当前位置:文档之家› 一个高可靠性的短路保护电路设计及其应用

一个高可靠性的短路保护电路设计及其应用

一个高可靠性的短路保护电路设计及其应用
一个高可靠性的短路保护电路设计及其应用

一个高可靠性的短路保护电路设计及其应用

电子设计工程作者:罗志聪黄世震

一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路或者过载对稳压器造成永久性的损坏。限流保护通常有限流和折返式限流2种类型。前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功率MOS管消耗能量,加快器件的老化。针对上述情况,在限流型保护电路的基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS管。本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出基于TSMCO.18μm CMOS工艺的Spectra仿真结果。

1 短路保护电路的工作原理

高可靠性短路保护电路的实现电路如图1所示,其中VMP是线性稳压器的功率MOS管,R1、R2为稳压器的反馈电阻;VMO和VMP管是电流

镜电路,VMO管以一定的比例复制功率管的电流,通过电阻R4转化为检测电压;晶体管VM1完成电平移位功能,最后接入由VM8~VM12等MOS管组成的比较器的正输入端(Vinp),比较器的负输入端(Vinm)与输出端(0UT)相连;VM13、VM14组成二极管连接形式为负载的共源级放大电路;VM14和VMp1构成电流镜电路;晶体管VMp1完成对功率管VMP的开关控制,正常工作时,VMp1的栅级电位(Vcon)为高电平,不会影响系统的正常工作,短路发生时,Vcon将为低电平,使功率管关断。

1.1 工作原理的定性分析

当短路发生时,比较器的负输入端电位(Vinm)为0 V;同时VM1管将导通,因此比较器的正输入端电位大于0 V,最终比较器的输出节点电位(Vcom)为高电平,在MOS管VM13、VM14作用下,控制信号Vcon 将为低电平,最终VMP管的栅极电压将升高,进而关断P功率管,实

现短路保护。

实现短路保护后,VM1管将关断;VM3和VM4组成电流镜,晶体管VM2的作用是保证电路在短路期间(VM1管关断),比较器正输入端的电压始终高于比较器的负输入端电压(即使系统存在地平面噪声),从而使Vcon电压始终为低电平,确保电路在短路发生期间始终都能关断P 功率管,实现保护电路的高可靠性。

同时当短路发生时(即Vcon信号为低电平),VM7管正常工作,VM5管将导通,有一定的电流流向0UT端;因此一旦短路消除(即0UT端接有负载电阻),VM5管将对负载电容和负载电阻组成的并联RC网络充电,0UT端电压升高,Vcon信号将变为高电平,电路自动恢复正常状态。

1.2 工作原理的定量分析

由电路分析可知,比较器的正负输入端关系为:

比较器输入端的Vinp,因此比较器输出信号Vcon为低电平,将关断P功率管,实现短路保护。

当P功率管关断后,ID0=O,晶体管Vcon将截止,此时比较器Vinp 输入端电压Vmin_OD取决于晶体管VM2、VM3、VM4组成的网络,只要保证Vmin_OD大于Vinm电压(Vinm=VOUT=O),P功率管将一直处于关闭状态。

接下来将分析VM2、VM3和VM4组成的网络如何确保Vmin_OD大于0。

分析电路可知,VM2、VM3工作在饱和区,VM4工作在线性区,因此ID3>ID4,ID4=ID2。

因此选取,即可得到Vinp>0。本文VM3的宽长比为VM2的宽长比的10倍,Vmin_OD=2.6 mV。

当短路排除后,流过VM5的电流将对RC网络充电,过t秒后Vinm(0UT)端电压将大于Vmin_OD,电路正常工作。其中充电时间为:

式中IDM5为VM5的漏电电流,RL=VOUT/Imax,CL为负载电容,其中Imax 是系统规定的最大负载电流。要使系统能正常启动,IDM5必须满足

IDM5>VOUT/RL,因此合理选取参数,就能正常启动。

2 仿真结果与讨论

基于TSMC O.18μm CMOS工艺,仿真结果如图2~图3所示。仿真结果表明输出短路时,输出电流为O,P功率管被关断,实现短路保护。

图3(a)所示曲线的仿真条件是输出负载周期性地从0 Ω变化到5 Ω。仿真结果表明当输出发生短路时(即负载为0),输出电流被限制在最大电流值,这样功率MOS管会消耗大量功耗,将加快器件的老化。

图3(b)所示曲线的仿真条件与图3(a)的条件一样。仿真结果表明当输出发生短路时(即负载为0),输出电流被限制为O,即功率MOS管被完全关断,同时表明系统具有自动恢复的特点,即负载短路消除后,系统恢复正常工作。

3 结论

在限流电路的基础上,设计改进一个短路保护电路,确保在短路情况下,彻底关断功率MOS管,减少短路发生时系统损失的功耗。同时该电路具有以下特点:高可靠性、自动恢复,即使地平面存在大量噪声,当短路发生

时,稳压器的功率管截止,实现保护,而短路一旦消除,稳压器的输出将自动恢复到正常状态,有效地保护系统。在蓝牙功率放大器电源管理电路中得到了很好应用。

防反接保护电路

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示

完整版信号口浪涌防护电路设计

信号口浪涌防护电路设计 通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。 设计信号口防雷电路应注意以下几点: 1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有一定裕量。 2、防雷电路应有足够的冲击通流能力和响应速度。 3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设备兼容。 4、信号防雷电路要考虑阻抗匹配的问题。 5、信号防雷电路的插损应满足通信系统的要求。 6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的动作电压是信号回路的峰值电压的1.3~1.6倍。 1.1网口防雷电路 网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。 1.1.1室外走线网口防雷电路 设计。1当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图 R1TX组合式G1PE,低节电容TVS R2 R3组合式RXG2PE,低节电容TVS R4a 变/22.23R097CXTXUNUSESLVU2.8-UNUSE10/10TXTXENTERNERX PH RXUNUSETXUNUSERX RJ47777RXVCVCCGND b 1 室外走线网口防护电路图从图中可以看出该电路的结构与室给出的是室外走线网口防护电路的基本原理图,图1aTVS口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和外走线E1它可以同时是三极气体放电管,,型号是3R097CXAG1管组成的二级防护电路实现。图中和G2使电阻,/2W起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω防雷性能电阻值在保证信号传输的前提下尽可能往大选取,前后级防护电路能够相互配合,因为网口传输速率高,在网口防雷TVS后级防护用的管,Ω。会更好,但电阻值不能小于2.21b图。SLVU2.8-4这里推荐的器件型号为管需要具有更低的结电容,TVS电路中应用的组合式 就是采用上述器件网口部分的详细原理图。 三极气体放电管的中间一极接保护地PGND,要保证设备的工作地GND和保护地PGND通过PCB走线在母板或通过电缆在结构体上汇合(不能通过0Ω电阻或电容),这样才能减小GND和PGND的电位差,使防雷电路发挥保护作用。 电路设计需要注意RJ45接头到三极气体放电管的PCB走线加粗到40mil,走线布在TOP层或BOTTOM层。若单层不能布这么粗的线,可采取两层或三层走线的方式来满足走线的宽度。退耦

可靠性设计准则

可靠性设计准则 1、新技术采用准则: 实施合理的继承性设计,在原有成熟产品的基础上开发、研制新产品; 尽量不使用不成熟的新技术、新工艺及新材料; 新技术的采用必须有良好的预研基础,并按规定进行评审和鉴定。 2、简化设计准则: 分析权衡产品功能,合并相同或相似功能,消除不必要功能; 在满足技术指标前提下尽量简化设计方案,减少零部件的数量; 尽量减少执行同一或相近功能的零部件、元器件数量; 优选标准化程度高的零部件、紧固件、元器件、连接件等; 最大限度采用通用组件、零部件、元器件,并尽量减少其品种; 必须使故障率高、易损坏、关键件的单元具有良好互换性和通用性; 产品修改时,不应改变其安装和连接方式以及有关部位的尺寸,使新旧可互换;设计须尽量使电路、结构简单的同时不给其他电路、结构增加不合理应力。 3、热设计准则: 元器件布局时应考虑周围零部件热辐射影响,将发热较大器件尽可能分散; 将热敏感器件远离热源或采取隔离(如电容器); 尽量采用温度漂移小的器件; 尽量降低接触面的热阻——加大热传导的面积、增加传导器件之间的接触压力、接触面应平整光滑且必要时可在发热体表面涂上散热图层以增加黑度系数、在传导路径中不应有绝热或隔热件; 应选用导热系数大的材料制造传导材料; 尽量缩短热传导的路径(加大横截面); 接近高温区的所有器件均应采取防护措施(间隙及使用耐高温绝缘材料); 发热器件应尽可能置于上方,条件允许应处于气流通道上; 发热量较大或电流较大元器件应安装散热器并远离其他器件; 尽可能利用金属机箱或底盘散热。

4、容差设计准则: 设计应考虑零部件元器件的制造容差、温漂、时漂的影响; 对系统参数影响较大的器件应选用低允差和高稳定性器件; 电路的阻抗匹配参数应保证在极限温度情况下电路工作稳定; 对稳定性要求高的电路,应通过容差分析进行参数设计; 正确选择元器件的工作点,使温度和使用环境的变化对电路影响最小。 5、机械环境设计准则: 应使电路结构对机械环境的影响最小; 元器件、材料的特性应满足产品的机械环境要求; 细长或较重的元器件应予以固定,以防振动疲劳断裂; 对振动和冲击强烈的部位应进行减震设计; 接插件等可移动的点接触部位,应加固和锁紧,以免振动时接触不良; 零部件应避免悬挂式安装,以防振动疲劳断裂; 供导线通过的金属隔板孔必须设置绝缘套,导线不得沿锐边、棱角铺设,以防磨损; 对于印制电路板应加固和锁紧,以免在振动时产生接触不良和脱开; 继电器安装应使触电的动作方向与衔铁的吸合方向相同,尽量不要与振动方向一致; 接插头处尽可能有支撑物; 在绕曲与振动环境下,应尽量使用软导线。 6、电磁兼容设计准则: 应采用良导体(如铜、铝)作为高频电场的屏蔽材料; 应采用导磁材料(如铁)作为低频磁场的屏蔽材料; 多重屏蔽能提高屏蔽效果和扩大屏蔽的频率范围; 有屏蔽要求的设备,应注意开口和间断处并做屏蔽处理; 金属表面之间必须紧密接触是获得良好搭接的关键; 搭接最好选用相同材料,选用不同材料时要注意搭接腐蚀问题; 在需要的场合,必须保护搭接免受潮气和其它腐蚀作用; 应把搭接片直接搭接在基体构件上,搭接片应能承受流过的电流;

质量和可靠性报告

×密 产品名称(产品代号) 质量和可靠性报告 编制:日期: 校对:日期: 审核:日期: 标审:日期: 会签:日期: 批准:日期: 第 1 页共 15 页

目次 1 概述 (3) 1.1 产品概况 (3) 1.2 工作概述 (3) 2 质量要求 (3) 2.1 质量目标 (3) 2.2 质量保证原则 (3) 2.3 产品质量保证相关文件 (3) 3 质量保证控制 (3) 3.1 质量管理体系控制 (4) 3.2 研制过程质量控制 (4) 4 可靠性、维修性、测试性、保障性、安全性情况 (9) 4.1 可靠性 (9) 4.2 维修性 (10) 4.3 测试性 (10) 4.4 保障性 (11) 4.5 安全性 (11) 5 质量问题分析与处理 (12) 5.1 重大和严重质量问题分析与处理 (12) 5.2 质量数据分析 (12) 5.3 遗留质量问题及解决情况 (13) 5.4 售后服务保证质量风险分析 (13) 6 质量改进措施及建议 (13) 7 结论意见 (13) 第 2 页共 15 页

产品名称(产品代号) 质量和可靠性报告 1 概述 1.1 产品概况 主要包括: a)产品用途; b)产品组成。 1.2 工作概述 主要包括: a) 研制过程(研制节点); b) 研制技术特点; c) 产品质量保证特点; d) 产品质量保证概况; e) 试验验证情况; f) 配套情况; g) 可靠性维修性测试性保障性安全性工作组织机构及运行管理情况; h) 可靠性维修性测试性保障性安全性文件的制定与执行情况。 i) 其它情况。 2 质量要求 2.1 质量目标 说明通过产品质量工作策划对实现顾客产品的要求,承制方需要满足期望的质量并能持续保持该质量的能力。 2.2 质量保证原则 简要通过产品质量工作策划对实现顾客产品的要求的原则。如:用户至上,持续改进,过程控制,激励创新,一次成功等。 2.3 产品质量保证相关文件 简要说明产品质量保证大纲的要求及质量保证相关文件。 3 质量保证控制 第 3 页共 15 页

可靠性设计技术工作规范

可靠性设计技术工作规范 1. 范围 本规范规定了可靠性设计大纲、工作计划编制的相关要求。 本规范规定了可靠性设计准则、原则与方法的相关要求。 2. 规范性引用文件 GJB450A-2004 装备可靠性工作通用要求 GJB841-1990 故障报告、分析和纠正措施系统 GJB899A-2009 可靠性鉴定和验收试验 GB/T7826-20012 系统可靠性分析技术――失效模式和影响分析(FMEA)程序 3. 术语和定义 3.1 可靠性 可靠性(Reliability)指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定功能的能力。 可靠性指标主要反映产品或设备的可靠性(Reliability),可靠性是部件(Part)、元件(Component)、产品(Product)或系统(System)的完整性的最佳数量的度量。 平均故障间隔时间又称平均无故障时间(Mean Time Between Failure,MTBF)指可修复产品两次相邻故障之间的平均时间,是衡量一个产品的可靠性指标。 3.2 可靠性设计 可靠性设计(Reliability Design),即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计,在产品设计过程中,为消除产品的潜在缺陷和薄弱环节,防止故障发生,以确保满足规定的固有可靠性要求所采取的技术活动。可靠性设计是可靠性工程的重要组成部分,是实现产品固有可靠性要求的最关键的环节,是在可靠性分析的基础上通过制定和贯彻可靠性设计准则来实现的。 4. 可靠性设计大纲 为了保证产品满足规定的可靠性要求而制定的一套文件,包括可靠性设计组织机构及其职责,要求按进度实施的工作项目、工作程序和需要的资源等。

IC产品的质量与可靠性测试

IC 产品的质量与可靠性测试 (IC Quality & Reliability Test ) 质量( Quality )和可靠性( Reliability )在一定程度上可以说是IC 产品的生命,好的品质,长久的耐力往往就是一颗优秀 IC 产品的竞争力所在。在做产品验证时我们往往会遇到三个问题,验证什么,如何去验证,哪里去验证,这就是 what, how , where 的问题了。解决了这三个问题,质量和可靠性就有了保证,制造商才可以大量地将产品推向市场,客户才可以放心地使用产品。现将目前较为流行的测试方法加以简单归类和阐述,力求达到抛砖引玉的作用。质量( Quality ) 就是产品性能的测量,它回答了一个产品是否合乎规格(SPEC的要求,是否符合各项性能指标的问题;可靠性 ( Reliability )则是对产品耐久力的测量,它回答了一个产品生命周期有多长,简单说,它能用多久的问题。所以说质量( Quality ) 解决的是现阶段的问题,可靠性( Reliability )解决的是一段时间以后的问题。知道了两者的区别,我们发现, Quality 的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通过简单的测试,就可以知道产品的性能是否达到 SPEC的要求,这种测试在IC 的设计和制造单位就可以进行。相对而言, Reliability 的问题似乎就变的十分棘手,这个产品能用多久, who knows? 谁会能保证今天产品能用,明天就一定能用?为了解决这个问题,人们制定了各种各样的标准,如JESD22-A108-A EIAJED- 4701-D101 注: JEDEC( Joint Electron Device Engineering Council )电子设备工程联合

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

可靠性设计要求

可靠性设计要求 1适用范围 本标准规定了可靠性设计的一般要求和详细要求。 本标准适用于公司所有产品的可靠性设计工作。 2引用标准 IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务 GB6993-86 系统和设备研制生产中的可靠性程序 GJB 450-88 装备研制与生产的可靠性通用大纲 GJB 451-90 可靠性维修性术语 GJB 437-- 88 军用软件开发规范 GB 4943-1995 信息技术设备(包括电气事务设备)的安全 3名词术语 3.1可靠性reliability 产品在规定的条件下和规定的时间内,完成规定功能的能力。 3.2可信性dependability 产品在任一时刻完成规定功能的能力。它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。在不引起混淆和不需要区别的条件下,与可靠性等同使用。 3.3测试性testability 产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。 3.4维修性maintainability 产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。 3.5可靠性要求(目标) 产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。这一系列指标就是对产品的可靠性要求或产品的可靠性目标。 3.6可靠性(设计)方案 为实现产品可靠性目标而制定的技术路径和方法。 3.7可靠性(设计)报告 为实现产品可靠性目标而实施的技术路径和方法。 3.8可靠性设计 从制定可靠性目标到提供可靠性(设计)报告的全过程。 3.9工作项目

USB电路保护图..

车载ECU的安全性能要求很高,在电气、物理、化学等各方面,各大汽车厂商通常都有自己严格的标准。一般情况下,车载ECU的外部接口都要有各种故障保护电路,其中最重要的莫过于对车载12V电源或对地发生短路时的保护电路。由于USB接口可以直接输出5伏电源,所以短路保护显得尤为重要。本文设计的保护电路可以实现对USB电源输出线的有效保护,无论USB电源输出线VBUS发生对12V电源还是对地短路,均不影响车载ECU内部电路的正常工作,实现了本质安全级的短路保护。 1、前言 为了保证行车安全,车载ECU的安全性能要求很高,在设计时便要保证故障发生率尽量低。作为目前应用最为广泛的移动外设与主机间通讯接口,USB(Universal Serial Bus)具有成本低、使用简单、支持即插即用、易于扩展等特点,在车载娱乐和存储设备上获得了广泛的应用。因为USB接口提供了内置电源,可提供 500mA以上的电流,对于一些功率较大的设备,如移动硬盘等,其瞬时驱动电流则可达到1A以上。如果车载ECU上带有像USB总线这种可以直接输出电源的接口,为防止接口电路发生对电源或对地短路时损坏机体,其接口部分通常都应具有保护电路,以便执行故障自诊断和保护功能。当系统产生故障时,它能在存储体中自动记录故障代码并采用保护措施,防止系统损坏,避免引起安全事故。 2、电路设计 利用比较器并结合外围电路,本文设计了一种可以自动探测USB电源输出线是否发了对12V电源或地短路,并且可以在短路故障发生时自动切断电源供应的保护电路。另外,如果探测到联接设备不在支持的USB设备之列,系统也可以借助本电路主动断开电源供应,并自动根据设备的连接状态实现对电源供应的控制。具体电路如图1所示。 图1 USB VBUS短路保护电路 图中MN1和MN2是USB电源通道上的两个MOSFET,用于控制5伏电源的输出,它们的G端都连接到比较器的输出端上。比较器的正端电位值受 3.3伏和VBUS共同影响,负端电位值由Umid通过电阻分压来决定,Umid的值总是与VCC5V和VBUS中的大者相同。本充分发挥二极管的正向导通和反向截止的作用,并对MOS管中快恢复二极管加以利用,利用一个比较器便可以构成一个窗口比较器。如果VBUS上的电压落在窗口之外(例如12V供电电压或地电平),那么比较器输出低电平,关断供电线的MOS管。这样既使12V电压无法进入系统内部,也防止了系统5V供电因为对地短路而发生过流,起到了保护系统不受短路侵扰的作用。 3、功能论证

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

软件设计基本原则

软件基本设计原则 ●友好、简洁的界面设计 ●结构、导向清晰,符合国际标准 ●强大的综合查询 ●信息数据共享 ●方便及时的信息交流板块 ●准确、可逆的科技工作流模块支持 ●良好的开放性和可扩展性 ●方案生命周期长 设计原则: 设计时考虑的总体原则是:它必须满足设计目标中的要求,并充分考虑本网站的基本约定,建立完善的系统设计方案。 信息系统的实施作为信息化规划的实践和实现,必须遵循信息化规划方案的思想,对规划进行项目实施层面上的细化和实现。 首先必须遵循信息化规划“投资适度,快速见效,成熟稳定,总体最优”的总原则。具体细化到信息系统分析设计和软件系统工程上来。 ●先进性 系统构成必须采用成熟、具有国内先进水平,并符合国际发展趋势的技术、软件产品和设备。在设计过程中充分依照国际上的规范、标准,借鉴国内外目前

成熟的主流网络和综合信息系统的体系结构,以保证系统具有较长的生命力和扩展能力。 ●实用性 实用性是指所设计的软件应符合需求方自身特点,满足需求方实际需要。在合法性的基础上,应根据需求方自身特点,设置符合需求方的设计需求。对于需求方的需求,在不违背使用原则的基础上,确定适合需求的设计,满足需求方内部管理的要求。 1)设计上充分考虑当前各业务层次、各环节管理中数据处理的便利和可行, 把满足管理需求作为第一要素进行考虑。 2)采取总体设计、分步实施的技术方案,在总体设计的前提下,系统实施 时先进行业务处理层及低层管理,稳步向中高层管理及全面自动化过渡。 这样做可以使系统始终与业务实际需求紧密连在一起,不但增加了系统 的实用性,而且可使系统建设保持很好的连贯性; 3)全部人机操作设计均充分考虑不同使用者的实际需要; 4)用户接口及界面设计充分考虑人体结构特征及视觉特征进行优化设计, 界面尽可能美观大方,操作简便实用。 ●可靠性 在可靠性设计过程中应遵循以下原则: (1)可靠性设计应有明确的可靠性指标和可靠性评估方案; (2)可靠性设计必须贯穿于功能设计的各个环节,在满足基本功能的同

逆变器保护电路设计

安阳师范学院本科学生毕业设计报告逆变器保护电路设计 作者秦文 系(院)物理与电气工程学院 专业电气工程及其自动化 年级 2008级专升本 学号 081852080 指导教师潘三博 日期 2010.06.02 成绩

学生承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何贡献均以在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名: 导师签名: 日期:

逆变器保护电路设计 秦文 (安阳师范学院物理与电气工程学院,河南安阳 455002) 摘要:本文针对SPWM逆变器工作中的安全性问题,阐述了如何利用电路实现保护复位和死区调节。在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果,但是却对逆变器的安全运行意义重大。 关键词:保护电路;复位电路;死区调节 1 引言 在现在的系统中电力器件的应用也越来越广而与此同时对器件的保护也被认识了其重要性。电子器件很易被损坏,保护电路的要求也很苛刻。在工程应用中,为了使SPWM 逆变器安全地工作,需要有可靠的保护系统。一个功能完善的保护系统既要保证逆变器本身的安全运行,同时又要对负载提供可靠的保护。 随着电力电子技术的发展,功率器件如IGBT、MOSFET等广泛应用于PWM变流电路中。对于任何固态的功率开关器件来讲,都具有一定的固有开通和关断时间,对于确定的开关器件,固有开通和关断时间内输入的信号是不可控的,称为开关死区时间,它引起开关死区效应,简称为死区效应。在电压型PWM逆变电路中,为避免同一桥臂上的开关器件直通,必须插入死区时间,这势必导致输出电压的误差。该误差是谐波的重要来源,它不但增加了系统的损耗,甚至还可能造成系统失稳。 随着电力电子技术的发展,逆变器主电路、控制电路发生了较大变化,其性能不断改善,当然,保护电路也应随之作相应完善。逆变器保护电路主要包括过压保护、过载(过流) 保护、过热保护等几个方面。 本文仅就保护复位电路与死区控制电路与的实现进行了分析和研究。 2 保护电路设计 较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。 2.1 死区控制电路的结构设计 死区控制电路的电路拓扑结构如图所示,其主要功能是确保主电路中的开关管S 1、S 2 不能同时导通。死区电路的波形图如图1所示,从图中可以明显地看出开关管S 1和S 2 的驱 动信号没有使S 1与 S 2 同时导通的重叠部分,这就是两个主开关管之间存在所谓的“死区”。 而通过改变HEF4528芯片的输出信号脉宽,就可以调节驱动信号的脉宽。(具体的方式是 通过改变HEF4528芯片的外接RC电路的参数值实现的,如图2所示)如图3所示R t 、C t 的值与输出脉宽的关系在本文中,选择电位器P2的阻值为10kΩ,电容C237的容值为103pF,因此由图3可知,输出信号的脉宽大约为10μs 。

压敏电阻保护电路设计讲解

??AUMOV????LV UltraMOV??? 儎???????????? ???? ???????? ????

2 https://www.doczj.com/doc/3816322469.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础 8 汽车MOV 背景信息和应用例举 11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术 18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联 21 附件:技术规格和零件号相互参照 本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。 更多信息,请访问https://www.doczj.com/doc/3816322469.html, 。

https://www.doczj.com/doc/3816322469.html, 3 AUMOV TM 系列压敏电阻介绍 以上器件有以下规格: ? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC 额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V AUMOV TM 系列特点 ? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层) ? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力 AUMOV TM 系列的优点 ? 符合汽车行业要求? 符合ISO 7637-2的规定 ? 有助于电路设计员符合UL1449标准? 适合高温环境和应用 ? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件 AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

可靠性维修性设计报告

XX研制 可靠性、维修性设计报告编制: 审核: 批准: 工艺: 质量会签: 标准化检查: XX有限公司 2015年4月

目录 1 概述................................................... 2维修性设计.............................................. 设计目的................................................ 设计原则................................................. 维修性设计的基本内容.................................... 简化设计................................................ 互换性.................................................. 防差错设计.............................................. 检测性.................................................. 维修中人体工程设计...................................... 3 维修性分析............................................. 产品的维修项目组成...................................... 系统平均故障修复试件(MTTR)计算模型 .................... MTTR值计算.............................................. 4可靠性设计.............................................. 可靠性设计原则........................................... 可靠性设计的基本内容.................................... 简化设计................................................. 降额设计................................................. 缓冲减振设计............................................. 抗干扰措施...............................................

防护电路设计规范 华为

DKBA 华为技术有限公司企业技术规范 DKBA1268-2003.08 代替DKBA3613-2001.11防护电路设计规范 2003-11-10发布2003-11-10实施 华为技术有限公司发布

目次 前言 (6) 1范围和简介 (7) 1.1范围 (7) 1.2简介 (7) 1.3关键词 (7) 2规范性引用文件 (7) 3术语和定义 (8) 4防雷电路中的元器件 (8) 4.1气体放电管 (8) 4.2压敏电阻 (9) 4.3电压钳位型瞬态抑制二极管(TVS) (10) 4.4电压开关型瞬态抑制二极管(TSS) (11) 4.5正温度系数热敏电阻(PTC) (11) 4.6保险管、熔断器、空气开关 (12) 4.7电感、电阻、导线 (13) 4.8变压器、光耦、继电器 (14) 5端口防护概述 (15) 5.1电源防雷器的安装 (16) 5.1.1串联式防雷器 (16) 5.1.2并联式防雷器 (16) 5.2信号防雷器的接地 (18)

5.3天馈防雷器的接地 (19) 5.4防雷器正确安装的例子 (19) 6电源口防雷电路设计 (20) 6.1交流电源口防雷电路设计 (20) 6.1.1交流电源口防雷电路 (20) 6.1.2交流电源口防雷电路变型 (22) 6.2直流电源口防雷电路设计 (23) 6.2.1直流电源口防雷电路 (23) 6.2.2直流电源口防雷电路变型 (24) 7信号口防雷电路设计 (25) 7.1E1口防雷电路 (26) 7.1.1室外走线E1口防雷电路 (26) 7.1.2室内走线E1口防雷电路 (27) 7.2网口防雷电路 (31) 7.2.1室外走线网口防雷电路 (31) 7.2.2室内走线网口防雷电路 (32) 7.3E3/T3口防雷电路 (36) 7.4串行通信口防雷电路 (36) 7.4.1RS232口防雷电路 (36) 7.4.2RS422&RS485口防雷电路 (37) 7.4.3V.35接口防雷电路 (39) 7.5用户口防雷电路 (39)

MOSFECT的驱动保护电路的设计与应用

MOSFET的驱动保护电路的设计与应用 时间:2012-05-30 10:12:34 来源:电子设计工程作者:郭毅军,苏小维,李章勇,陈丽 摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。分析了MOSFET器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。该电路具有结构简单,实用性强,响应速度快等特点。在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。 关键词:功率场效应晶体管;功耗和匹配;驱动电路;保护电路 功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。该设计使系统功率驱动部分的可靠性大大的提高。 1 功率MOSFET保护电路设计 功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。功率MOSFET保护电路主要有以下几个方面: 1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt而引起误导通。为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。 2)防止栅源极间过电压由于栅极与源极的阻抗很高,漏极与源极间的电压突变会通过极间电容耦合到栅极而产生相当高的栅源尖峰电压,此电压会使很薄的栅源氧化层击穿,同时栅极很容易积累电荷也会使栅源氧化层击穿,所以要在MOS管栅极并联稳压管以限制栅极电压在稳压管稳压值以下,保护MOS管不被击穿,MOS管栅极并联电阻是为了释放栅极电荷,不让电荷积累。 3)防护漏源极之间过电压虽然漏源击穿电压VDS一般都很大,但如果漏源极不加保护电路,同样有可能因为器件开关瞬间电流的突变而产生漏极尖峰电压,进而损坏MOS管,功率管开关速度越快,产生的过电压也就越高。为了防止器件损坏,通常采用齐纳二极管钳位和RC缓冲电路等保护措施。 当电流过大或者发生短路时,功率MOSFET漏极与源极之间的电流会迅速增加并超过额定值,必须在过流极限值所规定的时间内关断功率MOSFET,否则器件将被烧坏,因此在主回路增加电流采样保护电路,当电流到达一定值,通过保护电路关闭驱动电路来保护MOSFET 管。图1是MOSFET管的保护电路,由此可以清楚的看出保护电路的功能。

相关主题
文本预览
相关文档 最新文档