当前位置:文档之家› 力学学科分类---力学是从物理学中独立出来的一个分支学科

力学学科分类---力学是从物理学中独立出来的一个分支学科

力学学科分类---力学是从物理学中独立出来的一个分支学科
力学学科分类---力学是从物理学中独立出来的一个分支学科

力学学科分类---力学是从物理学中独立出来的一个分支学科

力学分类

力学是研究物质机械运动的科学。机械运动亦即力学运动,是物质在时间、空间中的集团变化,包括移动、转动、流动、变形、振动、波动、扩散等。力学原是物理学的一个分支学科,当物理学摆脱了机械(力学) 的自然观而获得进一步发展时,力学则在人类生产和工程技术的推动下按自身逻辑进一步演化和发展,而从物理学中独立出来。它既是探索自然界一般规律的基础科学,又是一门为工程服务的技术科学,担负认识自然和改造自然的任务。力学的研究对象是以天然的或人工的宏观的物质机械运动为主。但由于本学科自身的发展和完善以及现代科技发展所促成的学科的相互渗透,有时力学也涉及微观各层次中的对象及其运动规律的研究。机械运动是物质的最基本的运动形式,但还不能脱离其他运动(热、电磁、原子、分子运动及化学运动等) 形式而独立存在,只是在研究力学问题时突出地甚至单独地考虑机械运动形式而已。如果需要考虑不同运动之间的相互作用,则力学与其他学科之间形成交叉学科或边缘学科。力学产生很早, 古希腊的阿基米德(约公元前287 —212) 是静力学的奠基人。在欧洲文艺复兴运动以后,人们对力和运动之间的关系逐渐有了正确的认识。英国科学家牛顿继承和发展了前人的研究成果,提出了物体运动三定律,标志着力学开始成为一门科学。到了20 世纪,力学更得到蓬勃的发展。到目前为止,已形成了几十个分支学科,诸如一般力学、固体力学、结构力学、物理力学、流体力学、空气动力学、流变学、爆炸力学、计算力学、连续介质力学、应用力学、岩土力学、电磁流体力学、生物力学,等等。为了充分发挥这些力学文献的作用,必须对其进行科学的分类。本文拟对力学文献的分类标准、分类体系和分类方法进行研究。

一、力学文献的分类标准

根据力学文献的属性,其分类标准很多,但根据读者(用户) 的检索需求和文献分类法的立类列类原则,主要采用以下9 种标准:

1.1 根据研究对象分

根据研究各种物体不同的运动,力学就形成了不同的分类。例如:当物体是液体或气体时,就是流体力学;当物体是固体时,就是固体力学;当研究固体在外界加力影响下,内部的变形和应力状态,以及它受力的性能时,就是弹塑性力学;当研究物体的整体运动的时候,而不去仔细考虑物体每一部分的情况便是一般力学。

1.2 根据研究方法分

根据研究方法,力学可以分为实验力学、理论力学、物理力学、理性力学和计算力学等。1.3 根据研究的时代分

根据研究的时代,力学可以分为经典力学和近代力学。从牛顿至哈密顿的理论体系称为经典

力学或牛顿力学。20世纪初以后,经过普朗特和卡门等的发展,进入了近代力学。

1.4 根据研究的目的和用途分

由于力学是一门基础学科,它的理论和方法被广泛地应用,因而产生了一系列的应用力学,诸如天体力学、岩石力学、生物力学、材料力学、工程力学、地质力学、机械动力学、土木结构力学和土力学等。

1.5 根据研究的内容范围分

例如理论力学,根据研究的内容范围,可以分为:动力学、静力学、运动学、引力理论、弹道学、分析力学、稳定性理论、陀螺力学。

1.6 根据研究的问题分

例如运动学的研究问题,可以分为:质点运动、刚体运动、形的运动、相对运动等。再如动力学的研究问题,可以分为:质点动力学、质点系动力学、刚体动力学、碰撞理论、摩擦理论、变质量动力学、多体系统动力学等。

1.7 根据研究的手段分

例如实验应力分析,根据研究的手段可以分为:光测法、电测法、机械测定法、涂盖法、高温变形测试技术、X射线法、比拟法、模拟理论、声学方法等。

1.8 根据地区或国家分

这主要是关于力学的历史和人物传记的文献。例如:力学发展史可以根据地区分为亚洲力学发展史、欧洲力学发展史、美洲力学发展史;也可以根据国家分为:中国力学发展史、英国力学发展史、俄国力学发展史、法国力学发展史、意大利力学发展史、德国力学发展史、美国力学发展史、加拿大力学发展史等。

1.9 根据力学文献的形式体裁分

力学文献的形式体裁也是多种多样的,可以分为专著、论文、丛书、多卷书、科技报告、会议录、年鉴、期刊、手册、指南、教材等。

1.10 其他

另外,力学文献的分类还可以采用一些辅助标准,例如:①所用的语言文字; ②出版的地点; ③出版的年代; ④著名的姓名; ⑤服务的对象,等等。

二、力学文献的分类体系

在早年的文献分类法中,力学大都隶属于物理学之下,例如杜威《十进分类法》(1876 年) 、《国际十进分类法》(1905年) 、《美国国会图书馆图书分类法》(1901 年) 以及我国杜定友的《世界图书分类法》(1925 年) 、刘国钧的《中国图书分类法》(1926 年) 、皮高品的《中国十进分类法》(1934 年) 等。在现代文献分类法中,为了适应科学的发展,除了《人大法》仍然将力学归属物理学外,大都已将力学独立列为一个类目,位于数学和物理学之间。在类目划分的次序上,也大都先根据研究对象、研究内容和研究的目的分,然后再根据研究问题、研究手段、研究方法分。例如《科图法》的分类体系是:

52 力学

11 一般力学(理论力学、普通力学)

12 振动学

13 物理力学

14 连续介质力学

15 固体力学

16 流变学

17 流体力学

18 空气动力学、气体动力学(可压缩流体力学)

189 爆炸力学

19 应用力学

又如《中图法》的分类体系是:

O 3 力学

31 理论力学(一般力学)

32 振动理论

33 连续介质力学(变形体力学)

34 固体力学

35 流体力学

369 物理力学

37 流变学

38 爆炸力学

39 应用力学

由此可见,现代文献分类法的力学文献分类体系基本上是一致的。为了节省篇幅,现按照《中图法》的分类体系对其划分的次序探讨如下:如有与其他分类法不一致的地方,则略加以补充说明。

2.1 理论力学(一般力学)

理论力学又称一般力学,或普通力学。它是研究物体机械运动一般规律的学科。理论力学的研究对象是质点、质点系、刚体、多刚体系统,并以生产实践和科学实验归纳出的基本公理和定律为讨论的出发点,采用近代数学工具,进行数学演绎,导出各种以数学形式表达的普遍定理和结论。其内容和方法以牛顿体系为主,还包含一些分析力学基本理论。在《中图法》“O31 理论力学(一般力学) ”中,根据研究内容首先分为下列各类:

O311 运动学

O312 静力学

O313 动力学

O314 引力理论

O315 弹道学

O316 分析力学(解析力学)

O317 稳定性理论

O318 陀螺力学(回转仪理论)

各类然后再根据其研究问题细分,例如:

2.1.1 运动学

动动学是通过位移、速度、加速度等物理量,描述和研究物体位置随时间变化的规律,而不考虑导致物体运动状态改变的原因。《中图法》的“O311 运动学”,根据其研究问题细分为:“O311.1 质点运动”、“O311.2 刚体运动、形的运动”、“〔O311.3〕机构传动”等。

2.1.2 静力学

静力学是研究物体平衡或力系平衡的规律。《中图法》的“O312 静力学”,根据其研究的问题细分为:“O312.1 力的合成与分散”、“O312.2 平衡”、“O312.3 几何静力学、图解静力学”等。

2.1.3 动力学

动力学是研究作用于物体的力与物体运动的关系。《中图法》的“O313 动力学”,根据其研究的问题细分为:“O313.1质点动力学”、“O313.2 质点系动力学”、“O313.3 刚体动力学”、“O313.4 碰撞理论(撞击理论) ”、“O313.5 摩擦理论”、“O313.6 变质量动力学”、“O313.7 多体系统动力学”等。

2.1.4 引力理论

《中图法》的“O314 引力理论”,包括引力与万有引力定律、重力与落体定律、摆的理论等。

2.1.5 弹道学

弹道学是研究弹头运动规律的学科。是设计、使用和保管武器danyao的重要依据。在《中图法》“O315 弹道学”中,只收总论性的著作。至于专论性的著作则入“TJ 武器工业”有关各类,例如: 枪炮弹道学入TJ012 ; 火箭、导弹弹道学入TJ013 。

2.1.6 分析力学(解析力学)

分析力学是以广义坐标为描述质点系的变数,以牛顿运动定律为基础,运用数学分析方法研究宏观现象中的力学问题的学科。《中图法》的“O316 分析力学”的研究问题包括:分析静力学、完整体系动力学、非完整系动力学、正则方程、力学变分原理等。

2.1.7 稳定性理论

稳定性理论是研究扰力对系统运动状态(坐标、速度及其函数等) 的影响,从而建立判别运动状态是否稳定的法则的学科。《中图法》的“O317 稳定性理论”,根据其研究的问题细分为:“O317.1 平衡位置的稳定性”、“O317.2 运动的稳定性”“〔O317.3〕结构的稳定性”等。

2.1.8 陀螺力学(回转仪理论)

陀螺力学是研究陀螺仪和陀螺系统的运动。它是在刚体动力学的理论基础上,利用陀螺仪转子高速转动的特点,将运动微分方程线性化而建立起来的工程理论。《中图法》的“O318 陀螺力学”,根据其研究的问题细分为:“O318.1 支承点的运动”、“O318.2 回转仪运动的稳定

性”、“O318.3 漂移问题”等。

2.2 振动理论

振动理论是借助于数学、物理、实验和计算技术探讨各种振动现象的机理,阐明振动的基本规律,为合理解决实践中遇到的各种振动问题提供理论根据的学科,又称振动学。在《中图法》的“O32 振动理论”中,根据研究内容分为下列各类:

O321 线性振动

O322 非线性振动

O323 自激振动、参数振动

O324 随机振动

O325 有限自有体系的振动

O326 弹性体的振动

O327 结构振动

O328 减振、隔振理论

O329 振动测量技术

2.3 连续介质力学(变形体力学)

连续介质力学是研究连续介质宏观力学行为的学科。其基本内容为: (1) 一切连续介质都必须满足的共同的普遍原理,如连续性方程、能量方程、不等式、运动方程及运动学关系(包括变形几何学、运动学) 等; (2) 各种理想化物质的本构关系; (3) 特殊理论。如弹性理论、塑性理论、粘弹性理论、粘弹塑性理论等; (4) 问题的求解、解析方法及数值方法。近年来连续介质力学进展很大,其发展方向为:按理性力学的观点和方法研究连续介质理论,从而发展出理性连续介质力学;把连续介质力学与计算机结合起来,就成为计算连续介质力学;把近代连续介质力学研究对象扩大,就发展成为连续物理学。连续介质力学向深度和广度发展的同时, 也分出了一些与之平行的新学科,如广义连续介质力学、热力物质理论、纯力学物质理论、电磁连续介质理论、连续介质波动理论等等。在《中图法》“O33 连续介质力学”中,除了收入总论固体力学和流体力学、塑性力学的文献外,还专门设了“O331 理性力学”一类。在《科图法》“52.4 连续介质力学”中,则依研究问题细分为:“5.41 连续介质力学基础理论”;“52.42 多相介质力学”;“52.43 气动弹力学”;“52.44 水弹性力学”、“52.45 散体力学(松散介质

力学) ”等。

2.4 固体力学

固体力学是研究可变形固体在外界因素(如载荷、温度、湿度等) 作用和影响下,其内部质点的位移、运动、应力、应变和破坏等规律的学科。它是力学中形成较早,理论性较强,应用较广的一个分支。在《中图法》“O34 固体力学”中,根据研究内容,首先分为下列各类:

〔O341〕材料力学

O342 结构力学

O343 弹性力学

O344 塑性力学

O345 粘弹塑性介质力学

O346 强度理论

O347 变形固体动力学

O348 实验应力分析

各类然后再根据其研究的问题细分,例如:

2.4.1 材料力学

材料力学是研究结构构件(工程结构物或机械的零、部件等) 强度、刚度、稳定性等承载能力的基础性学科。它将工程结构和机械中的简单构件简化为杆件,研究其应力、变形和稳定性,为保证构件能承受预定载荷而选择适当的材料和截面形状及尺寸,为设计出既安全又经济的构件提供理论依据和计算方法。因此它是介于固体力学和工程材料学的边缘学科。《中图法》将其置于“TB3 工程材料学”之下,另在“O34 固体力学下设立交替类目“〔O341〕材料力学”。

2.4.2 结构力学

结构力学是研究工程结构受力、传力规律以及结构优化、创新的学科,是固体力学的一个分支。因此《中图法》在“O342 固体力学”中收入总论固体力学的文献;至于专论则入有关各类,例如建筑结构力学入TU311 ;航空器结构力学入V214 ;航天器结构力学入V414 。特别需要注意的是《, 科图法》在“52.54 结构力学”还设两类总论性的类目,即:“52.542 结构动力学”和“52.543 稳定性理论(屈曲、后屈曲) ”,以收有关这些方面的文献。

21413 弹性力学

弹性力学又称弹性理论,是研究弹性体在外力和其他外界因素作用下的变形、应力、稳定性和各种动力特性。弹性体是指当载荷完全消除后,变形最终能完全消失的物体。在《中图法》“O343 弹性力学”中,根据其研究的问题细分为:“O343.1 二维问题(平面问题) ”;“O343.2 三维问题(空间问题) ”;“O343.3 接触问题”;“O343.4 应力集中问题”;“O343.5 非线性弹性力学”;“O343.6 热弹性力学( 热应力) ”;“O343.7 非均匀介质弹性力学”;“O343.8 各向异性弹性力学”;“O343.9 弹性稳定性问题”。

2.4.4 塑性力学

塑性力学又称塑性理论,是研究物体超过弹性极限后产生的塑性变形与作用力的关系以及物体内部应力和应变的分布规律。在《中图法》“O344 塑性力学”中,根据其研究的问题细分为:“O344.1 塑性力学基本理论”(包括屈服、硬化、强化、加载、卸载、应力及应变关系等) ;“O344.2 理想塑性力学”;“O344.3 弹塑性力学”(包括扭转、厚壁球、管筒等) ;“O344.4 塑性流动问题”;“O344.5 极限分析”;“O344.6 蠕变理论”;“O344.7 强塑性稳定性问题”。

2.4.5 强度理论

在《中图法》“O346 强度理论”中,根据其研究的问题细分为:“O346.1 断裂理论”(包括断裂力学、脆性断裂、韧性断裂、碎裂等) ;“O346.2 疲劳理论”(包括疲劳力学、腐蚀疲劳、应力腐蚀以及各种因素对疲劳的影响等) ;“O346.3 强度理论的原子学说及微观机理”;“O346.4 强度理论的实验”;“O346.5 损伤理论”(包括损伤力学) 。

2.4.6 变形固体力学

在《中图法》的“O347 变形固体动力学”中,根据其研究的问题细分为:“O347.1 动载荷”(包括短时载荷、冲击载荷等) ;“O347.2 动力稳定性”;“O347.3 冲击载荷下的材料强度”;“O347.4 应力波”(包括弹性波、热弹性波、不完全弹性波、分层介质中的波等) ;“O347.5 冲击波”(包括热冲击波) ;“O347.6 转子动力学”(包括临界转速、动平衡、动力响应等) ;“O347.7 散体力学”。

2.4.7 实验应力分析

在《中图法》的“O348 实验应力分析”中,根据其研究的手段细分为:“O348.1 光测法(包括光弹性法、光塑性法、激光测试、全息法等) ;“O348.2 电测法”;“O348.3 机械测定法”;“O348.4 涂盖法(脆膜法) ”;“O348.5 高温变形测试技术”;“O348.6 X 射线法”;“O348.7 比拟法、模拟理论”;“O34818 声学方法”(包括声弹性法、声发射法、声全息法等) 。

2.5 流体力学

流体力学是研究在各种力作用下流体本身的静止状态、运动规律,以及流体和固体壁面、流体和流体之间、流体与其他运动形态之间相互作用的学科。流体是液体和气体的总称,大气和水是最常见的两种流体。流体力学既含有基础理论,又有极广泛的应用范围。在《中图法》“O35 流体力学”中,根据研究内容,首先分为下列各类:

O351 普通流体力学

〔O352〕水动力学

O353 流体振动与波浪

O354 气体动力学(可压缩流体力学)

〔O355〕空气动力学

〔O356〕稀薄空气动力学

O357 粘性流体力学

O358 射流

O359 多相流

O361 电磁流体力学

O362 化学流体力学

O363 物理—化学流体动力学

O368 应用流体力学

各类然后再根据其研究的问题细分,例如:

2.5.1 普通流体力学

普通流体力学是研究流体力学一般理论和方法的学科。在《中图法》“O351 普通流体力学”中,根据其研究的问题细分为:“O351.1 流体静力学”;“O351.2 流体动力学”;“O351.3 不可压缩理想流体力学”〔包括位势流动、涡流(漩涡的运动) 、尾流、层流等〕。

2.5.2 水动力学

水力学和水动力学是研究水在海洋、江河、渠道、管道中的运动规律及其在工程中应用的学科。因此《中图法》将“水力学”和“水动力学”置于“TV 水利工程”之下,即:“TV13 水

力学”“, TV131.1 水静力学”“, TV131.2 水动力学”。如有需要,可将水动力学文献归入O352。

2.5.3 流体振动与波浪

在《中图法》的“O353 流体振动与波浪”中,根据其研究的问题细分为:“O353.1 流体振动理论”;“O353.2 波浪理论”(包括有限幅度波、重力波、表面波、潮汐波、内介面波等) ;“O353.3 汹涌与水击”;“O353.4 固体与流体的冲击”;“O353.5 实验技术与测量”。

2.5.4 气体动力学(可压缩流体力学)

气体动力学是在连续介质假定下,研究伴有热力学效应的气体介质运动规律的学科。它是在经典流体力学的基础上发展起来的,专门研究可压缩流动,因此又称可压缩流体力学。在《中图法》“O354 空气动力学”中,根据其研究的问题细分为:“O354.1 亚音速流动”;“O354.2 跨音速流动”;“O354.3 超音速流动”;“O354.4 高超音速流动”;“O354.5激波(冲击波) ”;“O354.6 高速气流的冷凝”;“O354.7 高温气体动力学”;“O354.9 其他”。

2.5.5 空气动力学

空气动力学是研究天空空气对物体(如飞机) 有相对运动时,空气所受到的扰动情况(即流动情况) 和空气对物体所产生的力。这门科学是随着飞行器(飞机、导弹等) 的发展而发展起来的。因此《中图法》将“空气动力学”置于“V 航空、航天”之下,即:“V211 空气动力学”。如有需要,可将空气动力学文献归入O355 。

2.5.6 稀薄空气动力学

稀薄空气动力学是空气动力学的一个分支,因此《中图法》也将其置于“V 航空、航天”之下,即:“V211.25 稀薄空气动力学”。如有需要,可将稀薄空气动力学文献归入O356。

2. 5. 7 粘性流体力学

在《中图法》的“O357 粘性流体力学”中,根据其研究的问题细分为:“O357. 1 不可压缩粘性流体力学”(包括涡流、分层流、不定常流等) ;“O357. 2 蠕流”;“O357. 3 渗流”(包括渗流力学、多孔介质力学等) ;“O357. 4 边界层(附面层) 理论”(包括边界层稳定性与控制,边界层与激波的干扰,边界层实验技术与测量) ;“O375.5 湍流(紊流) ”(包括均匀湍流,边界层、尾流的剪切流动,湍流扩散与传热,湍流实验技术与测量) 。

2. 5. 8 射流

射流是指喷射成束的流体。如空气从气管中喷出,水从水枪中喷出等都能形成射流。《中图法》在“O358 射流”中只收入射流理论的文献。至于射流技术则入TP6 。

2. 5. 9 多相流

多相流是研究同种或异种化学成份物质的固—气、液—气、液—液或固—液—气系统共同流

动的规律。在《中图法》的“O359 多相流”中,根据其研究的问题细分为:“O359. 1液、气(汽) 二相流”;“O359. 2 空松固体中的多相流”。

2. 5. 10 电磁流体力学

电磁流体力学是研究带电流体和导电流体的运动规律、尤其是它们在电磁场中运动规律的学科。《中图法》在“O361 电磁流体力学”中,根据其研究的问题细分为:“O361.1 基本方程”;“O361. 2 介质的运动性质”;“O361. 3 磁流体力学”;“O361. 4 电流体力学”;“O361. 5 电磁流体的稳定性与湍流”;“O361. 6 电磁流体中的振荡与波、激波”;“O361. 7 电磁流体的诊断技术(测量) ”。

2. 5. 11 化学流体力学

化学流体力学是研究流体流动对化学转化或物理转化的影响以及物理、化学因素对流体流动的影响等问题的学科,也称物理—化学流体动力学。因此《中图法》的“O362 化学流体力学”和“O363 物理—化学流体动力学”应该合并为一类。至于细目《, 中图法》分为三小类,即“: O363. 1 分散体系的流动”;“O363. 2 界面和毛细流动”;“O363. 9 其他”。《科图法》分为四小类,即:“52. 7961 分散体系的流动”(包括气泡、液滴、流态化、悬浮液、乳浊液等) ;“52. 7962 界面和毛细流动”(包括液漠、雾化、渗析等) ;“52.7963 化学反应”(包括有化学反应的流动)“52.7964 电场中的流体运动”。

2. 5. 12 应用流体力学

应用流体力学是研究流体力学在工程技术中应用的学科。《中图法》在“O368 应用流体力学”中,只收总论性的文献,至于专论性的文献则入有关各类。

2. 6 物理力学

物理力学是从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算对介质和材料的宏观现象及其运动规律作出微观解释。《中图法》的“O369 物理力学”没有细分。而《科图法》的“52. 3 物理力学”一类,则依研究问题细分为4类,即:“52. 31 固体物理力学”;“52. 32 稠密流体物理力学”;“52. 33 高温气体物理力学”;“52. 34 多相介质物理力学”。

2. 7 流变学

流变学是研究物质或材料流动和变形的学科。它是由力学、化学、工程科学的交叉和综合而产生的边缘学科。在《中图法》的“O37 流变学”中,根据研究的问题细分为:“O371唯象理论”;“O372 统计理论”;“O373 非牛顿流体”;“O374容积粘度”;“O375 正应力”;

“O376 二次流”;“O377 应力松驰及反弹性应力松弛”。

2. 8 爆炸力学

爆炸力学是研究爆炸的发生、发展规律以及爆炸力学效应的利用和防护的学科。它从力学角度研究化学爆炸、核爆炸、电爆炸、粒子束爆炸(也称辐射爆炸) 、高速碰撞等能量突然释放或急剧转化的过程和由此产生的冲击波(又称激波) ,高速流动、大变形和破坏、抛掷等效应。在《中图法》“O38 爆炸力学”中,首先根据研究的内容分为下列各类:

O381 爆震(爆轰) 理论

O382 爆震波的传播

O383 爆炸波与物体的相互作用

O384 爆炸波的观测技术

O385 穿甲理论

O389 应用爆炸力学

各类然后再根据其研究的问题细分,例如:

2. 8. 1 爆震(爆轰) 理论

《中图法》的“O381 爆震理论”一类只收总论爆震(爆轰)理论的一般著作,例如气相爆震等。至于各科专门理论,则入有关各类。例如穿甲理论入O385。

2. 8. 2 爆震波的传播

《中图法》的“O382 爆震波的传播”,根据研究的范围细分为:“O382. 1 在空中、水中及地下的传播”;“O382. 2 在土及岩石中的传播”;“O382. 3 在金属材料中的传播”;“O382. 4爆炸相似律理论与试验”。

2. 8. 3 爆炸波与物体的相互作用

《中图法》的“O383 爆炸波与物体的相互作用”,根据研究的对象细分为:“O383. 1 爆炸波在空中、水中及地下的作用及防护”;“O383. 2 爆炸波对各种建筑物的作用及防护”;“O383.

3 爆炸波对各种机械及装备的作用及防护”。

2. 8. 4 应用爆炸力学

《中图法》的“O389 应用爆炸力学”一类,只收总论性的文献;至于专论文献则入有关各类。如愿集中于此者,可用组配编号法。

2. 9 应用力学

应用力学是力学的一个重要分支学科。由于力学在现代科学技术的广泛应用,因而开拓了很多新领域。在《中图法》“O39 应用力学”中,只收总论应用力学的文献;至于专论在某方面应用的文献则入有关各类。例:工程力学入TB12 。如愿将力学在各方面应用的文献集中于此,可用组配编号法。例:工程力学的分类号为O39 :TB12 。

三、力学文献的分类方法

在类分力学文献的时候,一方面要注意力学文献中的一些特殊的分类方法;另一方面要注意力学与其他科学的关系。现将一些必须共同注意的分类方法阐述如下:

3. 1 力学基础理论文献与理论力学文献的区别

力学基础理论文献是指力学的一些基本定律、原理,如牛顿定律、机械能守恒定律、达朗伯原理、变分原理等,以及力学研究的方法论,如力学中的数学方法、量纲分析、相似理论、计算力学等的文献。理论力学文献则是指研究物体机械运动的一般规律的文献,包括运动学、静力学、动力学、引力理论、弹道学、分析力学、稳定性理论以及陀螺力学等。所以分书时,必须仔细辨别。例如(美) 弗伦奇,A. P. 著,郭毅仁、何成钧译的《牛顿力学》属力学基础理论文献,分类号码为O301 ;而(前苏联) 澳符兹格利亚多夫,B. T. 著,黄念宁译的《理论力学》则属理论力学的文献,分类号码为O31 。

3. 2 关于理论力学文献的分类方法

理论力学的文献可以分为一般性和特殊性两种。如果是研究物体机械运动的一般性理论,如动力学、静力学、运动学等的文献,则归入理论力学;如果是研究有独特研究对象的力学理论,如固体力学、流体力学、气体动力学等的理论,则归入有关各类。例如: (美) 施毕格尔,M. R. 著,程敬学、郑旭明译的《理论力学的理论和习题》,属一般性理论,所以归入“一般力学”,分类号码为O31 ;而(美) 小邦德,J . W. 等著,傅化罗译的《气体动力学原子理论》则属特殊性的力学理论,所以归入“气体动力学”,分类号码为O354。

3.3 关于实验力学文献的分类方法

由于现代文献分类法不是根据研究方法分,所以在类分实验力学文献时,是采取分散的办法,也即是说,总论的归入“力学实验方法”(O3 —33) ;专论的则归入有关各类,然后再加“总论复分表”的“实验”复分号“- 33”。例如:爆炸力学实验的分类号码为O38 —33 ; 固体力学实验的分类号码为O34 —33。

3.4 关于振动理论文献的分类方法

关于振动理论文献也可以分为总论性的和特殊性的两种。如果是总论性的,例如线性振动、非线性振动、自激振动、多数振动、随机振动等都归入“O32 振动理论”之下;如果是专论性的,例如流体振动、机械振动等则入有关各类。例如:骆振黄编著的《工程振动导引》入工程力学,分类号码为TB123。

3.5 固体力学文献与流体力学文献的区别

从学科关系上说,固体力学和流体力学都是研究连续分布的、可变形物体运输规律的科学,因此都是连续介质力学的组成部分。但是从文献内容上说,则有重要的区别。固体力学文献主要是阐述关于固体的运动及其规律;而流体力学文献则主要是阐述关于流体(这里的流体是指具有连续性和可流性的任何介质,例如:水、空气、油,等等) 的运动和平衡的规律,以及与其相邻固体的相互作用问题。所以分书时,只要辨别其研究对象就可以了。例如(美) 赖,W1M 等著的《连续介质力学引论》入“O33 连续介质力学”;复旦大学教学系编著的《固体力学》入“O34 固体力学”;王致清等编的《流体力学》入“O35 流体力学”。

3.6 关于流体力学文献的分类方法

在现代文献分类法中,对于流体力学文献,有集中和分散两种方法。如果集中,则将全部流体力学文献,包括水力学、空气力学、水动力学、空气动力学、稀薄空气动力学都入流体力学。如果分散,则除了研究普通流体力学和一般性的流体力学归入流体力学外,其余各种专门的流体力学都归入有关各类。例如《中图法》规定, 水力学入TV12 ;水动力学入TV131.2 ,空气动力学入V211 ,稀薄空气动力学入V211.25。所以各馆使用分类法时,必须加以选择,并一贯执行。

3.7 关于应用力学文献的分类方法

由于力学是从实践的需要而产生的,与应用技术的联系十分密切,再加上力学与各门基础科学均有交叉关系,形成了许多边缘学科。为了便于归类,特提出下列几点处理办法。

3.7.1 凡总论力学在其他科学技术领域应用的文献入“O39 应用力学”。例如金宝桢著的《应用力学》的分类号码为O39 。又如美国机械工程师协会编的《应用力学最新进展》的分类号码为O39 —101 。

3.7.2 凡总论力学某分支学科的应用的文献,归入该分支学科的应用类;如未设应用类,则归入相应的分支学科。例如:王石安编的《应用流体力学》入“O368 应用流体力学”;王启德著的《应用弹性理论》入“O344 弹性力学”。

3.7.3 凡运用力学理论和方法研究其他科学技术的文献归入有关各类。例如吴文俊的《力学在几何学中的一些应用》入“O18 几何学”; 冯元桢著的《生物力学》入“Q66 生物力学”;王光远的《建筑结构的振动》入“TU311.3 结构动力学”。

3.7.4 如果需要将力学在各方面应用的文献集中于“O39应用力学”类,可用组配编号法。

例如天体力学的分类号码为O39 :P13 ;地质力学的分类号码为O39 : P55 ;生物力学的分类号码为O39 :Q66 。

3.8 包括力学在内的物理学文献的分类方法由于力学原为物理学的一个分支,因此包括力学在内的物理学文献归入“O4 物理学”。例如北京大学物理系普通物理教研室编的《普通物理学》(其中包括力学) 的分类号码为O4 。如果对力学部分作分类分析,可标引力学的分类分析号O31 。

3.9 关于量子力学和统计力学文献的分类方法量子力学是研究微观粒子(电子、原子等) 的运动规律及其性质的学科;统计力学是用统计方法研究由大量粒子所组成的体系的学科。由于量子力学和统计力学都是现代理论物理学最主要的研究领域之一,所以一般都将其归入“物理学”,而不入“力学”。例如: (英) 狄拉克, P.A.M 著,陈咸亨译,喀兴林校的《量子力学原理》的分类号码为O413.1 ; (美)李政道著,陈崇光译的《统计力学》的分类号码为O41

4.2 。

医学学科分类及代码全

医学学科分类及代码 180 生物学 180.11 生物数学(包括生物统计学等) 180.14 生物物理学 180.17 生物化学 180.1710 多肽与蛋白质生物化学180.1715 核酸生物化学 180.1720 多糖生物化学 180.1725 脂类生物化学 180.1730 酶学 180.1735 膜生物化学 180.1740 激素生物化学 180.1745 生殖生物化学 180.1750 免疫生物化学 180.1755 毒理生物化学 180.1760 比较生物化学 180.1765 应用生物化学 180.1799 生物化学其他学科 180.21 细胞生物学 180.2110 细胞生物物理学 180.2120 细胞结构与形态学

180.2130 细胞生理学 180.2140 细胞进化学 180.2150 细胞免疫学 180.2160 细胞病理学 180.2199 细胞生物学其他学科180.24 生理学 180.2411 形态生理学 180.2414 新陈代谢与营养生理学180.2417 心血管生理学 180.2421 呼吸生理学 180.2424 消化生理学 180.2427 血液生理学 180.2431 泌尿生理学 180.2434 内分泌生理学 180.2437 感官生理学 180.2441 生殖生理学 180.2444 骨骼生理学 180.2447 肌肉生理学 180.2451 皮肤生理学 180.2454 循环生理学 180.2457 比较生理学 180.2461 年龄生理学

180.2464 特殊环境生理学 180.2467 语言生理学 180.2499 生理学其他学科 180.27 发育生物学 180.31 遗传学 180.3110 数量遗传学 180.3115 生化遗传学 180.3120 细胞遗传学 180.3125 体细胞遗传学 180.3130 发育遗传学(亦称发生遗传学) 180.3135 分子遗传学 180.3140 辐射遗传学 180.3145 进化遗传学 180.3150 生态遗传学 180.3155 免疫遗传学 180.3160 毒理遗传学 180.3165 行为遗传学 180.3170 群体遗传学 180.3199 遗传学其他学科 180.34 放射生物学 180.3410 放射生物物理学 180.3420 细胞放射生物学

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

流体力学讲义 第一章 绪论

第一章绪论 本章主要阐述了流体力学的概念与发展简史;流体力学的概述与应用;流体力学课程的性质、目的、基本要求;流体力学的研究方法及流体的主要物理性质。流体的连续介质模型是流体力学的基础,在此假设的基础上引出了理想流体与实际流体、可压缩流体与不可压缩流体、牛顿流体与非牛顿流体概念。 第一节流体力学的概念与发展简史 一、流体力学概念 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机械运动规律及其实际应用的技术科学。 流体力学所研究的基本规律,有两大组成部分。一是关于流体平衡的规律,它研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系,这一部分称为流体静力学;二是关于流体运动的规律,它研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等,这一部分称为流体动力学。 流体力学在研究流体平衡和机械运动规律时,要应用物理学及理论力学中有关物理平衡及运动规律的原理,如力系平衡定理、动量定理、动能定理,等等。因为流体在平衡或运动状态下,也同样遵循这些普遍的原理。所以物理学和理论力学的知识是学习流体力学课程必要的基础。 目前,根据流体力学在各个工程领域的应用,流体力学可分为以下几类: 能源动力类: 水利类流体力学:面向水工、水动、海洋等; 机械类流体力学:面向机械、冶金、化工、水机等; 土木类流体力学:面向市政、工民建、道桥、城市防洪等。 二、流体力学的发展历史 流体力学的萌芽,是自距今约2200年以前,西西里岛的希腊学者阿基米德写的“论浮体”一文开始的。他对静止时的液体力学性质作了第一次科学总结。 流体力学的主要发展是从牛顿时代开始的,1687年牛顿在名著《自然哲学的数学原理》中讨论了流体的阻力、波浪运动,等内容,使流体力学开始成为力学中的一个独立分支。此后,流体力学的发展主要经历了三个阶段: 1.伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的解析方法,为研究液体运动的规 律奠定了理论基础,从而在此基础上形成了一门属于数学的古典“水动力学”(或古典“流体力学”)。 2.在古典“水动力学”的基础上纳维和斯托克思提出了著名的实际粘性流体的基本运动方程 ——N-S方程。从而为流体力学的长远发展奠定了理论基础。但由于其所用数学的复杂性和理想流体模型的局限性,不能满意地解决工程问题,故形成了以实验方法来制定经验公式的“实验流体力学”。但由于有些经验公式缺乏理论基础,使其应用范围狭窄,且无法继续发展。

学科分类与代码表.pdf

学科分类与代码表 110数学 110.11数学史 110.14数理逻辑与数学基础 110.17数论 110.21代数学 110.24代数几何学 110.27几何学 110.31拓扑学 110.34数学分析 110.37非标准分析 110.41函数论 110.44常微分方程 110.47偏微分方程 110.51动力系统 110.54积分方程 110.57泛函分析 110.61计算数学 110.64概率论 110.67数理统计学 110.71应用统计数学 110.74运筹学 110.77组合数学 110.81离散数学 110.84模糊数学 110.87应用数学 110.99数学其他学科 120信息科学与系统科学 120.10信息科学与系统科学基础学科120.20系统学 120.30控制理论 120.40系统评估与可行性分析 120.50系统工程方法论 120.60系统工程 120.99信息科学与系统科学其他学科130力学 130.10基础力学 130.15固体力学 130.20振动与波 130.25流体力学 130.30流变学 130.35爆炸力学 130.40物理力学 130.45统计力学 130.50应用力学 130.99力学其他学科 140物理学 140.10物理学史 140.15理论物理学 140.20声学 140.25热学 140.30光学 140.35电磁学 140.40无线电物理 140.45电子物理学 140.50凝聚态物理学 140.55等离子体物理学140.60原子分子物理学140.65原子核物理学 140.70高能物理学 140.75计算物理学 140.80应用物理学 140.99物理学其他学科 150化学 150.10化学史 150.15无机化学 150.20有机化学 150.25分析化学 150.30物理化学 150.35化学物理学 150.40高分子物理 150.45高分子化学 150.50核化学 150.55应用化学 150.99化学其他学科180.24生理学 180.27发育生物学 180.31遗传学 180.34放射生物学 180.37分子生物学 180.41生物进化论

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

我对流体力学的认识

我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体

力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 流体力学的研究方法 进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 现场观测是对自然界固有的流动现象或已有工程的全尺寸流动

国家标准学科分类与代码表

学科分类与代码 共设5个门类、58个一级学科、573个二级学科、近6000个三级学科。 学科分类代码是基于一定原则对现实科学体系按其内在联系加以归类并以符合逻辑的排列形式表述出来且赋予代码的一种学科。《学科分类与代码》国家标准,是科学发展、教育、科技统计、学科建设等方面工作的一个重要依据。鉴于学科分类在科学发展中所具有的特殊地位,联合国、美国、德国和日本等国际组织与世界发达国家都很重视学科分类体系标准化工作,纷纷制定相应的学科分类与代码标准。 《学科分类与代码》使用说明 中华人民共和国国家标准学科分类与代码表GB/T13745-92。 Classification and code disciplines。 1.主题内容: 本标准规定了学科的分类与代码。 2. 适用范围: 本标准适用于国家宏观管理和科技统计。 本标准的分类对象是学科,不同于专业和行业,不能代替文献、情报、图书分类及学术上的各种观点。 3. 相关术语: 3.1 学科: 学科是相对独立的知识体系。 3.2 学科群: 学科群是具有某一共同属性的一组学科。每个学科群包含了若干个分支学科。 4. 分类原则: 4.1 科学性原则: 根据学科研究对象的客观的、本质的属性和主要特征及其之间的相关联系,划分不同的从属关系和并列次序,组成一个有序的学科分类体系。 4.2 实用性原则: 对学科进行分类和编码,直接为科技政策和科技发展规划,以及科研经费、科技人才、科研项目、科技成果统计和管理服务。 4.3 简明性原则: 对学科层次的划分和组合,力求简单明了。 4.4 兼容性原则: 考虑国内传统分类体系的继承性和实际使用的延续性,并注意提高国际可比性。 4.5 扩延性原则: 根据现代科学技术体系具有高度动态性特征,应为萌芽中的新兴学科留有余地,以便在分类体系相对稳定的情况下得到扩充和延续。 4.6 唯一性原则: 在标准体系中,一个学科只能用一个名称、一个代码。 5. 分类依据: 本标准依据学科研究对象,研究特征、研究方法,学科的派生来源,研究目的、目标等五方面进行划分。 6.编制原则: 6.1 本标准所列学科应具备其理论体系和专门方法的形成;有关科学家群体的出现;有关研究机构和教学单位以及学术团体的建立并展开有效的活动;有关专著和出版物的问世等条件。

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

流体力学学习心得

竭诚为您提供优质文档/双击可除 流体力学学习心得 篇一:我对流体力学的认识 我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及 其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。1738年伯努利出版他的专著时,首先

采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体 力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且

学科分类与代码

学科分类与代码 (三位数字为一级学科,小数点后两位数字的为二级学科,小数点后三位数字的为三级学科)提示:按Ctrl+F键,输入你要查询的关键字,就可轻松找到你所需的学科代码。 110 数学 110.11 数学史 110.14 数理逻辑与数学基础 110.1410 演绎逻辑学 110.1420 证明论 110.1430 递归论 110.1440 模型论 110.1450 公理集合论 110.1460 数学基础 110.1499 数理逻辑与数学基础其他学科 110.17 数论 110.1710 初等数论 110.1720 解析数论 110.1730 代数数论 110.1740 超越数论 110.1750 丢番图逼近 110.1760 数的几何 110.1770 概率数论 110.1780 计算数论 110.1799 数论其他学科 110.21 代数学 110.2110 线性代数 110.2115 群论 110.2120 域论 110.2125 李群 110.2130 李代数 110.2135 Kac-Moody代数 110.2140 环论 110.2145 模论 110.2150 格论 110.2155 泛代数理论 110.2160 范畴论 110.2165 同调代数 110.2170 代数K理论 110.2175 微分代数 110.2180 代数编码理论 110.2199 代数学其他学科

110.24 代数几何学 110.27 几何学 110.2710 几何学基础 110.2715 欧氏几何学 110.2720 非欧几何学 110.2725 球面几何学 110.2730 向量和张量分析110.2735 仿射几何学 110.2740 射影几何学 110.2745 微分几何学 110.2750 分数维几何 110.2755 计算几何学 110.2799 几何学其他学科110.31 拓扑学 110.3110 点集拓扑学 110.3115 代数拓扑学 110.3120 同伦论 110.3125 低维拓扑学 110.3130 同调论 110.3135 维数论 110.3140 格上拓扑学 110.3145 纤维丛论 110.3150 几何拓扑学 110.3155 奇点理论 110.3160 微分拓扑学 110.3199 拓扑学其他学科110.34 数学分析 110.3410 微分学 110.3420 积分学 110.3430 级数论 110.3499 数学分析其他学科110.37 非标准分析 110.41 函数论 110.4110 实变函数论 110.4120 单复变函数论110.4130 多复变函数论110.4140 函数逼近论 110.4150 调和分析 110.4160 复流形 110.4170 特殊函数论 110.4199 函数论其他学科110.44 常微分方程 110.4410 定性理论 110.4420 稳定性理论

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

最新学科分类号查询

学科分类与代码 自然科学(一) 《学科分类与代码》使用说明 1、国家标准《学科分类与代码》(GB/T 13745-92)适用于国家宏观管理和科技统计。其分 类对象是学科,不同于专业和行业,不能代替文献、情报、图书分类及学术上的各种观点。在本分类体系,尤其在工程与技术科学分类体系中,出现的学科与专业、行业、产品名称相同,但其涵义不同。 2、本标准仅对一、二、三级学科进行分类。一级学科用三位数字表示,二、三级学科分别用 两位数字表示,一、二级学科中间用点隔开,代码结构为X X X〃X XXX,例如570〃2520,其中570为一级学科,25为二级学科,20为三级学科。 3、本标准共设58个一级学科,分别选用“XX学”、“XX科学”、“XX科学技术”、“XX工程”、 “XX工程技术科学”五种名称。排列顺序是:自然科学,代码为110~180;农业科学,代码为210~240;医药科学,代码为310~360;工程与技术科学,代码为410~630;人文与社会科学,代码为710~910。 4、本标准对某些横断学科、综合学科及某些特殊学科的处理方法: (1)分类表中的“信息科学”是指小概念,不包括“计算机科学”。“信息科学与系统科学”的 理论和技术部分,其性质与数学类似,排列在数学之后,考虑其发展前景,设为一级学科。“信息科学”和“系统科学”都以“控制论”、“系统论”和“信息论”为基础理论,很难分开,故暂列在一类。 (2)“环境科学技术”、“安全科学技术”、“管理学”三个一级学科属综合学科,本学科列在自然 科学与社会科学之间。 (3)根据我国实际情况,将“心理学”列入“生物学”下二级学科。“地理学”列入“地球科学” 下二级学科,“人文地理学”入“地球科学”,属特例。 (4)“印刷、复印技术”入“460〃55专用机械工程”下,为三级学科,属特例。 (5)“仪器仪表技术”入“机械工程”学科。通用的或自然科学中的“仪器仪表技术”学科集 中列在“仪器仪表技术”下;专用的分别入其有关学科。 一级学科:3位数XX X;二级学科:5位数XX X〃X X;三级学科:7位数XX X〃X XX X。 一级学科:110 数学

原子物理学简史和大事年表

原子物理学简史 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或及其他物质的碰撞过程和相互作用。 经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。 1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。 1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。 1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,及整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的

核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。 绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。 但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。 1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。 玻尔的假设能够说明氢原子光谱等某些原子现象,初次成功地建立了一种氢原子结构理论。建立玻尔理论是原子结构和原子

力学学科分类---力学是从物理学中独立出来的一个分支学科

力学学科分类---力学是从物理学中独立出来的一个分支学科 力学分类 力学是研究物质机械运动的科学。机械运动亦即力学运动,是物质在时间、空间中的集团变化,包括移动、转动、流动、变形、振动、波动、扩散等。力学原是物理学的一个分支学科,当物理学摆脱了机械(力学) 的自然观而获得进一步发展时,力学则在人类生产和工程技术的推动下按自身逻辑进一步演化和发展,而从物理学中独立出来。它既是探索自然界一般规律的基础科学,又是一门为工程服务的技术科学,担负认识自然和改造自然的任务。力学的研究对象是以天然的或人工的宏观的物质机械运动为主。但由于本学科自身的发展和完善以及现代科技发展所促成的学科的相互渗透,有时力学也涉及微观各层次中的对象及其运动规律的研究。机械运动是物质的最基本的运动形式,但还不能脱离其他运动(热、电磁、原子、分子运动及化学运动等) 形式而独立存在,只是在研究力学问题时突出地甚至单独地考虑机械运动形式而已。如果需要考虑不同运动之间的相互作用,则力学与其他学科之间形成交叉学科或边缘学科。力学产生很早, 古希腊的阿基米德(约公元前287 —212) 是静力学的奠基人。在欧洲文艺复兴运动以后,人们对力和运动之间的关系逐渐有了正确的认识。英国科学家牛顿继承和发展了前人的研究成果,提出了物体运动三定律,标志着力学开始成为一门科学。到了20 世纪,力学更得到蓬勃的发展。到目前为止,已形成了几十个分支学科,诸如一般力学、固体力学、结构力学、物理力学、流体力学、空气动力学、流变学、爆炸力学、计算力学、连续介质力学、应用力学、岩土力学、电磁流体力学、生物力学,等等。为了充分发挥这些力学文献的作用,必须对其进行科学的分类。本文拟对力学文献的分类标准、分类体系和分类方法进行研究。 一、力学文献的分类标准 根据力学文献的属性,其分类标准很多,但根据读者(用户) 的检索需求和文献分类法的立类列类原则,主要采用以下9 种标准: 1.1 根据研究对象分 根据研究各种物体不同的运动,力学就形成了不同的分类。例如:当物体是液体或气体时,就是流体力学;当物体是固体时,就是固体力学;当研究固体在外界加力影响下,内部的变形和应力状态,以及它受力的性能时,就是弹塑性力学;当研究物体的整体运动的时候,而不去仔细考虑物体每一部分的情况便是一般力学。 1.2 根据研究方法分 根据研究方法,力学可以分为实验力学、理论力学、物理力学、理性力学和计算力学等。1.3 根据研究的时代分 根据研究的时代,力学可以分为经典力学和近代力学。从牛顿至哈密顿的理论体系称为经典

流体力学分支和概述

流体力学分支及其概述 : 班级:硕5015 学号: 2015/12/20 目录

流体力学分支 (2) 地球流体力学 (2) 学科的形成 (2) 研究的地球流体运动类型: (2) 水动力学 (4) 研究容 (5) 水动力学的应用 (6) 气动力学 (7) 容介绍 (7) 渗流力学 (9) 物理-化学流体动力学 (10) 研究对象 (11) 研究容 (11) 等离子体动力学和电磁流体力学 (12) 环境流体力学 (12) 生物流变学 (12)

流体力学分支 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体。所以流体力学是与人类日常生活和生产事业密切相关的。 地球流体力学 流体力学的一个分支,研究地球以及其他星体上的自然界流体的宏观运动,着重探讨其尺度运动的一般规律。它是 20世纪 60年代发展起来的一个新学科。geophysical fluid dynamics按字义为"地球物理流体力学",由于考虑到地球和自然界还有包含化学反应的许多流动过程也日渐成为这一学科的研究容,故以译作地球流体力学为宜。另外,这个学科在国际上还有一些别的名称,其中一个比较流行的是"自然流体力学"(natural fluid dynamics)。 学科的形成 近百年来,人类对天气预报、航海和海洋资源开发的需要不断增长,大气大尺度运动和海洋大尺度运动的研究得到了发展,逐渐形成了大气动力学和海洋动力学。随着空间科学技术的发展,研究近地空间和其他星体的流体运动已成为现实,而随着地质和地球物理学的发展,研究地幔运动也成为重要的课题。流体力学的一般原理虽然也适用于上述自然界流体运动,但像天气系统和大洋环流等流体运动是由自然界中巨大的能源所推动,其时间尺度和空间尺度都比气体动力学和水动力学(见液体动力学)等与生产技术有关的流体运动的尺度要大得多,而引力、星体的自旋以及能量的交换和转移过程又在其中起着主要作用,因而这些流动具有非常鲜明的特点和共同的基本规律。研究这些共同的基本规律能使人类对大气或海洋等各种具体运动的特点和规律有深刻的认识。地球流体力学正是在这种背景下逐渐形成的。 研究的地球流体运动类型: 地球流体运动按空间尺度或性质可分为下列数种类型:重力-惯性波、行星波、埃克曼流、大气和大洋环流、涡旋、重力波和对流等。后三者为一般流体

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

相关主题
文本预览
相关文档 最新文档