热盘A,先将两侧温热端取下,再将T2的测温热端插入散热盘P的侧面小孔,取下金属圆筒,并使加热盘A与散热盘P直接接触,当散热盘P的温度上升到高于稳态T3的值对应的热电势约时,再将加热盘A移开,让散热盘P自然冷却,每隔30s记录此时的U3值。

7、用游标卡尺测量金属圆筒的直径和厚度,各5次。

8、记录散热盘P的直径、厚度、质量。

五、数据与结果:

铜的比热容:c= cal〃g-1〃℃-1

铜盘质量:m=822 g直径:2RP= cm 厚度:hP= cm 橡胶盘直径:cm 厚度:cm 铅棒直径:2RB= cm 长度:hB= cm 稳态时T1、T2对应的热电势的数据:稳态时T3对应的热电势U3= mV

?U

??散热速率

mv〃s-1

将数据代入公式

??mc

?T?hB1

?2

?t?RB可得:

λ= cal〃cm-1〃s-1〃℃-1 =×102 J〃s-1〃m-1〃K-1 不确定度u=%

六、误差分析:

1. 由于实验装置接触不够紧密,散热面积有所偏差等因素所造成;

2. 实验中所使用的铝纯度及杂质未知;

3. 在实验过程中发现,热电偶的两端在插入时深浅对实验有一定的影响,过程中无法保持在同一深度,故测量的数据可能存在偏差;

4. 对于

?T

的计算方式上,可能存在偏差,分析如下:T未必满足线?t

性关系,故使得计算上存在误差。

七、附上原始数据:

篇三:实验报告导热系数的测量

实验报告用稳态平板法测定不良导体的导热系数

物理科学与技术学院13级弘毅班吴雨桥2013301020142 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数的数值有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数的实验方法一般分为稳态法和动态法两类。本实验使用稳态法。先利用热源对样品加热,样品内部的温差使得热量从高温向低温传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。

实验目的

用稳态平板法测定不良导体的导热系数。利用物体的散热速率求传热速率。实验器材

实验装置、红外灯、调压器、杜瓦瓶、数字式电压表。仪器介绍

本实验装置如图,在支架D上先后放上圆铜盘C、待测样品B和厚底紫铜圆筒A,在A的上方用红外灯L加热,使样品上下表面各维持稳定的温度T1、T2,它们的数值分别用各自的热电偶E 来测量,E中的冷端浸入盛于杜瓦瓶H 内的冰水混合物中,G为双刀双向开关,用以变换上下热电偶的测量回路,数字式电压表F用以测量温差电动势。

实验原理

导热是物体相互接触时,由高温部分向低温部分传播热量的过程。当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为dQ=-λ????/2

m为下铜盘的质量,c为下铜盘的比热容,L为匀质圆板的厚度,D为下铜盘直径,δ为下铜盘厚度,T1为上铜盘温度,T2为下铜盘温度,K为冷却速率。

实验内容

用游标卡尺多次测量下铜盘的直径D、厚度δ和待测物厚度L,然后取其平均值。下铜盘质量m由天平称出,其比热容c=*102J*?1.

安置圆筒、圆盘时,须使放置热电偶的洞孔与杜瓦瓶、数字毫伏计位于同一侧。热电偶插入小孔时,要抹些硅油,并插到洞孔底部,使热电偶测温端与铜盘接触良好。热电偶冷端插在滴有硅油的细玻管浸入冰水混合物中。

根据稳态法,必须得到稳定的温度分布,这就要等待较长的时间,为了提高效率,可先将红外灯的电源电压升高到180~200V,加

热约20min后再降至130~150V.然后,每隔5min读一下温度示数,如在一段时间内(如10min)样品上、下表面温度T1、T2示数都不变,即可认为已经达到稳定状态。记录稳态时T1、T2值后,移去样品,再加热。当下铜盘温度比T2高出10℃左右时,移去圆筒,让下铜盘自然冷却。每隔30s读一次下铜盘的温

度示数,最后选取临近T2的测量数据来求出冷却速率。

本实验选用铜-康铜热电偶测温度,温差100℃时,其温差电动势约为,故应该配用量程0~10mV,并能精确到的数字电压表。由于热电偶冷端温度为0℃,对一定材料的热电偶而言,当温度变化范围不太大时,其温差电动势(mV)与待测温度(℃)的比值为一个常数,因此,可以直接用电动势值代表温度值。

计算导热系数λ。

实验数据

橡胶盘:半径RB=1

散热盘p:质量m= 665 半径:Rp=Dp= 稳态时T1、T2的值:T1平均=____℃ T2平均=______℃

散热速率:每间隔30s测一次

散热曲线

T/℃

t/s

线性拟合曲线T=-+ K=-℃/s 将数据代入λ=

?cmKL????/2

= Wm-1K-1

误差分析

系统误差仪器误差:

1.测量长度时用到了游标卡尺,其有最小精度,带来测量误差。

2.温度无法达到稳定,总会有一定的波动。

3.质量的测量精度太低。随机误差:

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

实验一 水准仪的认识及使用

实验一水准仪的认识及使用 一、实验目的 (1)认识DS3微倾式水准仪的基本构造,各操作部件的名称和作用,并熟悉使用方法。 (2)掌握DS3水准仪的安置、瞄准和读数方法。 (3)了解自动安平水准仪的性能及使用方法。 (4)练习水准测量一测站的测量、记录和高差计算。 二、实验组织 (1)性质:基础性实验。 (2)时数:4学时。 (3)组织:4人1组。 三、实验设备 (1)每组借DS3 微倾式水准仪(或自动安平水准仪)l台、水准尺1对、尺垫2个,记录板1块。(2)自备:铅笔。 四、实验方法及步骤 1.微倾式水准仪的构造 (1)了解微倾式水准仪和自动安平水准仪的构造,掌握各螺旋和部件的名称、功能及操作方法;(2)注意比较微倾式和自动安平光学水准仪构造上的区别。 微倾式DS3水准仪水准尺自动安平水准仪 图1-1 光学水准仪及水准尺 2.水准仪的安置 (1)仪器架设在测站上打开脚架,按观测者的身高调节脚架腿的高度,使脚架架头大致水平,如果地面比较松软则应将脚架的三个脚尖踩实,使脚架稳定。然后将水准仪从箱中取出平稳地安放在脚架头上,一手握住仪器,一手立即用连接螺旋将仪器固连在脚架头上。 (2)粗略整平通过调节三个脚螺旋使圆水准器气泡居中,从而使仪器的竖轴大致铅垂。在整平过程中,气泡移动的方向与左手大拇指转动脚螺旋时的移动方向一致。如果地面较坚实,可先练习固定脚架两条腿,移动第三条腿使圆水准器气泡大致居中,然后再调节脚螺旋使圆水准器气泡居中。 3.水准尺上读数 (1)瞄准转动目镜调焦螺旋,使十字丝成像清晰;松开制动螺旋,转动仪器,用照门和准星瞄准水准尺,旋紧制动螺旋;转动微动螺旋,使水准尺位于视场中央;转动物镜调焦螺旋,消除视差,使目标清晰(体会视差现象,练习消除视差的方法)。 (2)精平(微倾式)转动微倾螺旋,使符合水准管气泡两端的半影像吻合(成圆弧状),即符合气泡严格居中(自动安平水准仪无此步骤)。

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。这样,只要测量低温侧

铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

导热系数测量

导热系数测量 在某些应用场合,了解陶瓷材料的导热系数,是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。作为有效的散热器能保护集成电路板与其它电子设备不受高温损坏,陶瓷已经成为微电子工业领域关键材料。若要在和热相关的领域使用陶瓷材料,则要求精确测量它们的热物理性能。在过去的几十年里,已经发展了大量的新的测试方法与系统,然而对于一定的应用场合来说并非所有方法都能适用。要得到精确的测量值,必须基于材料的导热系数范围与样品特征,选择正确的测试方法。 基本理论与定义 热量传递的三种基本方式是:对流,辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。 对于半透明与透明陶瓷材料,尤其在高温情况下,必须考虑辐射传热。除了材料的光学性质外,边界状况亦能影响传热。关于辐射传热方式的详细介绍见文献一(1)。 对于陶瓷材料而言传导是最重要的传热方式。热量的传导基于材料的导热性能——其传导热量的能力(2)。厚度为x 的无限延伸平板热传导可用Fourier 方程进行描述(一维热传递): Q = -λ·△T/△x Q 代表单位表面积在厚度(△x)上由温度梯度(△T)产生的热流量。两个因子都与导热系数(λ)相关联。在温度梯度与几何形状固定(稳态)的情况下,导热系数代表了需要多少能量才能维持该温度梯度。 在对建筑材料(如砖)与绝热材料进行表征时,经常用到k 因子。k 因子与材料的导热系数和厚度有关。 k –value = λ/ d 这一因子并不能用来鉴别材料,而是决定最终产品厚度的决定因素。 现代电子元件与陶瓷散热器上通常发生的是动态(瞬时)过程。需要更复杂的数学模型描述这些动态热传递现象,在此不做讨论。

工程水准测量实验报告簿.doc

工程水准测量 ( 实验报告簿 )

工程测量实验报告写法 以水准测量为准 一、实习目的: 二、实习设备: 三、实习内容: 四、实习步骤: 1.水准测量: (1)水准测量原理: 水准测量是利用水准仪提供的水平视线,借助于带有分划的水准尺,直接测定地面上两点间的高差, 然后根据已知点高程和测得的高差,推算出未知点高程。 设水准测量的进行方向为从 A 至 B, A 称为后视点, a 为后视读数; B 称为前视点, b 称为前视读数。如果已知A 点的高程 HA ,则 B 点的高程为: HB=HA+hab HA+a=HB+b HA=HB+a-b B 点的高程也可以通过水准仪的视线高程Hi 来计算,即 Hi=HA+a HB=Hi - b (2 )水准测量的外业施测: 1 )水准点:用水准测量方法测定高程的点。 2)当预测高程的水准点与已知水准点相距较远或高差太大时,两点之间安置一次仪器九无法测出其高差。这时需要连续多次设站,进行复合水准测量。每测站高差之和即可得预测水准点到已知水准点的高差,从 而可得其高程。

3)水准测量的检核 计算检核:闭合导线的高差和等于个转点之间高差之和,又等于后视读数之和减去前视读数之和,因 此利用该式可进行计算正确性的检核。 测站检核:对每一测站上的每一读数,进行检核,用变更仪器法进行检核。变更仪器法要求变更的高 度应该大于10cm ,两次高差之差不应超过规定的容许值,即6mm 。 闭合水准路线的成果检测:理论上各测段高差之和应等于零,实际上上不会,存在高差闭合差,其不 应该大于你容许值,即,若高差闭合差超出此范围,表明成果中有错误存在,则要重返工作。 4)水准测量的内业计算: 检查水准测量手簿;填写已知和观测数据;计算高差闭合差及其限差;最终结果见附表。 五、实验表格: 实验报告 程名称:工程量目:普通水准量( 2)成???? 指教????? ??? ..院(直属系)??? .. 学生??? . 学号 ???? .. ..........年?.月?..日 普通水准测量手薄 点后前高差改正后高点站号数数(米)高差程号(米)(+-((米) 米)米)

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2) 实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

导热系数的测定_评分标准(精)

“导热系数的测定”实验报告评分标准 第一部分:预习报告(20分) 一、实验目的 1.掌握用稳态法测量不良导体的导热系数的方法。 2.了解物体散热速率和传热速率的关系。 3.理解温差热电偶的特性。 二、实验仪器 发热盘,传热筒,杜瓦瓶,温差电偶,待测橡胶样品 ,数字电压表,停表。 三、实验原理 1 ?热传导定律:—— S ; 2 ?导热系数概念:等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通 过单位面积所传递的热量,单位是瓦?米-1?开-1( W- m1? K1),导热系数是反映材料的导 热性能的重要参数之一; 3?稳态法(通过控制热源传热在样品内部形成稳定的温度分布,而进行的测量)测不良导体的导热系数的方法; 4散热板自由冷却与稳态时,由于散热面积不同因而要引入修正系数: 2 R c 2:';R c h e _ 1 D e 4h C 2二R C 2「R C h C2 D e 2h c

5 ?温差热电偶的工作原理 四、实验内容和步骤 1橡胶盘,黄铜盘直径,高度D B,h B,D c,h c,黄铜盘质量m,数据由实验室提供。 2、稳态法测传热板,散热板的温度哥0,20; 3、测量散热板(黄铜盘)的冷却速率22^,计算■ o 第二部分:数据采集与实验操作(40分) 有较好的动手能力,能够很好解决实验过程中出现的问题,数据采集记录完整准确,操作过程无误(35-40分); 有一定的动手能力,能够解决实验过程中出现的一般问题,数据采集记录完整,操作过程无大的违规(35-20); 动手能力较差,难以解决实验过程中出现的一般问题,数据采集与记录不完整、有偏差,有 违规操作(0-20分)o 操作要点: 1 导热系数测定仪的使用(数字电压表调零,热电偶接线,); 2.构建稳态环境,保持哥°在 3.50mV ±0.03mV范围内,测量匕0 ; 3.测量黄铜盘的冷却速率。保持稳态时散热板的环境: a .电风扇一直工作。 b. Io附近的冷却速率。

实验一--水准测量实验报告

实验一水准测量实验报告 一、目的与要求 1.了解DS 3型水准仪的基本构造,认清其主要部件的名称,性能和作用。 2.练习水准仪的正确安置、瞄准和读数。 3.掌握普通水准测量的施测、记录、计算、闭合差调整及高程计算的方法。 二、计划与设备 1.实验时数安排为2学时。 2.实验小组由8人组成:4人操作,2人记簿,2人扶尺。 2. 实验设备:DS 水准仪1台,双面水准尺2根,尺垫2个,记录纸2张, 3 三角架1个;铅笔1根。 三、水准测量原理 水准仪器组合: 1.望远镜 2.调整手轮 3.圆水准器 4.微调手轮 5.水平制动手轮 6.管水准器 7.水平微调手轮 8.脚架

四、方法与步骤 (一)水准仪的认识与使用 1.安置仪器: 先将三脚架张开,使其高度适当,架头大致水平,并将架腿踩实,再开箱取出仪器,将其固连在三脚架上。 2.认识仪器: 指出仪器各部件的名称和位置,了解其作用并熟悉其使用方法。同时弄清水准尺的分划注记。 3.粗略整平: 双手食指和拇指各拧一只脚螺旋,同时对向(或反向)转动,使圆水准器气泡向中间移动;再拧另一只脚螺旋,使气泡移至圆水准器居中位置。若一次不能居中,可反复进行。(练习并体会脚螺旋转动方向与圆水准器气泡移动方向的关系。) 4.水准仪的操作:

瞄准——转动目镜调焦螺旋,使十字丝清晰,松开制动螺旋,转动仪器,用照门和准星瞄准水准尺,拧紧制动螺旋,转动微动螺旋,使水准尺位于视场中央,转动物镜调焦螺旋,消除视差使目标清晰(体会视差现象,练习消除视差的方法)。 精平——转动微倾螺旋,使符合水准管气泡两端的半影像吻合(成圆弧状),即符合气泡严格居中。 读数——从望远镜中观察十字丝横丝在水准尺上的分划位置,读取四位数字,即直读出米、分米、厘米的数值,估读毫米的数值。5.观测练习: 在仪器两侧各立一根水准尺,分别进行观测(瞄准,精平,读数),记录并计算高差。不动水准尺,改变仪器高度,同法观测。或不动仪器,改变两立尺点位置同法观测。检查是否超限。 (二)普通水准测量 1.选定一条闭合水准路线,其长度以安置4~6个测站为宜。确定起始点及水准路线的前进方向。 2.在起始点和第一个待定点分别立水准尺,在距该两点大致等距离处安置仪器,分别观测黑面水准尺,得到后视读数a黑和前视读数b黑; 然后再观测前视水准尺红面,得到读数b红,旋转水准仪瞄准后视水准尺红面,得到读数a红;检查所测数据是否超限,如超限重测,不超限 则计算平均高差h 1,然后进行下一站观测,依次推进测出h、h 3 、 h 4 …。 3.根据巳知点高程及各测站的观测高差,计算水准路线的高差闭合差,并检查是否超限。对闭合差进行配赋,推算各待定点的高程。 五、注意事项 1.测量前,水准仪要进行检验与校正。

试验9不良导体导热系数的测定

实验九不良导体导热系数的测量 导热系数(热导率)是反映材料热性能的物理量,导热是热交换三种(导热、对流和辐射)基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各个研究领域的课题之一,要认识导热的本质和特征,需了解粒子物理而目前对导热机理的理解大多数来自固体物理的实验。材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。 因此,材料的导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、 温度、压力及杂质含量相联系。在科学实验和工程设计中所用材料的导热系数都需要用实验的方法测定。(粗略的估计,可从热学参数手册或教科书的数据和图表中查寻) 1882年法国科学家J?傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律基础之上,从测量方法来说,可分为两大类:稳态法和动态法,本实验采用的是稳态平板法测量材料的导热系数。 【实验目的】 1?了解热传导现象的物理过程 2 ?学习用稳态平板法测量材料的导热系数 3 ?学习用作图法求冷却速率 4 ?掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 YBF-3导热系数测试仪、冰点补偿装置、测试样品(硬铝、硅橡胶、胶木板)、塞尺等 【实验原理】 为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导 定律指出:如果热量是沿着z方向传导,那么在z轴上任一位置z o处取一个垂直截 面积ds,以dT表示在z处的温度梯度,以dQ表示在该处的传热速率(单位时间 dz dt 内通过截面积ds的热量),那么传导定律可表示成: .dT dQ=-:?()z0dsdt (9-1) dz 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。(9-1)式中比例系数'即为导热系数,可见热导率的物理意义:在温度梯度为

水准测量实验报告

实训一自动安平水准仪得认识与使用 一、实验目得 熟悉自动安平水准仪得基本构造,初步掌握自动安平水准仪得使用方法。 二、实验内容 1、熟悉DS3型自动安平水准仪得基本构造,了解其主要部件得名称、作用与使用方法。 2、练习自动安平水准仪得安置、瞄准与读数。 3、测量地面上两点间得高差。 三、仪器与工具 DS3型自动安平水准仪1台,水准尺2根,自备计算器、铅笔、小刀、记录板。 四、方法与步骤 1、安置仪器 将三脚架张开,使其高度适当,架头大致水平,并将脚尖踩入土中。再开箱取出仪器,将其固连在三脚架上、 2、认识仪器 指出仪器各部件得名称,了解其作用并熟悉其使用方法,同时弄清水准尺得分划与注记,掌握读尺方法、 3、粗略整平 粗略整平就就是旋转脚螺旋使圆水准器气泡居中,从而使仪器大致水平。先用双手同时向内(或向外)转动一对脚旋钮,使圆水准器气泡移动到中间,再转动另一只脚旋钮使圆气泡居中,通常需反复进行。注意气泡移动得方向与左手拇指或右手食指运动得方向一致。 4、瞄准水准尺与读数 (1)瞄准 转动目镜调焦螺旋进行对光,使十字丝分划清晰;然后竖立水准尺于某地面点上,松开自动安平水准仪制动螺旋,转动望远镜,用准星与照门粗略瞄准水准尺,旋紧制动螺旋;转动物镜调焦螺旋,使瞧清水准尺影像;再转动水平微动螺旋,使十字丝纵丝靠近水准尺一侧;若存在视差,则应仔细进行目镜调焦与物镜调焦予以消除、 (2)读数 用中丝在水准尺上读取4位读数,即m,dm,cm及mm位。读数时应先估出mm数,然后按m,dm,cm及m m,一次读出4位数、 5、测定地面两点间得高差。 (1)在地面选定A、B两个较坚固得点作后视点与前视点,分别立尺。 (2)在A、B两点之间安置自动安平水准仪,使仪器至A、B两点得距离大致相等。 (3)每人独立安置仪器、粗平、照准后视点A点上得水准尺后读数,此为后视读数,并记入附表中测点A一行得后视读数栏下;再照准前视点B点上得水准尺,读取前视读数,并记入附表中测点B一行得前视读数栏下、

水准测量实验报告

水准测量实验报告 一、绪言 水准测量是用水准仪和水准尺测定地面上两点间高差的方法。在地面两点间安置水准仪,观测竖立在两点上的水准标尺,按尺上读数推算两点间的高差。通常由水准原点或任一已知高程点出发,沿选定的水准路线逐站测定各点的高程。由于不同高程的水准面不平行,沿不同路线测得的两点间高差将有差异,所以在整理国家水准测量成果时,须按所采用的正常高系统加以必要的改正,以求得正确的高程,如图1,图2所示。 图1 水准测量原理示意图 我国国家水准测量依精度不同分为一、二、三、四等。一、二等水准测量称为“精密水准测量”,是国家高程控制的全面基础,可为研究地壳形变等提供数据。三、四等水准测量直接为地形测图和各种工程建设提供所必需的高程控制。

图2 水准测量转点示意图 二、实习目的 1、通过对同济大学四平路校区高程的施测,掌握二等精密水准测量的观测和记录,熟悉使用电子水准仪进行二等水准的测量,并将所学知识得到一次实际应用。 2、熟悉精密水准测量的作业组织和一般作业规程。 三、水准测量实习过程 3.1 小组成员及作业步骤 小组成员: 作业步骤:精密水准观测组由5人组成,具体分工是:观测一人,记录一人,扶持两人,量距一人。 3.2水准仪的使用 水准仪的使用包括仪器的安置、粗略整平、瞄准水准尺、精平和读数等操作步骤。我们实验所用的仪器主要就是电子水准仪SDL30,其他操作同普通的水准仪。 SDL30 的等级水准测量功能用于国家一、二、三、四等水准测量。测量作业中的测站观测程序及其限差检核符合国家一、二水准测量规范(GB/T

3.3 水准测量的实施 在我们的测量中,首先每个组建立一个包含有四个已知控制点的控制网,每组选定网的一条边与周边的一组的水准网确保有两个已知控制点重合,分别测出公共边两点间高差,最后统一进行高差计算和误差分配,以作为检验与统一到一个公共的水准网中。我们选择211控制点作为自己的符合起止点,从该点出发,沿着教学南楼,途径图书馆正门,到图书馆后的控制点103,再转到瑞安楼前面的317点,最后符合至211控制点。 3.3.1 已知点数据及测区平面图 (1) 其中,211 208和211号点为与南边测区的公共点。 (2)、测区平面图,如下图1黑色线条所包含的区域即为本组测区。

材料导热系数测试实验

东南大学材料科学与工程 实验报告 学生姓名 张沐天 班级学号 实验日期 批改教师 课程名称 材料性能测试实验 批改日期 实验名称 材料导热系数测试实验 报告成绩 一、实验目的 1.掌握稳态法测定材料导热系数的方法 2.了解材料导热系数与温度的关系 二、实验原理 不同温度的物体具有不同的内能,同一个物体不同区域如果温度不等,则他们热运动的激烈程度不同,含有的内能也不相同。这些不同温度的物体或区域,在相互靠近或接触时,会以传热的形式交换能量。由于材料相邻部分之间的温差而发生的能量迁移称为热传导。在热能工程、制冷技术、工业炉设计等一系列技术领域中,材料的导热性都是一个重要的问题。 1.材料的导热性及电导率 材料的导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1K ,在1s 钟内,通过1m2面积传递的热量,单位为 W/(m ·K),也叫热导率。热导率λ由简化的傅里叶导热定律 dx dT -q λ 决定。 2.热传导的物理机制 热传导过程就是材料的能量传输过程。在固体中能量的载体可以有自由电子、声子和光子,因此固体的导热包括电子导热、声子导热和光子导热。 1)电子和声子导热 纯金属中主要为电子导热,在合金、半金属或半导体、绝缘体的变化过程中,声子导热所占比例逐渐增大。 2)光子导热 固体中分子、原子和电子的振动、转动等运动状态的改变会辐射出频率较高的电磁波,其中具有较强热效应的是波长在间的可见光与部分近红外光的区域,这部分辐射线称为热射线。热射线的传递过程称为热辐射。 3.影响导热系数的因素 1)温度 金属以电子导热为主,电子在运动过程中将受到热运动的原子和各种晶格缺陷的阻挡,从而形成对热量传输的阻力。 一般来说,纯金属的导热系数一般随温度的升高而降低;而今导热系数一般随温度的升高而升高;玻璃体的导热系数则一般随温度的降低而减小。 2)原子结构 物质的电子结构对热传导有较大影响。具有一个价电子的,导电性能良好的、德拜温度较

固体导热系数的测定实验报告

学生物理实验报告 实验名称固体导热系数的测定 学院专业班级报告人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

1.数字毫伏表 一般量程为20mV。3位半的LED显示,分辨率为10uV左右,具有极性自动转换功能。 2.导热系数测量仪 一种测量导热系数的仪器,可用稳态发测量不良导体,金属气体的导热系数, 散热盘参数

傅里叶在研究了固体的热传定律后,建立了导热定律。她指出,当物体的内部有温度梯度存在时,热量将从高温处传向低温处。如果在物体内部取两个垂直于热传导方向,彼此相距为h 的两个平面,其面积元为D,温度分别为21T T 和,则有 dt dQ =–dS dx dT λ 式中dt dQ 为导热速率,dx dT 为与面积元dS 相垂直方向的温度梯度,“—”表示热量由高温区域传向低温区域,λ即为导热系数,就是一种物性参数,表征的就是材料导热性能的优劣,其单位为W/(m ·K ),对于各项异性材料,各个方向的导热系数就是不同的,常要用张量来表示。 如图所示,A 、C 就是传热盘与散热盘,B 为样品盘,设样品盘的厚度为B h ,上下表面的面积 各为B S =2 B R π,维持上下表面有稳定的温度21T T 和,这时通过样品的导热速率为 dt dQ =–B B S h T T 21 -λ 在稳定导热条件下(21T T 和值恒定不变) 可以认为:通过待测样品B 的导热速率与散热盘的周围环境散热的速率相等,则可 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置图

四等水准测量实验报告

四等水准测量实验报告 水准测量的等级是根据国家水准网来定的。国家水准网布设成一等、二等、三等、四等4个等级。其布设原则采用从高级到低级,从整体到局部,分级布置,逐级加密的原则,等级划分是根据环线周长、附和路线长、偶然中误差、全中误差来分的。一、二等水准测量称为“精密水准测量”,是国家高程控制的全面基础,可为研究地壳形变等提供数据。三、四等水准测量直接为地形测图和各种工程建设提供所必需的高程控制。水准测量【leveling survey】指的是测定各点高程的作业。

一.目的与要求 1.掌握四等水准测量的测量观测程序和具体施测方法 2.熟悉四等水准测量的主要技术要求和检测方法 3.掌握四等水准测量的数据处理方法 二.实验过程 1.在确定为闭合水准测量及测量技术要求以后,我们组在学校内确定了一个可以测量的范围. 2.范围大致确定好了以后,我们进行了水准点位置的确定,以迈大步的形式确定距离,并且依次对转点进行了确定,总共设置了3个转点.

3.站点确定好了以后,我们进行了人员的分工,一位同学负责水准仪的拿取,粗平;两位同学负责瞄准,精平,和读数;一位同学负责记录数据;一位同学负责同步误差计算;其他四位同学负责水准尺的正确摆放. 4.每测好一个站点的数据我们都会用双面法检核,满足容许值再进行下一个站点的测量(前尺不动,后尺成前尺). 三.四等水准测量技术要求 四标准视线 长度(m) 前后视距 差(m) 前后视距累 计差(m) 黑红面视距 差mm 黑红面高 差之差mm 等100 5.0 10.0 3.0 5.0 四.实验结果 所有数据符合各种限差要求,且仪器设备完整 四等水准测量记录表 日期:2014年10月8日天气:晴仪器型号:DS3水准仪组号:D 观测者:叶基霖,沈黎达记录者:汤维 司尺者:方圳燕,陈曼,周晴,吴芳芳,王舒函,陈炯 测站编号点号 后尺 上丝 前尺 上丝 方向及 尺号 水准尺读数(m) K﹢黑﹣红 平均高差 (m) 备注下丝下丝 后视距前视距 黑面红面 视距差 d(m) ∑d(m) A-B 0892 1706 后视0866 5653 0000 已知起始水准 点高程 =87.765m K为尺长数: K1 =4.787m K2 =4.687m 0839 1636 前视1671 6358 0100 5679 6393 高差-0805 -0705 4687 -0.805 5627 6323 B-C 1360 0740 后视K11336 6024 0099 1311 0675 前视K20708 5495 0000 6048 5527 后-前0628 0529 4886 0.6285 5999 5462 C-D 1017 0963 后视K20989 5779 -0003 0961 0881 前视K10922 5610 0099 5806 5650 后-前0067 0169 4685 0.068 5751 5569 D-A 1384 1279 后视K11351 6039 0099

导热系数测量实验报告

导热系数测量实验报告 篇一:导热系数实验报告 实验用稳态平板法测定不良导体的导热系数实验报告 一、实验目的. (1)用稳态平板法测定不良导体的导热系数. (2)利用物体的散热速率求传热速率. 二、实验器材. 实验装置、红外灯、调压器、杜瓦瓶、数字式电压表. 三、实验原理. 导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设z方向)进行时,热传导的基本公式可写为 dT dQ=?λ ????????? ---------------------------------------------() 它表示在dt时间内通过dS面积的

热量dQλ为导热系数,它的大小由物体????dT 本身的物理性质决定,单位为W????1????1,它是表征物质导热性能大小的物理量,式中符号表示热量传递向着温度降低的方向进行. 在图中,B为待测物,它的上下表面分别和上下铜、铝盘接触,热量由高温铝盘通过待测物B向低温铜盘传递.若B很薄,则通过B侧面向周围环境的散热量可以忽略不计,视热量只沿着垂直待测板B的方向传递.那么在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在?t时间内,通过面积为S、厚度为L的匀质圆板的热量为??? ?????? ---------------------------------------------()式中,???为匀质圆板两板面的恒定温差,若把()式写成 ?Q=?λ ??????

=?λ?? ---------------------------------------------()的形式,那么???便为待测物的导热速率,只要知道了导热速率,由()式即可求出λ. 实验中,使上铝盘A和下铜盘P分别达到恒定温度??1、??2,并设??1>??2,即热量由上而下传递,通过下铜盘P向周围散热.因为??1和??2不变,所以,通过B的热量就等于C向周围散发的热量,即B的导热速率等于C 的散热速率.因此,只要求出了C在温度??2时的散热速率,就求出了B的导热速率???. 因为P的上表面和B的下表面接触,所以C的散热面积只有下表面面积和侧面积之和,设为????,而实验中冷却曲线是C全部裸露于空气中测出来的,即在P的上下表面和侧面积都散热的情况下记录的.设其全部表面积为??全,根据散热速率与散热面积成正比的关系可得??? ?????? ???

导热系数的测定讲解

导热系数的测定 导热系数(热导率)是反映材料导热性能的物理量,它不仅是评价材料的重要依据,而且是应用材料时的一个设计参数,在加热器、散热器、传热管道设计、房屋设计等工程实践中都要涉及这个参数。因为材料的热导率不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响热导率的数值,所以在科学实验和工程技术中对材料的热导率常用实验的方法测定。 测量热导率的方法大体上可分为稳态法和动态法两类。本测试仪采用稳态法测量不同材料的导热系数,其设计思路清晰、简捷、实验方法具有典型性和实用性。测量物质的导热系数是热学实验中的一个重要内容。 【实验目的】 1、了解热传导现象的物理过程 2、学习用稳态平板法测量材料的导热系数 3.学习用作图法求冷却速率 4、掌握一种用热电转换方式进行温度测量的方法 【实验仪器】 1、YBF-3导热系数测试仪一台 2、冰点补偿装置一台 3、测试样品(硬铝、硅橡胶、胶木板)一组 4、塞尺一把 【仪器简介】 仪器的面板图 上面板图 下面板图 加热温度的设定:

①.按一下温控器面板上设定键(S ),此时设定值(SV )显示屏一位数码管开始闪烁。 ②. 根据实验所需温度的大小,再按设定键(S )左右移动到所需设定的位置,然后通过加数键(▲)、减数键(▼)来设定好所需的加热温度。 ③.设定好加热温度后,等待8秒钟后返回至正常显示状态。 仪器的连接 连线图 从铜板上引出的热电偶其冷端接至冰点补偿器的信号输入端,经冰点补偿后由冰点补偿器的信号输出端接到导热系数测定仪的信号输入端。 【实验原理】 为了测定材料的导热系数,首先从热导率的定义和它的物理意义入手。热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0 处取一个垂直截面积d S (如图1)以 表示在Z 处的温度梯度,以 表示在该处的传热速率(单位时间内通过截面积d S 的热量),那么传导定律可表示成: (S1-1) 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。式中比例系数λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内垂直通过单位面积截面的热量。 利用(S1-1)式测量材料的导热系数λ,需解决的关键问题两个:一个是 在材料内造成一个温度梯度 ,并确定其数值;另一个是测量材料内由高温 区向低温区的传热速率 。 1、关于温度梯度 为了在样品内造成一个温度的梯度分布,可以把样品加工成平板状,并把它 dt ds dz dT dQ Z ?-=0)(λdz dT dt dQ dz dT dt dQ dz dT

相关主题
文本预览
相关文档 最新文档