当前位置:文档之家› §1 二重积分概念 答案

§1 二重积分概念 答案

§1  二重积分概念  答案
§1  二重积分概念  答案

§1 二重积分概念

2.证明:若函数(,)f x y 为有界闭区域D 上可积,则(,)f x y 在D 上有界.

4.若(,)f x y 为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则

()0.D

f x d σ>??

5.若(,)

f x y在有界闭区域D上连续,且在D内任一子区域'D D

?上有

'()0,

D f x dσ=

??则在D上(,)0.

f x y≡

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

1 定积分的概念

§1.定积分的概念 ※ 学习目标 1.理解定积分产生的背景; 2.掌握定积分问题的基本思想和解决方法. ※ 学习过程 一、课前准备 复习: 导数的的概念;导数在几何、物理上的意义;应用 导数在解决数学最值问题上的方法步骤 二、研读课本 课本问题1 图中阴影部分时由抛物线f(x)=x 2,直线x=1及x 轴所围成的平面图形.试估计这个曲边梯形的面积S. 新知总结 积分问题的基本思路及步骤 1、分割: 将区间[a ,b]插入n -1个点(一般都是均匀插入这些点),使得:a=x 0

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

第一节二重积分的概念及性质教案

第九章 重积分 第一节 二重积分的概念及性质 一.二重积分的概念 1.引例 引例1 曲顶柱体的体积 设有一立体的底是xy 面上的有界闭区域D ,侧面是以D 的边界曲线为准线、母线平行于z 轴的柱面,顶是有二元非负连续函数),(y x f z = 所表示的曲面, 如图9—1所示, 这个立体称为D 上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9—3 解 对于平柱体的体积底面积高?=V ,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D 任意划分成n 个小闭区域n σσσ???,,,2 1 ,其中i σ?表示第i 个小闭区域, 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z 轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n 个小曲顶柱体。 (2)近似 在每一个小闭区域i σ?上任取一点),(i i ηξ,以),(i i f ηξ为高,i σ?为底的平顶柱体 的体积i i i f σηξ?),(近似代替第i 个小曲顶柱体的体积。

i i i f V σηξ?≈?),( (3)求和 这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值 ∑=?≈?=n i i i i f V V 1),(σηξ (4)取极限 将区域D 无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲顶柱体的体积。即 ∑=→?=n i i i i f V 10 ),(lim σηξλ 其中λ表示这n 个小闭区域i σ?直径中最大值的直径(有界闭区域的直径是指区 域中任意两点间的距离)。 引例2 平面薄片的质量 设有一平面薄片占有xy 面上的有界闭区域D ,它的密度为D 上的连续函数 ),(y x z ρ=,试求平面薄片的质量。 解 对于均匀平面薄片的质量薄片面积密度?=m ,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n 个小薄片n σσσ???,,,2 1 ,其中i σ?表示第i 个 小小薄片,也表示它的面积,如图9—3所示。 (2)近似 在每一个小薄片i σ?上任取一点),(i i ηξ,以),(i i ηξρ为其密度,当i σ?很小时,认 为小薄片是均匀的,则i i i σηξρ?),(近似代替第i 个小薄片的质量。即 i i i m σηξρ?≈?),( (3)求和 这n 个小薄片的质量之和即为薄片的质量的近似值

二重积分说课

《高等数学》(下)——说课稿 说课教师:方政蕊(经济与数学系) 各位评委、老师:大家好! 我是经济与数学系的数学教师方政蕊,很荣幸能够参加此次的说课活动,希望各位评委、老师对我的说课内容提出宝贵意见。 下面我将就本学期我所担任的《高等数学》这门课程所使用的教材、该课程的地位作用、教学方法的选择、学生学法的指导和教学过程的设计等几个方面来向大家做一简要介绍。 一、教材介绍 这门课所使用的教材是同济大学出版社出版的面向21世纪普通高等教育规划教材《高等数学》的下册,该教材内容符合教学大纲的要求,知识系统、体系结构清晰、例题丰富、语言通俗易懂,讲解透彻难度适中,在上册一元函数微积分的基础上进一步较系统地介绍多元函数微分学,多元函数积分学,无穷级数和微分方程等高等数学的知识。 二、课程介绍 1、地位和作用 高等数学在当今社会的各个领域都有广泛的应用,因而“高等数学”是理工类本科教学重要基础课之一,通过本课程的教学,旨在使学生掌握该课程的基本概念、基本理论和方法,提高学生应用数学知识解决实际问题的意识和能力,为学生继续学习后续相关专业课奠定必要的数学基础。 2、教学目标 (1)、理解多元函数的概念、会求二元函数的偏导数和全微分 (2)、能将多元函数应用到几何上,会求极值 (3)、理解多元函数的概念、性质,掌握二重积分的计算方法 (4)、掌握三重积分、曲线积分和曲面积分的计算方法 (5)、理解无穷级数的概念、性质,掌握判别级数收敛性的方法 (6)、会将函数展开成幂级数或傅里叶级数 (7)、理解微分方程的概念,掌握求微分方程的解的方法 3、教学重点和难点 (1)、求二元函数的偏导数、极值 (2)、求二重积分、三重积分、曲线积分和曲面积分 (3)、无穷级数的收敛性判别、将函数展开成幂级数或傅里叶级数 (4)、解微分方程 二、教学方法 科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。数学是本科教学中的重要基础课,是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。 根据教学内容、教学目标和学生的认知水平,我主要采取教师启发讲授、适当点拨和学生探究学习的教学方法。教学过程中,教师可以系统的传授知识,充分发挥教师的主导作用,根据教材提供的线索,安排适当的教学情境,让学生展

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

211二重积分概念

第二十一章 二重积分 §1 二重积分概念 教学目的 掌握二重积分的定义和性质. 教学内容 二重积分的定义和性质. (1) 基本要求:掌握二重积分的定义和性质,二重积分的充要条件,了解有界闭区域上的连续函数的可积性. (2) 较高要求:平面点集可求面积的充要条件. 教学建议 (1) 要求学生必须掌握二重积分的定义和性质,知道有界闭区域上的连续函数必可积.由于二元函数可积的充要条件与定积分类似,这方面的内容可作简略介绍. (2) 对较好学生可详细讲述二元函数可积的充要条件的证明,并布置有关习题. 教学程序 一、平面图形的面积 (一)、内、外面积(约当,黎曼外内测度)的概念 直线网T 分割平面图形P ,T 的网眼中小闭矩形i ?的分类: (ⅰ)i ?含的全是P 的内点, (ⅱ)i ?含的全是P 的外点(不含P 的点), (ⅲ)i ?内含有P 的边界点, 记()T s P 为T 的第ⅰ类i ?的面积的和. 记()T S P 为T 的第ⅰ和第三类i ?的面积的和. 记P I =(){}T s P T sup ,称为P 的内面积. 记P I = (){}T S P T inf ,称为P 的外面积. 定义1 若平面图形P 的内面积P I 等于它的外面积P I ,则称P 为可求面积,并称其共同值P I =P I =P I 为P 的面积(约当,黎曼测度)

定理21.1 平面有界图形P 可求面积的充要条件是:对任给的0>ε,总存在直线网T ,使得 ()()ε<-T s T S P P . (2) 证明 [必要性]设平面有界图形P 的面积为P I .由定义1,有P I =P I =P I .对任给的ε,由P I 及P I 的定义知道,分别存在直线网1T 与2T ,使得 (),21ε->P P I T s ()22ε +

P P I T s ()2ε +

ε,存在直线网T ,使得(2)式成立.但 ()()T S I I T s P P P P ≤≤≤, 所以 ()()ε<-≤-T s T S I I P P P P , 由ε的任意性,因此P I =P I ,因而平面图形P 可求面积. 推论 平面有界图形P 的面积为零的充要条件是它的外面积0=P I ,即对任给的0>ε,存在直线网T ,使得, ()εε,平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖. 定理21.2 平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为零. 证明 由定理21.1,P 可求面积的充要条件是:对任给的0>ε,存在直线网T ,使得()()ε<-T s T S P P .由于 ()=T S K ()()ε<-T s T S P P , 所以也有()ε

二重积分的概念与性质教案

7.1二重积分的基本概念(教案) 主讲人:孙杰华 教学目的:理解二重积分的概念、性质 教学重难点:二重积分的概念、二重积分的几何意义. 教学方法:讲授为主 教学内容: 一、二重积分的概念 1.曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =,称这种立体为曲顶柱体. 与求曲边梯形的面积的方法类似,我们可以这样来求曲顶柱体的体积V : (1)用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这些小区 域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω. (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值.),从而1 n i i V ==?Ω∑. 图7.1 (2)由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大.因此,可以将小曲顶柱体近似地看作小平顶柱体,于是

(,),((,))i i i i i i i f ξησξησ?Ω≈??∈?. (3)整个曲顶柱体的体积近似值为 1 (,)n i i i i V f ξησ=≈?∑. (4)为得到的精确值,只需让这个小区域越来越小,即让每个小区域向某点收缩.为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者. 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零. 设n 个小区域直径中的最大者为λ,则 1 lim (,),(,)n i i i i i i i V f λξησξησ→==??∈?∑. 2.二重积分的定义 设(),f x y 是闭区域D 上的有界函数, 将区域D 分成个小区域 12,,,,n σσσ??? 其中,i σ?既表示第i 个小区域,也表示它的面积, i λ表示它的直径. 1max{}(,)i i i i i n λλξησ≤≤=?∈?, 作乘积(,)(1,2 ,)i i i f i n ξησ?=, 作和式 1 (,)n i i i i f ξησ =?∑, 若极限()0 1 lim ,n i i i i f λξησ →=?∑存在,则称此极限值为函数(),f x y 在区域D 上的二重积分,记 作 (),D f x y d σ??.即 (),D f x y d σ=??()0 1 lim ,n i i i i f λξησ →=?∑. 其中:(),f x y 称之为被积函数,(),f x y d σ称之为被积表达式,d σ称之为面积元素, ,x y 称之为积分变量,D 称之为积分区域. V n

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???L 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

第一节二重积分的概念及性质教案

第九章重积分 第一节二重积分的概念及性质 重积分的概念 1 ?引例 引例1曲顶柱体的体积 设有一立体的底是xy面上的有界闭区域D,侧面是以D的边界曲线为准线、母线 平行于z轴的柱面,顶是有二元非负连续函数z f(x,y)所表示的曲面,如图9—1所示, 这个立体称为D上的曲顶柱体,试求该曲顶柱体的体积。 图9—1 图9—2 图9 —3 解对于平柱体的体积V高底面积,然而,曲顶柱体不是平顶柱体,那么具体作法如下 (1)分割 把区域D任意划分成n个小闭区域,,,,其中表示第i个小闭区域, 1 2 n i 也表示它的面积。在每个小闭区域内,以它的边界曲线为准线、母线平行于z轴的柱面,如图9—2所示。这些柱面就那原来的曲顶柱体分割成n个小曲顶柱体。 ⑵近似 在每一个小闭区域上任取一点(,),以f ( i , i)为高,为底的平顶柱体 i I / i 的体积f( i, i) i近似代替第i个小曲顶柱体的体积

V f ( i, i) (3) 求和这n 个小平顶柱体的体积之和即为曲顶柱体体积的近似值n V V f ( i, i) i i1 (4) 取极限 将区域D无限细分,且每个小闭区域趋向于或说缩成一点,这个近似值趋近于曲 顶柱体的体积。即 n V lim0 f ( i, i ) i i1 其中表示这n 个小闭区域直径中最大值的直径(有界闭区域的直径是指区 i 域中任意两点间的距离) 。 引例2 平面薄片的质量 设有一平面薄片占有 xy面上的有界闭区域D,它的密度为D上的连续函数 z (x, y) ,试求平面薄片的质量。 解对于均匀平面薄片的质量m 密度薄片面积,然而,平面薄片并非均匀,那么具体作法如下 (1)分割 将薄片(即区域D )任意划分成n个小薄片,其中表示第i个 1 2 n i 小小薄片,也表示它的面积,如图9—3 所示。 (2)近似 在每一个小薄片」上任取一点(「丿,以(i, J为其密度,当i很小时,认 为小薄片是均匀的,则(i, i) i近似代替第i个小薄片的质量。即 m ( i , i) i (3)求和 这n个小薄片的质量之和即为薄片的质量的近似值

(完整版)专题1——利用定积分定义求极限(1)

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是n →∞时的极限 ② 极限运算中含有连加符号1n i =∑ 在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b , 我们当然可以平均分割),那么每个小区间的长度为 b a n -(即定义中的i x ?),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n --++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n -+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i i i f x ξ=?∑就变为1 ()n i b a b a f a i n n =--+∑,那么1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?。(取左端点时1lim ((1) )()n b a n i b a b a f a i f x dx n n →∞=--+-=∑?) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?,而不是01lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑?。

§1 定积分的概念

§1 定积分的概念 1.1 定积分的背景——面积和路程问题 1.2 定积分 【选题明细表】 基础达标 1.如图所示是一个质点做直线运动的v t图像,则质点在前6 s内的位移s(单位:m)为( A ) (A)9 (B)12 (C)14 (D)15 解析:若把[0,6]这个区间分割得很小时,每一个小区间上都可以看作是匀速的,这时可用矩形面积近似地替代小梯形的面积,而质点在前6

s内的位移即为这些小矩形面积的和,这样只要求出图中三角形面积即可. ∴s=×3×6=9(m),故选A. 2.定积分dx的大小( A ) (A)与f(x)和积分区间[a,b]有关,与ξi的取法无关 (B)与f(x)有关,与区间[a,b]以及ξi的取法无关 (C)与f(x)以及ξi的取法有关,与区间[a,b]无关 (D)与f(x)、区间[a,b]和ξi的取法都有关 解析:∵从定义上考虑,当[a,b]分割的区间越小时,ξi的取值趋近相等,∴dx的大小与ξi无关,只与积分区间[a,b]及f(x)有关,故选 A. 3.设函数f(x)在区间[a,b]上单调递增,用分点a=x0

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

第一节 二重积分的概念与性质

第一节二重积分的概念与性质 学习指导 1.教学目的:使读者理解二重积分的概念与性质。 2.基本练习:熟悉二重积分的几何、物理背景。熟悉二重积分的性质。 3.应注意的事项: 二重积分是二元函数乘积和式的极限,是定积分的推广,因此从引例到研究方法,从定义到性质都是类似的,读者要善于比较,触类旁通,温故而知新。 第一节二重积分的概念与性质 一、二重积分的概念 1. 曲顶柱体的体积 (1)曲顶柱体 (2)曲顶柱体的体积 现在我们来讨论如何定义并计算上述曲顶柱体的体积V。 平顶柱体的体积 2. 平面薄片的质量 (1) 问题的提出 (2) 均匀薄片的质量

(3) 非均匀薄片质量的计算方法 (4) 二重积分的定义 上面两个问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限。在物理、力学、几何和工程技术中,有许多物理量或几何量都可以归结为这一形式的和的极限。因此我们要一般的研究这种和的极限,并抽象出下述二重积分的定义。 定义设是有界闭区域上的有界函数.将闭区域任意分成个小闭区域 。 其中 表示第个小闭区域,也表示它的面积。再每个上任取一点,作乘积 ,并作和。如果当个小闭区域的直径中最大值 趋于零时,这和的极限总存在。则称此极限为函数在闭区域上的二重积分,记 作,即 。(1) 叫做被积函数,叫做被积表达式,叫做面积元素,与叫 其中 积分变量,叫做积分区域,叫做积分和。 (5) 直角坐标系中的面积元素 在二重积分的定义中对闭区域的划分是任意的,如果在直角坐标系中用平行于坐标轴的 直线网来划分,那么除了包含边界点的一些小闭区域外,其余的小闭区域都是矩形闭区域。 设矩形闭区域的边长为和,则。因此在直角坐标系中,有 时也把面积元素记作。而把二重积分记作 。 其中叫做直角坐标系中的面积元素。

二重积分

第十章 二重积分 一、内容概要 1.二重积分的定义 定义 设函数(,)z f x y =在有界闭区域D 上有定义. 分割 用任意两组曲线将区域D 分成n 个小区域,分别记为 12,,,n σσσ??? .并以i σ?代表第i 个小区域的面积. 求和 在每个小区域i σ?上任意一点(,)i i x y 作乘积(,)i i i f x y σ?,并求和 1 (, )n i i i i f x y σ=?∑. 取极限 记λ为n 个小区域12,,,n σσσ??? 中的最大的直径,如果 0 1l i m (,)n i i i i f x y λσ→=?∑. 存在,且此极限值不依赖区域D 的分法,也不依赖于点(,)i i x y 的取法,则称此极限值为函数(,)f x y 在区域D 上的二重积分,记为 1 (, )l i m (,)n i i i i D f x y d f x y λσσ→==?∑??, 称d σ为面积元素. 2.二重积分的几何解释 由二重积分的定义可知,二重积分为一个数值.从几何上可以解释为: 若在区域D 上,(,)f x y 0≥,则二重积分的值等于以区域D 为底,以曲面 (,)z f x y =为顶的曲顶直柱体的体积.若在区域D 上,(,)f x y 0≤,则二重积分的 值的绝对值等于以D 为底,以曲面(,)z f x y =为曲顶的直柱体体积,此时二重积分的值为负值.若在区域D 上的某些子区域上(,)f x y 0≥,而另一些子域上 (,)f x y 0≤,则二重积分的值等于这些子区域上,以(,)z f x y =为曲顶的直柱体 体积的代数和,其中(,)f x y 0≥的直柱体体积值前取“+”,在(,)f x y 0≤的直柱体体积前取“-”.

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D U 上也可积,且 ()12 ,D D f x y d σ??U ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ? ?也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}1 2 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()() () 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

9.1二重积分的定义 (1)

《高等数学》第二十一次网络课导学 学习内容:二重积分的定义 重点内容:二重积分的概念与定义;二重积分的几何意义;微元法理解二重积分;二重积分的性质 课程要求:理解二重积分的定义;理解二重积分的几何意义并加以使用;理解微元法思想;掌握二重积分的重要性质 学习步骤:签到——阅读《高等数学》教材9.1(前半部分内容)二重积分的概念与性质——观看视频3.5.1二重积分的定义——完成测验——讨论问题——完成课后作业,共6个步骤 课后作业: 1.二重积分??≤+D y x D d 的值为1:,22σ( ) A.1 B.2 C.3 D.π 2.二重积分的积分区域D 是1≤+y x ,则??=D dxdy ( ) A.2 B.1 C.0 D.4 3.设积分区域222:D x y a +≤, 且 9D dxdy π=??, 则a =( ) A.1 B.2 C.3 D.4 4.设积分区域D 为2214x y ≤+≤, 2D dxdy =??( ) A.π2 B.π4 C.π6 D.π8 5.二重积分()??D d y x f σ,在空间直角坐标系中的几何意义是( ) A.平面区域D 的面积 B.空间曲面()y x f z ,=的面积 C.空间曲面()0,=y x f 的面积 D.以平面区域D 为底,曲面()y x f z ,=为顶的曲顶柱体的体积 6.已知二重积分 ??=D dxdy 1,则平面区域D 可以由下列哪些曲线围成( ) A.21||=x ,3 1||=y B.x 轴,y 轴及022=-+y x C.x 轴,2=x 及x y = D.1=+y x ,1=-y x

7.设??+=1221D y x dxdy e I ,??+=2222D y x dxdy e I , 其中区域22,11:1≤≤-≤≤-y x D , 20,10:2≤≤≤≤y x D ,则下列四式中正确的是( ) A.214I I > B.214I I = C.214I I < D.212I I = 8.下列不等式正确的是( ) A. 0)(33122>+??≤+σd y x y x B.0)(22122>+??≤+σd y x y x C. 0)(122>+??≤+σd y x y x D.0)(122>-?? ≤+σd y x y x 9.设1D 是由x 轴,y 轴及直线1=+y x 所圈成的有界闭域,f 是区域D :1≤+y x 上的连续函数,则二重积分22(,)D f x y dxdy =??__________1 22(,)D f x y dxdy ?? A.2 B.4 C.8 D. 12 10.设777123[ln()],(),sin ()D D D I x y dxdy I x y dxdy I x y dxdy =+=+=+??????其中D 是由0=x ,0=y ,12 x y += ,1=+y x 所围成的区域,则321,,I I I 的大小顺序是( ) A.321I I I << B.123I I I << C.231I I I << D.213I I I << 11.设??≤+++= 2 22sin cos 1πy x y x dxd I ,则I 满足( ) A. 13 2<

相关主题
文本预览