当前位置:文档之家› 一阶线性微分方程组

一阶线性微分方程组

一阶线性微分方程组
一阶线性微分方程组

第4章 一阶线性微分方程组

一 内容提要

1. 基本概念

一阶微分方程组:形如

???

?????

???===)

,,,,( ),,,,(),,,,(2121222111

n n n n

n y y y x f dx

dy y y y x f dx

dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。

若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式

),,2,1))((,),(),(,()

(21n i x y x y x y x f dx

x dy n i i ΛΛ==成立,则

)(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解

含有n 任意常数n C C C ,,,21Λ的解

??????

?===)

,,,,( ),,,,(),,,,(21321222111n n n

n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组

???????=Φ=Φ=Φ0

),,,,,,,,(

0),,,,,,,,(0),,,,,,,,(21212121221211n n n n

n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ

则称这个方程组为(3.1)的通积分。

满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

令n 维向量函数

Y )(x =????????????)( )()(21x y x y x y n M ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212

211n n

n n y y y x f y y y x f y y y x f ΛM ΛΛ

??

?

????

??

???????????=dx dy dx dy dx dy dx x dY n M )(21,?????????

?????????????=x x x x n x x x

x dx x f dx x f dx x f x F 0000)( )()()(21M 则(3.1)可记成向量形式

),,(Y x F dx

dY

= (3.2) 初始条件可记为

Y (0x )=0Y ,其中?????

???????=no y y y Y M 20100 则初值问题为:

???

?

?==0

0)(),(Y x Y Y x F dx dY

(3.3) 一阶线性微分方程组:形如???

?????

???++++=++++=++++=)

()()()( )()()()()()()()(212112

22221212112121111

x f x a y x a y x a dx

dy x f x a y x a y x a dx dy x f x a y x a y x a dx dy n nn n n n n n ΛΛΛΛΛ (3.4)

的一阶微分方程组,叫做一阶线性微分方程组.

A (x )=??????????)(a )(a )(a )(nn n11n 11x x x x a ΛM M Λ及F ()x =????

?

?

??????)( )()(21x f x f x f n M 则(3.4)的向量形式:

)()(x F Y x A dx dY

+= (3.5) F (0)≡x 时 Y x A dx

dY

)(= (3.6)

称为一阶线性齐次方程组,

(3.5)式称为一阶线性非齐次方程组。

在(3.5)式A (,的每一个元素都为常数)x 即A (????????????==nn n2

n12n 22211n 1211a a a a a a a a )ΛΛΛΛΛa A x )(x F AY dx

dY

+= (3.7) 叫做常系数线性非齐次微分方程组.

AY dx

dY

= (3.8) 叫做常系数线性齐次微分方程组.

2. 一阶线性微分方程组的通解结构.

定理1(一阶线性微分方程组解存在唯一性定理):如果线性微分方程组

)()(x F Y x A dx

dY

+=中的A )(x 及F )(x 在区间I=[]b a ,上连续,则对于[]b a ,上任一点0x 以及任意给定的Y 0,方程组 )()(x F Y x A dx

dY

+=的满足初始条件的解在[]b a ,上存在且唯一。

1)向量函数线性相关性及其判别法则

定义:设)(),(),(21x Y x Y x Y m Λ是m 个定义在区间I 上的n 维向量函数。如果存在m 个不全为零的常数,,,,21m C C C Λ使得0)()()(2211=+++x Y C x Y C x Y C m m Λ恒成立,则称这m 个向量函数在区间I 上线性相关;否则它们在区间I 上线性无关。 判别法则:①定义法

②朗斯基(Wronski )行列式判别法: 对于列向量组成的行列式

)

( )(

)

( )()(1111x y x y x y x y x W nn n n ΛM M Λ=

通常把它称为n 个n 维向量函数组)(),(),(21x Y x Y x Y n Λ的朗斯基(Wronski )行列式。

定理1 如果n 个n 维向量函数组)(),(),(21x Y x Y x Y n Λ在区间I 线性相关,则们的朗斯基(Wronski )行列式)(x W 在I 上恒等于零。

逆定理未必成立。 如:

??

????=???

???=0)(Y

02)(221x x x x Y 朗斯基行列式)(x W 在I 上恒等于零,但它们却是线性无关。

定理2 如果n 个n 维向量函数组)(),(),(21x Y x Y x Y n Λ的朗斯基(Wronski )行列式

)(x W 在区间I 上某一点0x 处不等于零,即,0)(0≠x W 则向量函数组)

(),(),(21x Y x Y x Y n Λ在区间I 线性无关。

逆定理未必成立。同前例。

但如果)(),(),(21x Y x Y x Y n Λ是一阶线性齐次微分方程组Y x A dx

dY

)(=的解,则上述两定理及其逆定理均成立。即

定理3 一阶线性齐次微分方程组

Y x A dx

dY

)(=的解)(),(),(21x Y x Y x Y n Λ是线性无关的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处不等于零;解)(),(),(21x Y x Y x Y n Λ是线性相关的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处恒等于零

2).基本解组及其有关结论

定义:一阶线性齐次微分方程组

Y x A dx dY

)(=的n 个线性无关解称为它的基本解组 判别:一阶线性齐次微分方程组Y x A dx

dY

)(=的解)(),(),(21x Y x Y x Y n Λ是一个基本

解组的充要条件是它们的朗斯基(Wronski )行列式)(x W 在区间I 上任一点0x 处不等于零。

结论:①一阶线性齐次微分方程组Y x A dx

dY

)(=必存在基本解组。 ②基本解组有无穷多个。 3)一阶线性齐次微分方程组

Y x A dx

dY

)(=通解的结构 定理:如果)(),(),(21x Y x Y x Y n Λ是线性齐次微分方程组

Y x A dx

dY

)(=的基本解组,则其线性组合Y =)(x )()()(2211x Y C x Y C x Y C n n +++Λ是线性齐次微分方程组

Y x A dx

dY

)(=的通解。 结论: 线性齐次微分方程组

Y x A dx

dY

)(=的解的全体构成一n 维线性空间。 4)解与系数的关系,即刘维尔公式

定理:如果)(),(),(21x Y x Y x Y n Λ是线性齐次微分方程组Y x A dx

dY

)(=的解,则这n 个解的朗斯基行列式与线性齐次微分方程组

Y x A dx

dY

)(=的系数的关系是: []?=+++x

x nn dt

t a t a t a e

x W x W 0

2211)()()(0)()(Λ

此式称为刘维尔(Liouville )公式.

由此公式可以看出n 个解的朗斯基行列式)(x W 或者恒为零,或者恒不为零

∑=n

k kk

x a

1

)(称为矩阵A )(x 的迹。记作)(x trA 。

一阶线性非齐次方程组的通解结构

定理(通解结构定理):线性非齐次方程组)()(x F Y x A dx

dY

+=的通解等于对应的齐次微分方程组 Y x A dx dY )(= 的通解与)()(x F Y x A dx

dY

+=的一个特解之和。即

)(x F AY dx

dY +=的通解为Y =)(x )()()(2211x Y C x Y C x Y C n n +++Λ)(~

x Y + 其中)()()(2211x Y C x Y C x Y C n n +++Λ为对应的齐次微分方程组Y x A dx

dY

)(=的通

解,)(~

x Y 是)()(x F Y x A dx

dY +=的一个特解。

求通解的方法——拉格朗日常数变易法:对应的齐次微分方程组Y x A dx

dY

)(=的一个

基本解组)(),(),(21x Y x Y x Y n Λ构成基本解矩阵

????

?

?????=Φ)(y )(y )( (x))(nn n1111x x x y y x n ΛM M Λ 齐次微分方程组Y x A dx

dY

)(=的通解为 C X x Y )()(Φ= 其中?????

???????=n 2

1C M C C C

线性非齐次方程组

)(x F AY dx

dY

+=的通解为 ?-ΦΦ+Φ=x x dt t F t x C x x Y 0

)()()()()(1。

结论:线性非齐次方程组

)()(x F Y x A dx

dY

+=解的全体并不构成n+1维线性空间。 3. 常系数线性微分方程组的解法

常系数线性齐次微分方程组的解法:若当标准型方法(基本解组的求解方法)

① 求特征根:即特征方程式

det(A-0

)21222211n 1211=?????

???????---=λλλλnn n n n a a a a a a a a a E ΛM M M M ΛΛ 的解。

②根据特征根的情况分别求解:特征根都是单根时,求出每一个根所对应的特征向量,即可求出基本解组;单复根时,要把复值解实值化;有重根时,用待定系数法求出相应的解。(详略)

常系数线性非齐次微分方程组的解法:

①求相应的齐次微分方程组的基本解组; ② 用待定系数法求特解。(详略)

二.典型例题及解题方法简介

(1)化一阶线性微分方程组:有些高阶线性微分方程或高阶线性微分方程组,可以通过合理的函数代换,化为一阶线性微分方程组。 例1 化如下微分方程为一阶线性微分方程组:

0)()(2=++y x q dx

dy

x p dx y d

解:令21dx

dy

,y y y ==则 0)()(dx dy ,d , 122

221221=++==y x q y x p dx dy dx

y y dx dy ∴原微分方程化为等价的一阶线性微分方程组:

??????

?--==1222

1

)()(y

x q y x p dx

dy y dx

dy 例2化如下微分方程组为一阶线性微分方程组:

??????

?=-=-02032

2x dt

dy t y dt x

d 解:令,, dt

dx

, 321x y x x x ===则有 dt

dx x dt dx 3

21dt dy , == ∴原微分方程组化为等价的一阶线性微分方程组:

???

?

?????===31332

21

2t x dt dx x dt dx x dt dx (一)

一般线性微分方程组的求解问题

对于一般线性齐次微分方程组

Y x A dx

dY

)(= ,如何求出基本解组,至今尚无一般方法。一些简单的线性微分方程组可以化为前面两章学过的微分方程来求解。

消元法(化方程组为单个方程的方法) 例3 求解方程组

???????+-=+-=yt x dt

dy t yt x dt

dx t 2

解:有前一个方程解出y 并求导,有 dt

dx

t x y +=

2221dt x d dt dx t t

x dt dy ++-= 代入后一方程化简得

02

22

=dt x

d t

假定,0≠t 则有02

2

=dt x d ,积分得

t

C C C t t

C C dt dx t x y t

C C x 12221212+=++=+=

+= 原方程组的通解为

)0(2,

2121≠?

?

?+=+=t C C y t C C x 常系数线性微分方程组在教材中介绍了若当标准型方法,其实两个方程构成的简单

常系数线性微分方程组我们还可以用消元法求解。

例4 解方程组

??????

?+=+=11x dt

dy y dt

dx

解:由前一方程得x y x y ''='∴-'= 1代入后一方程,得常系数二阶线性方程 01=--''x x 其通解为

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

一阶线性微分方程

第四节 一阶线性微分方程 教学目的:使学生掌握一阶线性微分方程的解法,了解伯努利方程的解法 教学重点:一阶线性微分方程 教学过程: 一、 一阶线性微分方程 方程)()(x Q y x P dx dy =+叫做一阶线性微分方程. 如果Q (x )0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dx dy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(021=--y x dx dy 是齐次线性方程 (2) 3x 25x 5y 0y 3x 25x 是非齐次线性方程 (3) y y cos x e sin x 是非齐次线性方程 (4)y x dx dy +=10 不是线性方程 (5)0)1(32=++x dx dy y 0)1(23=+-y x dx dy 或32)1(x y dy dx +- 不是线性方程 齐次线性方程的解法: 齐次线性方程 0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P y dy )(-=, 两边积分, 得 1)(||ln C dx x P y +-=? , 或 )( 1)(C dx x P e C Ce y ±=?=-, 这就是齐次线性方程的通解(积分中不再加任意常数). 例1 求方程y dx dy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得 2 -=x dx y dy , 两边积分得 两边积分得

ln|y |ln|x 2|lnC, 方程的通解为 y C (x 2). 非齐次线性方程的解法: 将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把 ?=-dx x P e x u y )()( 设想成非齐次线性方程的通解. 代入非齐次线性方程求得 )()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =?+?-?'---, 化简得 ?='dx x P e x Q x u )()()(, C dx e x Q x u dx x P +?=?)()()(, 于是非齐次线性方程的通解为 ])([)()(C dx e x Q e y dx x P dx x P +??=? -, 或 dx e x Q e Ce y dx x P dx x P dx x P ? ??+?=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和. 例2 求方程25)1(1 2+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程. 先求对应的齐次线性方程 012=+-x y dx dy 的通解. 分离变量得 1 2+=x dx y dy , 两边积分得 ln y 2ln (x 1) ln C , 齐次线性方程的通解为 y C (x 1)2. 用常数变易法. 把C 换成u , 即令y u ×(x 1)2, 代入所给非齐次线性方程, 得 2522)1()1(1 2)1(2)1(+=+?+-+?++?'x x u x x u x u 21 )1(+='x u , 两边积分, 得

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

.高阶微分方程与微分方程组

§4 高阶微分方程与微分方程组 一、 高阶微分方程与微分方程组的互化 已给一个n 阶方程 ()()() y f x y y y y n n ='''-,,,,, 1 设y 1=y ,y 2=y',y 3=y",…,y n =y (n -1),那末解上面n 阶微分方程就相当于解下面n 个一阶微分方程的方程组 ()????? ?? ??????====-n n n n y y y x f x y y x y y x y y x y ,,,,d d d d d d d d 2113221 式中y 1,y 2,…,y n 看作自变量x 的n 个未知函数. 反过来,在许多情况下,已给n 个一阶微分方程的方程组也可以化为一个n 阶微分方程.比如,两个一阶微分方程的方程组 () ()?????==21222111 ,,d d ,,d d y y x f x y y y x f x y (1) 将方程(1)对x 求导数 221 11112 12d d f y f f y f x f x y ??+??+??= 记作 ()212 1 2,,d d y y x F x y = (2) 从方程(1)中解出y 2 ()y y x y y 2211=',, 代入方程(2)的右边,就得到一个二阶微分方程 ()1 121 2,,d d y y x x y '=Φ 这里函数()1 1,,y y x 'Φ由函数f 1,f 2所确定,因而是已知的.所以两个一阶微分方程组可以化为一个二阶微分方程. 二、 高阶微分方程的几种可积类型及其解法 1. y (n ) = f (x ) 将方程写成 ()()x f y x n =-1d d 积分后得到

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程 式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx (3.20)

其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1 T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2, ,),ij T t i j n == det 0T ≠,将方程组 (3.20)化为 1 dZ T ATZ dx -= (3.22) 我们知道,约当标准型 1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0 n n n n nn a a a a a a A E a a a λλλλ ---= =- 的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

一阶线性微分方程及伯努利介绍

一阶线性微分方程及伯 努利介绍 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第三节 一阶线性微分方程 内容要点 一、一阶线性微分方程 形如 )()(x Q y x P dx dy =+ 的方程称为一阶线性微分方程. 其中函数)(x P 、)(x Q 是某一区间I 上的连续函数. 当,0)(≡x Q 方程成为 0)(=+y x P dx dy 这个方程称为一阶齐次线性方程. 相应地,方程称为一阶非齐次线性方程. 方程的通解 .)(?-=dx x P Ce y 其中C 为任意常数. 求解一阶非齐次线性微分方程的常数变易法:即在求出对应齐次方程的通解后,将通解中的常数C 变易为待定函数)(x u ,并设一阶非齐次方程通解为 一阶非齐次线性方程的通解为 [] ?-?+=?dx x P dx x P e C dx e x Q y )()()( 二、伯努利方程:形如 n y x Q y x P dx dy )()(=+ 的方程称为伯努利方程,其中n 为常数,且1,0≠n . 伯努利方程是一类非线性方程,但是通过适当的变换,就可以把它化为线性的. 事实上,在方程两端除以n y ,得 或 ),()()(1111x Q y x P y n n n =+'?--- 于是,令n y z -=1,就得到关于变量z 的一阶线性方程

)()1()()1(x Q n z x P n dx dz -=-+. 利用线性方程的求解方法求出通解后,再回代原变量,便可得到伯努利方程的通解 雅各布.伯努利(Jacob Bermoulli ,1654~1705) 伯努利瑞士数学、力学、天文学家。1654年12月27日生于瑞士巴塞尔;1705年8月16日卒于巴塞尔。 雅各布.伯努利出生于一商人世家。他的祖父是一位药商,1662年移居巴塞尔。他的父亲接过兴隆的药材生意,并成了市议会的一名成员和地方行政官。他的母亲是市议员兼银行家的女儿。雅格布在1684年一位富商的女儿结婚,他的儿子尼古拉,伯努得是艺术家,巴塞尔市议会的议员和艺术行会会长。 雅格布毕业于巴塞尔大学,1671年获艺术硕士学位。这里的艺术是指“自由艺术”,它包括算术、几何、天文学、数理音乐的基础,以及方法、修辞和雄辩术等七大门类。遵照他父亲的愿望,他又于1676年得硕士学位。同时他对数学有着浓厚的兴趣,但是他在数学上的兴趣遭到父亲的反对,他违背父亲的意愿,自学了数学和天文学。1676年,他到日内瓦做家庭教师。从1677年起,他开始在这里写内容丰富的《沉思录》。1678年雅格布进行了他第一次学习旅行,他到过法国、荷兰、英国和德国,与数学家们建立了广泛的通信联系。然后他又在法国度过了两年时光,这期间他开始研究数学问题。起初他还不知道牛顿和莱布尼兹的工作,他首先熟悉了笛卡尔的《几何学》、活利斯的《无穷的算术》以及巴罗的《几何学讲义》。他后来逐渐地熟悉了莱布尼兹的工作。1681-1682年间,他做了第二次学习旅行,接触了许多数学家和科学家。通过访问和阅读文献,丰富了他的知识,拓宽了个人的兴趣。这次旅行,他在科学上

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

相关主题
文本预览
相关文档 最新文档