当前位置:文档之家› 仪器检定-电容电感测试仪

仪器检定-电容电感测试仪

仪器检定-电容电感测试仪
仪器检定-电容电感测试仪

前言

一、衷心感谢您使用本公司的产品,您因此将获得本公司全面的技术支持和服务保障。

二、本使用说明书适用于*****介损测试仪。

三、当您在使用本产品前,请仔细阅读本使用说明书,并妥善保存以备查考。

四、请严格按说明书要求步骤操作,使用不当可能危及人身安全。

五、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。

使用本仪器前,请仔细阅读操作手册,保证安全是用户的责任

本手册版本号: 20121215

本手册如有改动,恕不另行通知。

目录

一、仪器概述 (2)

二、安全措施 (2)

三、可测试参数 (3)

四、性能特点 (3)

五、技术指标 (4)

六、测量方式及原理 (5)

七、常见设备的接线方法 (6)

八、仪器功能简介 (9)

九、仪器操作步骤 (10)

十、现场试验注意事项 (12)

十一、仪器检定 (14)

十二、变频测量讨论 (14)

十三、仪器的装箱清单 (15)

******介损测试仪说明书

一、仪器概述

介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。*******介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。

二、安全措施

1、使用本仪器前一定要认真阅读本手册。

2、仪器的操作者应具备一般电气设备或仪器的使用常识。

3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。

4、仪表应避免剧烈振动。

5、对仪器的维修、护理和调整应由专业人员进行。

6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。

7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。

8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。

9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。

10、仪器出现故障时,关闭电源开关,等待一分钟之后再检查。

三、可测试参数

仪器可测量下列参数并数字显示:

被测试品的电容量值CX,以pF或nF为单位,1nF=1000pF。

被测试品的介质损耗值tgδ,以%显示。

四、性能特点

1、仪器采用复数电流法,测量电容、介质损耗及其它参数。测试结果精度高,便于实现自动化测量。

2、仪器采用了变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。

3、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。

4、仪器操作简便,测量过程由微处理器控制,只要选择好合适的测量方式,数据的测量就可在微处理器控制下自动完成。

5、一体化机型,内附标准电容和高压电源,便于现场测试,减少现场接线。

6、仪器测量准确度高,可满足油介损测量要求,因此只需配备标准油杯,和专用测试线即可实现油介损测量。

7、反接线测试采用ivddv技术,消除了以往反接线数据不稳定的现象。

8、具有反接线低压屏蔽功能,在220kV CVT 母线接地情况下,对C11 可进行不拆线10kV 反接线介损测量

9、具有测量高电压介损功能,能够使用高压变压器或串联谐振进行超过10kV电压的介损试验。

10、接地保护功能,当仪器不接地线或接地不良时,仪器不进入正常程序,不输出高压。过流保护功能,在试品短路或击穿时仪器不受损坏。

11、触电保护功能,当仪器操作人员不小心触电时候,仪器会立即切断高压,保障试验人员的安全.

五、技术指标

准确度:Cx: ±(读数×1%+1pF)

tgδ: ±(读数×1%+0.00040)

抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度

电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV

外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV

分辨率:最高0.001pF,4位有效数字

tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。

试验电流范围:10μA~1A

内施高压:设定电压范围:100V

最大输出电流:200mA

升降压方式:连续平滑调节

试验频率: 45、50、55、60、65Hz单频

45/55Hz、55/65Hz、47.5/52.5Hz自动双变频

频率精度:±0.01Hz

外施高压:正接线时最大试验电流1A,工频或变频40-70Hz

反接线时最大试验电流10kV/1A,工频或变频40-70Hz CVT自激法低压输出:输出电压3~50V,输出电流3~30A

测量时间:约40s,与测量方式有关

输入电源:180V~270VAC,50Hz±1%,市电或发电机供电

计算机接口:标准RS232接口

打印机:炜煌A7热敏微型打印机

环境温度:-10℃~50℃

相对湿度:<90%

外形尺寸:460×360×350mm

仪器重量:28kg

六、测量方式及原理

按被测试品是否接地分两种测量方式,即正接线测量方式和反接线测量方式。两种

测量方式的原理如图一所示:

高压输出端Icx R 高压输出端

Icx 10KV o 10KV o

C

N I

CN

~ Cx C

N

I

CN

~ C

X

o

R

N R R

N

Cx端

(a)正接线测量(b)反接线测量

图一

在高压电源的10kV侧,高压分两路,一路给机内标准电容C

N

,此电容介损非常小,

可以认为介损为零,即为纯容性电流,此电流I

CN

可做为容性电流基准。在Cx试品一侧,试品电流Icx通过采样电阻R采入机内,此Icx可分解成水平分量和垂直分量见图二所示,通过计算水平分量与垂直分量的比值即可得到tgδ值。

在图一(a)中Cx为非接地试品,试品电流Icx从试品末端进入采样电阻R,得到全电流值,在图一(b)中Cx为接地试品,机内Cx端直接接地,电流Icx从试品高压端到机内采样电阻取得全电流值。

I

I

C

I I

u Ic I

R

δ

Φ

O

I

R

u

(a)电流矢量法(b)试品等效电路

图二

七、常见设备的接线方法

1.仪器引出端子说明:

HV ——仪器的测量引线高压端(带危险电压)。

CX ——正接线时试品电流输入端。

——仪器的接地端,使用时与大地可靠相接2.参考接线

2.1正接线、内标准电容、内高压(常规正接线):

2.2反接线、内标准电容、内高压(常规反接线)

2.3正接线、外标准电容、内高压:

2.5正接线、内标准电容、外高压:

2.6反接线、内标准电容、外高压:

2.7正接线、外标准电容、外高压(高电压介损):

3.附加功能

3.1光标在电压:10kV上面时候,按“确认”键在仪器屏幕的左下角会出现图

标,代表测试结束自动打印。如果再按确认键,图标消失,代表测试结束必须

手动才能打印。

3.2光标在反接上面时候,在反接线,内Cn,内Un,情况下,按确认键在仪器屏

幕右下角会出现图标,代表反接线低压屏蔽测试。如果再按确认键,图标消

失,代表取消反接线低压屏蔽。

反接线低压屏蔽功能,一次接线可同时测出C1和C2的电容量和介损

在反接线、内标准和内高压方式,光标移到“反接”处,按“确认”右下角显示“M”。

打开反接线低压屏蔽,可在上端电容C

1

不拆母线的情况下,对其进行不拆线10kV反

接线介损测量。如下图所示:母线挂地线,C

1上端不拆线,C

1

下端接高压线芯线,C

2

末端

接Cx芯线。仪器采用反接线/10kV/M测量方式,可同时测出C

11

和下端屏蔽部分的电容量

和介损值。

3.3光标在正接上面时候,按确认键则测试打印机,换纸。

3.4光标在启动上面时候,按减小键则代表取出存储的数据。

3.5测试完毕,如果按减小键,则代表存储测试的数据

八、仪器功能简介

仪器面板见图九所示:

1.打印机——打印测量数据。

2.显示器——128×64点阵液晶显示器,显示菜单和各种提示信息及测量结果。

3.键——选择菜单项,被选中项反白字体显示。

4.▲键——修改菜单内容,采用循环滚动方式。

5.▼键——修改菜单内容,采用循环滚动方式。

6.确认键——在“测试”选项上按此键进入测试状态。

7.电源开关——整机电源的开启和关闭。

8.电源座——交流220V±10%,50±1Hz电源输入口,带保险仓。

9.高压开关。

10.地——为接地线接线端子。

11.C

X

插座——是试品信号的测量输入端,正接线时由专用低压电缆连接,此电缆单层屏蔽带特制鳄鱼夹,长8m,接试品低端。反接线时此端空置。

12.C

N

插座——是外标准电容信号的测量输入端,使用内标准时此端空置。

13.HV插座——高压引出端子,由高压电缆连接,接试品高压端。输出10kv高压。

14.RS-232接口,用来连接电脑,上传数据。

15.接地,可以悬空

11 13

12

10

14

9

8

7

1 2 4 5 3 6 15

图九前侧

九、仪器操作步骤

1.测量前准备:

1)用接地线一端接仪器的接地柱,另一端接可靠的大地,保证仪器外壳处在地电位上。

2)正接线时:将高压电缆插头插入后门HV插座中,将另一端的红色大钳子夹到被

测试品的高端引线上,黑色小钳子悬空或夹在红色大钳子上。将C

X 低压电缆插入C

X

插座中,另一端的红色夹子夹试品的低端,黑色夹子悬空或接屏蔽装置。

3)反接线时:将高压电缆插头插入后门HV插座中,将另一端的红色大钳子夹到被测试品的高端引线上,红色小钳子悬空或接屏蔽装置。Cx插座不用。

2.打开电源开关,仪器进行自检,若自检良好,液晶屏显示中文主菜单如

图十所示。

3.菜单选择:

正接 内Cn 变频 10kV 内Un

启动

测试

CX = 50.85PF tg δ= 0.002%

正接线 内标准 变频 10kV 内高压

Testing …………. 55%

1)按 键可移动光标至各菜单项,并循环指示。被选中项反白字体显示。选择键的流程见图十一所示。

2)在光标当前所示项目,按▼ ▲键键可进行该项菜单的变更,并循环指示,流程见图十二所示。

3)将菜单变更至与测试要求相对应后即可按选择键进行下个项目的选择。

图十

10 9 8 7 ……2 1

图十一 图十二

图十三 图十四 4、 频率:光标在频率上,按↑↓键选择定频和变频:

光标在定频上:按住“启停”键1s 以上切换到全频率选择,按↑↓键循环显示45Hz

方式:正接线 电压:10kV 频率:变频 测 试

变频 定频 正接线 反接线

电源:内高压 标准:内标准 内标准 外标准 内高压 外高压

/ 47.5Hz / 50Hz / 52.5Hz / 55Hz / 60Hz / 65Hz

工频50Hz测量,此设置不能抗干扰,在试验室内测量或校验时选用50Hz,“45/47.5/55/52.5/60/65Hz”:为单频率测量,研究不同频率下介损的变化时选用。

光标在变频上:按住“启停”键1s以上切换到全频率选择,按↑↓键循环显示5-Hz / 6-Hz / 4-Hz”:

“5-Hz”:为45/55Hz自动变频,适合50Hz电网工频干扰下测量。

“6-Hz”:为55/65Hz自动变频,适合60Hz电网工频干扰下测量。

“4-Hz”:为47.5/52.5Hz自动变频,适合50Hz电网工频干扰下测量。

5、测试:当光标在测试项目上时,按确认键大约3秒钟开始测试。测试过程中

显示的画面如图十三(正接线,变频)所示,当下面的进程到100%时候

测试完毕,然后显示测量结果见图十四所示,此时光标指示打印机图标,

按确认键打印报告。测量结果的意义如下:

tgδ:试品的损耗因数tgδ值

CX:测量的电容值

V:施加电压值

I:试品流过的电流

F1,F2 : 试验频率

打印结束后,关闭电源开关,测试完毕。

十、现场试验注意事项

如果使用中出现测试数据明显不合理,请从以下方面查找原因:

1、搭钩接触不良

现场测量使用搭钩连接试品时,搭钩务必与试品接触良好,否则接触点放电会引起数据严重波动!尤其是引流线氧化层太厚,或风吹线摆动,易造成接触不良。

2、接地接触不良

接地不良会引起仪器保护或数据严重波动。应刮净接地点上的油漆和锈蚀,务必保证0电阻接地!

3、直接测量CVT或末端屏蔽法测量电磁式PT

直接测量CVT的下节耦合电容会出现负介损,应改用自激法。

用末端屏蔽法测量电磁式PT时,由于受潮引起“T形网络干扰”出现负介损,吹干下面三裙瓷套和接线端子盘即可。也可改用常规法或末端加压法测量。

4、空气湿度过大

空气湿度大使介损测量值异常增大(或减小甚至为负)且不稳定,必要时可加屏蔽环。因人为加屏蔽环改变了试品电场分布,此法有争议,可参照有关规程。

5、发电机供电

发电机供电时输入频率不稳定,可采用定频50Hz模式工作。

6、测试线

由于长期使用,易造成测试线隐性断路,或芯线和屏蔽短路,或插头接触不良,用户应经常维护测试线;

测试标准电容试品时,应使用全屏蔽插头连接,以消除附加杂散电容影响,否则不能反映出仪器精度;

自激法测量CVT时,非专用的高压线应吊起悬空,否则对地附加杂散电容和介损会引起测量误差。

7、工作模式选择

接好线后请选择正确的测量工作模式(正、反和CVT),不可选错。特别是干扰环境下应选用变频抗干扰模式。

8、试验方法影响

由于介损测量受试验方法影响较大,应区分是试验方法误差还是仪器误差。出现问题时可首先检查接线,然后检查是否为仪器故障。

9、仪器故障

用万用表测量一下测试线是否断路,或芯线和屏蔽是否短路;输入电源220V过高或过低;接地是否良好。

用正、反接线测一下标准电容器或已知容量和介损的电容试品,如果结果正确,即可判断仪器没有问题;

拔下所有测试导线,进行空试升压,若不能正常工作,仪器可能有故障。

启动CVT测量后测量低压输出,应出现2~5V电压,否则仪器有故障。

十一、仪器检定

1、用标准损耗器检定

用带插头的屏蔽电缆连接标准损耗器。如果不能保证标准损耗器的精度,应使用比对法检定,建议用2801电桥或其它精密电桥作比对标准。仪器应选用“内标准”和“RC 串联试品”,可选择工频 50Hz或定频50Hz频率模式。

2、用QSJ3检定:使用带插头的屏蔽电缆连接QSJ3,选择“正接/ 外Cn / 外Un 式测量,电流比为Cx∶Cn,Cn可置入适当值。

3、抗干扰能力

设置一个回路向仪器注入定量的干扰电流。

注意:

1)应考虑到该回路可能成为试品的一部分。

2)仪器启动后会使220V供电电路带有测量频率分量,如果该频率分量又通过干扰电流进入仪器,则无法检验仪器的抗干扰能力。

3)不建议用临近高压导体施加干扰,因为这样很容易产生近距离尖端放电,这种放电电阻是非线性的,容易产生同频干扰。

十二、变频测量讨论

1、变频测量

干扰十分严重时,变频测量能得到准确可靠的结果。例如用55Hz测量时,测量系统只允许55Hz信号通过,50Hz干扰信号被有效抑制,原因在于测量系统很容易区别不同频率,由下述简单计算可以说明选频测量的效果:

两个频率相差1倍的正弦波叠加到一起,高频的是干扰,幅度为低频的10倍:Y=1.234sin(x+5.678°)+12.34sin(2x+87.65°)

在x=0/90/180/270°得到4个测量值

Y0=12.4517,Y1= -11.1017,Y2=12.2075,Y3= -13.5576,

计算A=Y1-Y3=2.4559,B=Y0-Y2=0.2442,则:

φ=tg-1(B/A)=5.678°V= A2+B2/2=1.234

这刚好是低频部分的相位和幅度,干扰被抑制。实际波形的测量点多达数万,计算量很大,结果反映了波形的整体特征。

2、频率和介损的关系

介损有RC串联和并联两种理想模型:串联模型tgδ=2πfRC,并联模型tgδ=1/(2πfRC),tgδ分别随频率f成正比和反比。如图所示,f对完全正比和完全反比两种模型影响较大。但实际电容器是多种模型交织的混合模型,此时f的影响就小。

tgδ串联模型tgδ

介损恒定

实际试品

并联模型

f f

低频介损曲线(<1kHz) 高频介损曲线或低频电路谐振

3、自动变频与50Hz等效

仪器采用自动变频在干扰频率50Hz两侧(45Hz和55Hz)各测一个点,然后推算50Hz 频率下数据。除多个元件电路的低频谐振外,单个试品中的介质不可能在低频引起能量吸收峰,工频附近介损总是随频率单调变化的。因此这种测量方法不会带来明显误差。实际上,平均前的两个介损值已十分接近,即使不平均也完全有参考价值。目前,变频介损仪已成为介损测量的常规仪器,其优异的抗干扰能力和准确度已经得到认可。

十三、仪器的装箱清单

1.主机一台2.高压电缆一条3.低压电缆两条4.电源线一条5.地线一条6.CVT线两条

7.5A保险管(内置) 两只

8.打印纸一卷9.说明书一本

10.出厂试验报告一份

11.合格证一份

HC500L全自动电容电感测试仪

感谢您选用本公司的产品! 您现在参考的是全自动电容电感测试仪说明书。在使用本产品之前,请您详细阅读本说明书,并特别注意以下注意事项: 1、测量时必须将钳形表置于OFF档。 2、测量时必须将测试电压输出开关置于“通”位置。 3、为获得正确的容量值,必须在测量前设置与电容器铭牌相同的电压值。 4、如果怀疑仪器精度有问题,请用仪器随机配置的参考电容器进行检查。 5、在测量小电容小电感时,钳形表的位置对测量值有影响,请将钳形表置 于最佳位置,并保持钳口完整闭合。

目录 一、概述 0 二、技术参数 0 三、工作原理 (1) 四、仪器面板 (2) 五、接线方法 (3) 1、并联电容器测量 (3) 2、电抗器电感测量 (4) 3、电感测量注意事项 (4) 六、操作步骤 (5) 1、参数设置 (5) 2、测量开始 (6) 3、保存数据 (8) 4、打印操作 (9) 5、查询数据 (10) 七、配套清单 (11) 八、贮存及运输 (11)

HC-500L 全自动电容电感测试仪 一、概述 全自动电容电感测试仪针对变电站现场测量并联电容器组中的单个电容器电容值时存在的问题而专门研制的,它着重解决了以下问题: (1)现场测量单个电容器需拆除连接线,不仅工作量大而且易损坏电容器。 (2)电容表输出电压低而导致故障检出率低。 (3)测量电抗器的电感。 该仪器具有测量工作量小、快捷简便、性能稳定、测量准确、故障检出率高等特点。此外,它的电流测量单元还可兼作CVT、避雷器等电器设备的测量之用,具有一机多能的功效。 本型号测试仪特点 (1)量程自动转换; (2)储存7168个测试数据; (3)大屏幕液晶(320×240 LCD)显示, 汉字菜单操作提示; (4)实现波形和测量处理数据同屏显示,使测试过程更直观; (5)具有设置、校正和调试功能。 二、技术参数 1、电容量量程:0.2μF~2,000μF; 容量范围:5~20,000 kvar; 测量精度:0.2μF~2μF ±1%读数±0.02μF; 2μF~2,000μF ±1%读数±2个字; 2、电感量程:1mH~9.99H;测量精度:±1.5%读数±2个字 3、输出测量电压:AC 26V/500VA;50Hz; 4、显示方式:大屏幕液晶示屏全汉字输出,TPμp-40面板式热敏打印机

简易电阻、电容和电感测试仪设计说明

课程设计任务书 学生:专业班级: 指导教师:工作单位:信息工程学院 题目: 简易电阻、电容和电感测试仪设计 初始条件: LM317 LM337 NE555 NE5532 STC89C52 TLC549 ICL7660 1602液晶 要求完成的主要任务: 1、测量围:电阻 100Ω-1MΩ; 电容 100pF-10000pF; 电感 100μH-10mH。 2、测量精度:5%。 3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:__________ 年月日

目录 摘要 (3) ABSTRACT (4) 1、绪论 (5) 2、电路方案的比较与论证 (5) 2.1电阻测量方案 (5) 2.2电容测量方案 (7) 2.3电感测量方案 (8) 3、核心元器件介绍 (10) 3.1LM317的介绍 (10) 3.2LM337的介绍 (11) 3.3NE555的介绍 (11) 3.4NE5532的介绍 (13) 3.5STC89C52的介绍 (14) 3.6TLC549的介绍 (16) 3.7ICL7660的介绍 (17) 3.81602液晶的介绍 (18) 4、单元电路设计 (20) 4.1直流稳压电源电路的设计 (21) 4.2电源显示电路的设计 (21) 4.3电阻测量电路的设计 (22) 4.4电容测量电路的设计 (23) 4.5电感测量电路的设计 (24) 4.6电阻、电容、电感显示电路的设计 (25) 5、程序设计 (26) 5.1中断程序流程图 (26) 5.2主程序流程图 (27) 6、仿真结果 (27) 6.1电阻测量电路仿真 (27) 6.2电容测量电路仿真 (28) 6.3电感测量电路仿真 (28) 7、调试过程 (29) 7.1电阻、电容和电感测量电路调试 (29) 7.2液晶显示电路调试 (29) 8、实验数据记录 (30)

三相电容电感测试仪接线,三相Y形电容电感测试

三相电容电感测试仪接线,三相Y形电容电感测试电力电容器组内部联线方式一般采用星形联接(Y)和三角形联接(△)。实际运行经验表明,三角形联接电容器组其损坏率远高于星形联接电容器组,目前高压并联电容器组多数采用星形联接。该仪器可测试电力高压并联电容器组,其内部连接方式有:三相△形、三相Y 形、三相Yn形、三相Ⅲ形。 三相Y形联接A相接线: Y形联接A相接线图 ①黑色测量线插在(输出); ②红色测量线插在(电容); ③钳形电流传感器插在(测量); 按接线图三相Y形A相测量接线方法,测量线由仪器测量输出端对应插好,将红色夹子夹在母线排A相上、黑色夹子夹在母线B相上,然后将电流测量线插在仪器接口上拧紧、钳形传感器应套在高压电容器组A相引线上,方可测量,完成后转下一相接线。

仪器面板接线: ①黑色测量线插在(输出); ②红色测量线插在(电容); ③钳形电流传感器插在(测量);接线图(4)三相△形A相测量接线方法,测量线由仪器测量输出端对应插好,将红色夹子夹在母线排A相上、黑色夹子夹在母线B相上,短接BC相,然后将电流测量线插在仪器接口上拧紧、钳形传感器应套在高压电容器组A相引线上,方可测量,完成后转下一相接线。 Yn形联接被试电容A相接线图

仪器面板接线: ①黑色测量线插在(输出); ②红色测量线插在(电容); ③钳形电流传感器插在(测量); 接线图三相四线Yn形A相测量接线方法,测量线由仪器测量输出端对应插好,将红色夹子夹在母线排A相上、黑色夹子夹在N线上,然后将电流测量线插在仪器接口上拧紧、钳形传感器应套在高压电容器组A相引线上,方可测量,完成后转下一相接线。同样道理测量B 相及C相的测量数据。 Ⅲ形联接A、B、C相接线: 仪器面板接线: ①黑色测量线插在(输出); ②红色测量线插在(电容); ③钳形电流传感器插在(测量); 接线图三相Ⅲ形A相测量接线方法,测量线由仪器测量输出端对应插

最新智能电阻、电容和电感测试仪的设计

南昌工程学院 毕业设计(论文) 信息工程学院系(院)通信技术专业毕业设计(论文)题目智能电阻、电容和电感测试仪的设计 学生姓名 班级 学号 指导教师 完成日期2010 年 6 月19 日

智能电阻、电容和电感测试仪的设计Smart resistors, capacitors and inductors Test Instrument 总计毕业设计(论文) 27 页 表格 1 个 插图 12 幅

摘要 本文先对设计功能及要求进行了阐述,然后提出要完成该功能的设计方案,最后会对电阻,电容,电感的测试进行设计。本设计是利用AT89C52芯片的单片机来实现测试的,其中电阻和电容是采用555多谐振荡电路产生的,而电感则是根据电容三点式产生的,从而实现各个参数的测量。这样,一方面测量精度较高,另一方面便于使仪表实现智能化。 关键词:AT89C52芯片555多谐振荡电路电容三点式 Abstract This paper first to design function and requirement are expounded, then puts forward to finish the design scheme of the function, and finally to resistance, capacitance and inductance. This design is used to realize the AT89C52 chip microcontroller test, resistor and capacitor is used at 555 resonance swings, which is produced by the inductance circuits are produced according to SanDianShi capacitance, thus realize each parameter measurement. So, on the one hand, the measurement precision, on the other hand to make intelligent instrument. Key words:AT89C52Chip;555 resonance swings circuit; SanDianShi capacitance

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告 摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。测量结果采用12864液晶模块实时显示。实验测试结果表明,本系统性能稳定,测量精度高。 关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量 一、设计内容及功能 1.1设计内容 设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示: 测量对象 LCD显示 电阻/电容/电感 简易的数字电阻、电容和电感测量仪 自制电源 1.2 具体要求 1. 测量范围 (1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。 2. 测量精度 (1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。 (2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。 3. 利用128*64液晶显示器,显示测量数值、类型和单位。 4. 自制电源 5. 使用按键来设置测量的种类和单位 1.3系统功能 1. 基本完成以上具体要求 2. 使用三个按键分别控制R、C、L的测试 3. 采用液晶显示器显示测量结果 二、系统方案设计与选择 电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。在设计前本文对各种方案进行了比较:

基于单片机电阻电容电感测试仪

1 前言 1.1 设计的背景及意义 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电阻,电容,电感的大小。因此,设计可靠,安全,便捷的电阻,电容,电感测试仪具有极大的现实必要性。 通常情况下,电路参数的数字化测量是把被测参数传换成直流电压或频率后进行测量。 电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。 传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。 电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 因为测量电阻,电容,电感方法多并具有一定的复杂性,所以本次设计是在参考555振荡器基础上拟定的一套自己的设计方案。是尝试用555振荡器将被测参数转化为频率,这里我们将RLC的测量电路产生的频率送入AT89C52的计数端端,通过定时并且计数可以计算出被测频率再通过该频率计算出各个参数。 1.2 电阻、电容、电感测试仪的发展历史及研究现状 当今电子测试领域,电阻,电容和电感的测量已经在测量技术和产品研发中应用的十分广泛。 电阻、电容和电感测试发展已经很久,方法众多,常用测量方法如下。电阻测量依据产生恒流源的方法分为电位降法、比例运算器法和积分运算器法。比例运算器法测量误差稍大,积分运算器法适用于高电阻的测量。传统的测量电容方法有谐振法和电桥法两种。前者电路简单,速度快,但精度低;后者测量精度高,但速度慢。随着数字化测量技术的发展,在测量速度和精度上有很大的改善,电容的数字化测量常采用恒流法和比较法。电感测量可依据交流电桥法,这种测量方法虽然能较准确的测量电感但交流电桥的平衡过程复杂,而且通过测量Q值确定电感的方法误差较大,所以电感的数字化测量常采用时间常数发和同步分离法。 在我国1997年05月21日中国航空工业总公司研究出一种电阻、电容、电感在线测量方法及装置等电位隔离方法,用于对在线的电阻、电容、电感元件实行等电位隔离,其特征在于,(1>将一个运算放大器的输出端与其反相输入端直接连接,形成一个电压跟

51单片机做电容测量仪解析

第十三届“长通杯”大学生电子设计竞赛 电容测量仪(A题) 2016年5月14日

摘要 电容测量仪装置是一种精度高、测试范围宽、操作简便、功能完善的电容测量仪。随着科技的不断发展,电容在电路中有着越来越多的应用,其容量大小直接决定着电路的稳定性和准确性。因此,电容值的的测量在日常使用中不可避免。 为了深入了解和学习52单片机的功能,本设计采用STC89C52和555振荡器为主要元件对电容进行测量。先将555设计为多谐振荡器产生输入脉冲信号,然后利用单片机对脉冲进行中断计数,再使用公式计算出电容值。在多谐振荡器终端加一个HD74LS08(二输入与门)稳定输出波形,从而使测量中更精确。多谐振荡器会因为连接电阻值的不同而产生的方波的频率不同,从而可以变换档位测量容量差距较大的电容。如果在工程问题中想寻找出符合要求的电容,便可通过矩阵键盘输入相应的电容值的范围,以方便筛选。当电容测定完以后,其数值通过LCD1602显示出来,以便阅读。 关键词:STC89C52单片机;电容测量;555定时器;LCD1602;

目录 1系统方案...................................................................................................... 错误!未定义书签。 1.1 电容测量仪的论证与选择.............................................................. 错误!未定义书签。 1.2 控制系统的论证与选择.................................................................. 错误!未定义书签。2系统理论分析与计算.................................................................................. 错误!未定义书签。 2.1 设计方案的分析............................................................................ 错误!未定义书签。 2.1.1利用电容器放电测电容实验原理................................ 错误!未定义书签。 2.1.2利用放电时间比率来测电容......................................... 错误!未定义书签。 2.1.3利用单片机测脉冲来测时间常数RC再计算电容.错误!未定义书签。 2.2 电容的计算...................................................................................... 错误!未定义书签。 2.2.1 计算振荡周期....................................................................... 错误!未定义书签。 2.2.2 计算频率............................................................................... 错误!未定义书签。 2.2.3 计算Cx ................................................................................. 错误!未定义书签。3电路与程序设计.......................................................................................... 错误!未定义书签。 3.1电路的设计....................................................................................... 错误!未定义书签。 3.1.1系统总体框图........................................................................ 错误!未定义书签。 3.1.2系统框图................................................................................ 错误!未定义书签。 3.1.3总程序框图............................................................................ 错误!未定义书签。 3.1.4电源........................................................................................ 错误!未定义书签。 3.2程序的设计....................................................................................... 错误!未定义书签。 3.2.1程序功能描述与设计思路.................................................... 错误!未定义书签。 3.2.2程序流程图............................................................................ 错误!未定义书签。4测试方案与测试结果.................................................................................. 错误!未定义书签。 4.1测试方案........................................................................................... 错误!未定义书签。 4.2 测试条件与仪器.............................................................................. 错误!未定义书签。 4.3 测试结果及分析.............................................................................. 错误!未定义书签。 4.3.1测试结果(数据) ..................................................................... 错误!未定义书签。 4.3.2测试分析与结论.................................................................... 错误!未定义书签。附录1:电路原理图...................................................................................... 错误!未定义书签。

电容电感测试仪的功能特点以及技术参数

电容电感测试仪的功能特点以及技术参数 电容电感测试仪针对变电站现场测量并联电容器组中的单个电容器电容值时存在的问题而专门研制的。 它着重解决了以下问题: 现场测量单个电容器需拆除连接线,不仅工作量大而且易损坏电容器。 电容表输出电压低而导致故障检出率低。 测量电抗器的电感。 该仪器具有测量工作量小、快捷简便、性能稳定、测量准确、故障检出率高等特点。此外,它的电流测量单元还可兼作CVT、避雷器等电器设备的测量之用,具有一机多能的功效。 “预防电容器装置事故的技术措施”中规定:对高压并联电容器部分,应定期进行电容器组单台电容器电容量的测量,推荐使用不拆连接线的测量方法,避免因拆装连接线导致套管受力而发生套管漏油的故障。 常州市汇高电子有限公司是一批具有相当理论基础和丰富实践经验的中、高级科技人员于2006年组建成立的高新技术企业,公司长期致力于电子测量仪器的开发、设计、制造,积极引进国际先进技术,消化吸收,开发出了热敏电阻测试仪、压敏电阻测试仪、铁心测试仪、宽频LCR数字电桥、高精度电容电感测试仪、多路温度巡检仪等几十种测量仪器,高、中、低挡兼备,质量可靠。下面由常州市汇高电子来给大家讲述一下电容电感测试仪的功能特点。 量程自动转换; 储存7168个测试数据; 大屏幕液晶(320×240 LCD)显示, 汉字菜单操作提示; 实现波形和测量处理数据同屏显示,使测试过程更直观; 具有设置、校正和调试功能。 仪器技术参数 电容量量程:0.2μF~2,000μF; 容量范围:5~20,000 kvar; 测量精度:0.2μF~2μF ±1%读数±0.02μF; 2μF~2,000μF ±1%读数±2个字; 电感量程:1mH~9.99H;测量精度:±1.5%读数±2个字 输出测量电压:AC 26V/500VA;50Hz; 显示方式:大屏幕液晶示屏全汉字输出,TPμp-40面板式热敏打印机 外形/ 重量:370×370×220 mm / 16 kg 工作条件: a. 环境温度:0℃~+40℃,相对湿度:≤90% b. 电源:AC 220V±10%;50Hz;

电容测试仪设计低频课程设计

电容测试仪设计 前言 电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。与电阻器相似,通常简称其为电容,用字母C表示。顾名思义,电容器就是“存储电荷的容器”。尽管电容器品种繁多,但它们的基本结果和原理是相同的。

两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。两片金属称为极板,中间的物质

叫做戒指。电容器也分为容量固定的与容量可变的。但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。 不同的电容器存储电荷的能力也不相同。规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。电容的基本单位为法拉(F)。但实际上,法拉是一个很不成用的单位,因为电容器的容量往往比1法拉小得多,常用微法(uF)、纳法(nF)、皮法(pF)等,它们的关系是:1F=106uF=109nF=1012pF。 电容器在电子线路中得到广泛的应用,它的容量大小对电路的性能有重要的影响,本课设就是对电容器容量的测量。 摘要:LM555是使用几位广泛的一种通用集成电路。LM555系列功能强大、使用灵活、适用范围宽、可用来生产时间延迟和多种脉冲信号,因此被广泛用于各种电子产品中。本设计利用LM555构成设计一个多谐振荡器,由于其输出脉宽tw与电容C成正比,把电容C转换成宽度为tw的矩形脉冲,在利用积分器,将电容的容量通过数字电压表的直流档直接显示,从而构成一个简易的电容器容量的测量电路。 关键词:无稳态多谐震荡器、单稳态输出脉冲、积分器

目录 一、设计目的 (1) 二、设计内容要求 (1) 三、设计技术指标 (1) 四、方案比较 (1) 五、方案论证 (2) 六、主要电路设计与说明 (2) 1、芯片简介 (2) (1)LM555 (2) (2)LM324 (4) 2、总电路图 (5) (1)原理图 (5) (2)原理说明 (5) (3)测量使用说明 (6) 七、电路搭建与调试 (6) 1、软件仿真 (6) 2、实际安装电路 (7) 3、电路调试 (7) 八、实验数据 (7) 九、实验总结与心得 (8) 十、附录 (8) 1、元器件清单 (8) 2、参考文献 (9)

HTGR-H全自动电容电感测试仪操作方法

https://www.doczj.com/doc/385079345.html, HTGR-H全自动电容电感测试仪HTGR-H全自动电容电感测试仪操作方法 3.1 界面介绍 首先将AC220V电源线连接至仪器面板电源插座,打开面板上电源开关,仪器进入开机欢迎画面,系统初始化完成后仪器进入主界面,如图3.1所示。该界面有6个选项,点击图标进入相应子界面。 3.2 系统设置 点击界面上的“系统设置”图标,进入系统设置界面(如图3.2)。在该界面中,进行时间设置和背光设置。 1.时间设置:首先点击相应时间图标,然后点击时间设置栏右边的“+”或“-”,时间修改完成后,点击“设置”图标,时间设置修改完成。 2.背光设置:点击背光设置栏右边界面上的“+”或“-”,即可完成背光设置,屏幕同步显示修改后的背光亮度。 点击“返回”按钮,返回主界面。

https://www.doczj.com/doc/385079345.html, HTGR-H全自动电容电感测试仪 图3.1主界面 图3.2 系统设置界面 3.3 测量设置 进行电容测试或电感测试之前,用户需要根据被试品参数设置相应的测量参数,点击主界面中的“测量设置”图标进入测量设置界面(如图3.3)。在此界面,包含“设置电压等级”、“添加电压等级”、“设置等效方式”和“系统信息”四个标题栏。

https://www.doczj.com/doc/385079345.html, HTGR-H全自动电容电感测试仪 1.设置电压等级:点击“《”或“》”按钮选择需要的电压等级,同时“系统信息”栏中会相应提示“切换电压等级完成”。点击“设置”按钮完成设置,同时“系统信息”栏中会相应提示“设置电压等级成功”。“当前/总数”显示当前选定的电压等级在总的电压等级数中的排序号。点击“删除”即删除当前选定的电压等级,同时“系统信息”栏中会相应提示“删除成功”。如无需要的电压等级值,用户可在“添加电压等级”栏添加所需要的电压等级,在“请输入”选项框中输入需要的电压等级值,点击“添加”按钮即可完成,同时“系统信息”栏中会相应提示“添加自定义电压等级成功!”。 2.设置等效方式:系统默认的等效方式为“串联方式”。如当前显示的等效方式为“串联方式”,点击后系统自动切换到“并联方式,如当前显示的等效方式为“并联方式”,点击后系统自动切换到“串联方式”,同时“系统信息”栏中会相应显示当前选定的等效方式。点击“设置”按钮完成设置,同时“系统信息”栏中会相应提示“设置等效方式成功”。 点击“返回”按钮返回主界面。

电容电阻电感测量仪设计报告

简易数字式电阻、电感和电容测量仪 摘要 本系统主控制部分采用TI公司的16位超低功耗单片机MSP430F149。以自制电源作为LRC测量模块和各个主要控制芯片的输入电源,测量原理是通过测量电阻、电容或者电感和标准电阻各自的引起的频率变化,利用频率与电阻、电容、电感的函数关系推算出电阻值、电容值或者电感值。测量的原理是LM311组成的LC震荡器的震荡回路的频率由单片机采样,然后再依据震荡频率计算出对应的电容或电感值,以及由NE555多谐振荡电路实现对电阻的测量。软件设计部分使用C语言编程编写了包括控制测量程、按键处理、电阻电感电容计算、液晶显示程序。利用MSP430F149单片机控制测量和计算结果,测量结果采用12864液晶模块实时显示。 关键词: MSP430F149、NE555芯片、LRC测量、12864液晶

目录 1 系统总体方案设计 (1) 1.1系统方案选择 (1) 1.2系统软硬件总体设计 (1) 1.2.1硬件部分 (1) 1.2.2软件部分 (2) 2系统模块设计 (3) 2.1硬件模块设计 (3) 2.1.1电感电容测量模块 (3) 2.1.2电阻测量模块 (4) 2.1.3主控制模块 (5) 2.1.4 AD采样模块 (5) 2.1.5 液晶显示模块 (5) 2.2软件模块设计 (5) 2.2.1 控制测量程序模块 (5) 2.2.2按键处理程序模块 (6) 2.2.3电阻电感电容计算程序 (7) 2.2.4液晶显示程序模块 (7) 3系统测试 (8) 3.1测试原理 (8) 3.2测试方法 (8) 3.3测试结果 (8) 3.4测试分析 (9) 4系统总结 (9) 参考文献: (10)

单片机电容测量仪设计方案

摘要 目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用范围也逐渐广泛起来,在应用中我们常常要测定电容的大小。在电子产品的生产和维修中,电容测量这一环节至关重要,因此,设计可靠,安全,便捷的电容测试仪具有极大的现实必要性。本文提出了以MCS-51单片机为控制核心,结合多谐振荡器来实现电容测量的方法。并介绍了测量原理并给出了相应的电路及软件设计。 关键词:电容测试仪;单片机;测量

目录 1概述1 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计及其描述1 2.1 设计方案 (1) 2.2 原理框图 (2) 2.3 基于AT89C51电容测量系统硬件设计详细分析 (2) 2.3.1 AT89C51单片机工作电路 (2) 2.3.2 基于AT89C51电容测量系统复位电路 (3) 2.3.3 基于AT89C51电容测量系统时钟电路 (4) 2.3.4 基于AT89C51电容测量系统按键电路 (4) 2.3.5 基于AT89C51电容测量系统555芯片电路 (5) 2.3.6 基于AT89C51电容测量系统显示电路 (6) 2.4 各部分电路连接成整个电路图 (9) 2.5 系统所用元器件 (10) 2.6 PCB制图 (11) 3 软件流程及程序设计 (11) 3.1 系统模块层次结构图11 3.2 程序设计算法设计 (12) 3.3 软件设计流程 (13) 3.4 源程序代码 (13) 4 系统调试及仿真 (17) 5 总结 (18) 5.1 本系统存在的问题及改进措施 (18) 5.2 心得体会 (18) 参考文献 (19)

全自动电容电感测试仪的基本概述及工作原理

全自动电容电感测试仪的基本概述及工作原理 GB50150-1991与Q/CSG10007-2004规定:高压并联、串联电容器和交流滤波电容器的电容值偏差不超过额定值的-5%~+10%;电容值不应小于出厂值的95%;耦合电容器和电容分压器的电容值,每节电容值偏差不超出额定值的-5%~+10%,电容值与出厂值相比,增加量超过+2%时,应缩短试验周期。 随着城农电网改造的进行,电容器补偿装置得到前所未有的发展,新开发的产品也相继投入运行。但随之而来的是电容器事故率的大幅上升,尤其是电容器装置多年不见的爆炸着火事故亦多次发生,并出现过严重的群伤事故。无功补偿装置专家工作组组织专家对事故进行认真分析、研究后,认为事故率的上升除制造厂的产品质量下降外,很重要的另一个原因是:无功补偿技术管理和运行人员新老交接,又无可操作的反事故措施可用。 鉴于目前电力行业对电容器测试的需要,我公司结合目前市场上各类不拆线电容器测量仪的优缺点,悉心研究开发出免拆线 YTC720A电容电桥测试仪。此仪器最大的特点是“免拆线,抗干扰,高精度,不易损”,大大提高工作效率,保障检测运行。 工作原理:

在被测电容支路有对被测电容的电压、电流取样的取样电路,取样电路的输出端分别接放大电路,从电压放大电路输出的电压信号和从电流放大电路输出的电流信号通过鉴相器输出相位差信号,与电压信号和电流信号通过A/D转换器后,输入CPU计算而得到被测电容值。因为采用了移动的电流取样单元,而使得无需拆除连接线就可以直接测量电容值。 加之测量过程档位是自动进行选择,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。 湖北仪天成电力设备有限公司是专业生产销售电力检测设备的技术型厂家,尤其是所生产的YTC720A电容电感测试仪,广受业界好评,我们承诺,凡我公司产品,三月包换,三年质保,终身保修!

简易电阻电容电感测量

简易的测量电阻电容电感 摘要:本设计是一个电阻电感电容的简易测量装置,主要由模拟测量和1602液晶显示两部分组成,其中电阻和电容电感的测量都是通过构造电路产生一定频率的波形,再通过单片机读取频率,经过程序处理转化,再通过1602液晶显示。由于系统处理数据时通过单片机对频率信号的读取,使得最后测量的结果更加精确与稳定,误差控制在题目所允许的范围内。 关键词:电阻电容电感测量仪,1602显示,555定时器,电容三点式

目录 1. 系统设计 (2) 1.1 设计要求 (2) 1.2 方案比较 (2) 1.2.1 电阻测量方案 (2) 1.2.2 电容测量方案 (4) 1.2.3电感测量方案 (5) 1.2.4显示电路方案 (6) 1.3 方案论证 (6) 1.3.1 总体思路 (6) 1.3.2 设计方案 (7) 2. 单元电路设计 (7) 2.1 电阻测量电路 (7) 2.2 电容测量电路 (8) 2.3 电感测量电路 (9) 2.4 1602显示电路 (10) 3. 软件设计 (11) 4. 系统测试 (11) 4.1 测试仪器与设备 (11) 4.2 指标测试 (12) 5 结论 (13) 参考文献 (13) 附录1、元器件明细表...............................................................= (13) 附录2:程序清单 (13)

1. 系统设计 1.1 设计要求 设计并制作一台数字显示的电阻、电容和电感参数测试仪 1. 测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 2. 测量精度:±5% 。 3. 带有显示部分。 1.2 方案比较 1.2.1 电阻测量方案 相位测量方案的关键问题是电阻测量方法的选择。 方案一:串联分压原理 V Rx R0 图1串联电路原理图 根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。通过测量Rx和R0上的电压。由公式Rx=Ux/(U0/R0) 方案二:利用直流电桥平衡原理的方案 图2 电桥(其中R1,R2,为可变电位器,R3为已知电阻,R4为被测电阻)根据电路平衡原理,不断调节电位器,使得电表指针指向正中间。由R1*R4=R3*R4.在通过测量电位器电阻值,可得到R4的值。 方案三:利用555构成单稳态的方案

电容测试仪的设计

目录 1、设计指标 (3) 2、设计原理 (3) 2.1设计原理框图 (3) 2.2设计方案 (3) 2.3模块介绍 (4) 2.3.1 控制电路 (4) 2.3.2 时钟脉冲发生器 (4) 2.3.3 计数器和显示器 (6) 3、单元电路的设计 (6) 3.1多谐振荡器 (6) 3.2单稳态触发器 (8) 3.3.1整流电路采用直流稳压电源设计思路 (9) 3.3.2直流稳压电源的原理框图分析 (9) 3.3.3直流稳压电源特点 (10) 4、设计制作过程及整体电路图 (10) 4.1设计制作过程 (10) 4.2整体电路图 (11) 5、芯片介绍 (11) 5.1555芯片功能介绍 (11) 5.274LS192芯片介绍 (13) 总结 (14) 致谢 (15) 参考文献 (16)

1、设计指标 1.1 设计目的 (1) 掌握数字电容测试仪的构成、原理和设计方法。 (2) 掌握集成电路的使用方法。 1.2 基本要求 (1)电容测量范围为1000pF~10uF,输出应能直接显示其值,误差≤5%,电源电压为+5V。 (2)量程可切换,显示值能够标定。 (3)要求最终正确无误地完成全部电路设计,并具有一定先进性,对电路设计也应提出建议性意见并写出合格的课程设计说明书,圆满完成各项任务。 2、设计原理 2.1设计原理框图 图1.电容测试仪原理框图 2.2 设计方案 利用单稳态触发器或电容器充放电规律等,可以把被测电容的大小转换成脉冲宽窄,即控制脉冲宽度Tx 与Cx成正比。只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示。如果时钟脉冲的频率等参数合适,数字显示器显示的数字N便是电容Cx的大小。之所以选择该方案是考虑到这个方案不仅设计比较容易实现,而且更重要的是该方案设计出来的数字测试仪测量的结果比较精确。

简易电阻、电容和电感测试仪报告

简易电阻、电容和电感测试仪 1.1 基本设计要求 (1)测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)测量精度:±5% 。 (3)制作4位数码管显示器,显示测量数值。 示意框图 1.2 设计要求发挥部分 (1)扩大测量范围; (2)提高测量精度; (3)测量量程自动转化。

摘要:本系统是依赖单片机MSP430建立的的,本系统利用555多谐振荡电路将电阻,电容参数转化为频率,而电感则是根据电容三点式振荡转化为频率,这样就能够把模拟量近似的转换为数字量,而频率f是单片机很容易处理的数字量,一方面测量精度高,另一方面便于使仪表实现自动化,而且单片机构成的应用系统有较大的可靠性。系统扩展、系统配置灵活。容易构成何种规模的应用系统,且应用系统较高的软、硬件利用系数。单片机具有可编程性,硬件的功能描述可完全在软件上实现,而且设计时间短,成本低,可靠性高。综上所述,利用振荡电路与单片机结合实现电阻、电容、电感测试仪更为简便可行,节约成本。所以,本次设计选定以单片机为核心来进行。 关键词:430单片机,555多谐振荡电路,,电容三点式振荡 一、系统方案 电阻测量方案:555RC多谐振荡。 利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电阻的大小,如果固定电阻值,该方案硬件电路实现简单,通过选择合适的电容值即可获得适当的频率范围,再交由单片机处理。 综合比较,本设计采用方案三,采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。 电容测量方案:555RC多谐振荡 同样利用RC和555定时器组成的多谐振荡电路,通过测量输出振荡频率的大小即可求得电容的大小,如果固定电阻值,该方案硬件电路实现简单,能测出较宽的电容范围,能够较好满足题目的要求。 采用低廉的NE555构建RC多谐振荡电路,电路简单可行,单片机易控制。 电感测量方案:电容三点式 采用LC配合三极管组成三点式震荡振荡电路,通过测输出频率大小的方法来实现对电感值测量。该方案成本低,其输出波形为正弦波,将其波形整形后交给单片机测出其频率,并转换为电感值。 二、理论分析与计算 1.电阻测量的分析及计算 根据题目要求,如图2.1,采用555多谐振电路,将电阻量转化为相应的频率信号 值。考虑到单片机对频率的敏感度,具体的讲就是单片机对10KHz-100KHz的频率计数 精度最高。所以要选用合理的电阻和电容大小。同时又要考虑到不能使电阻的功率过

仪器检定-电容电感测试仪

前言 一、衷心感谢您使用本公司的产品,您因此将获得本公司全面的技术支持和服务保障。 二、本使用说明书适用于*****介损测试仪。 三、当您在使用本产品前,请仔细阅读本使用说明书,并妥善保存以备查考。 四、请严格按说明书要求步骤操作,使用不当可能危及人身安全。 五、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。 使用本仪器前,请仔细阅读操作手册,保证安全是用户的责任 本手册版本号: 20121215 本手册如有改动,恕不另行通知。

目录 一、仪器概述 (2) 二、安全措施 (2) 三、可测试参数 (3) 四、性能特点 (3) 五、技术指标 (4) 六、测量方式及原理 (5) 七、常见设备的接线方法 (6) 八、仪器功能简介 (9) 九、仪器操作步骤 (10) 十、现场试验注意事项 (12) 十一、仪器检定 (14) 十二、变频测量讨论 (14) 十三、仪器的装箱清单 (15)

******介损测试仪说明书 一、仪器概述 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。*******介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。 7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。 8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。 9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。

简易电阻、电容和电感测试仪设计_毕业设计论文

课程设计任务书 题目: 简易电阻、电容和电感测试仪设计 初始条件: LM317 LM337 NE555 NE5532 STC89C52 TLC549 ICL7660 1602液晶 要求完成的主要任务: 1、测量范围:电阻 100Ω-1MΩ; 电容 100pF-10000pF; 电感 100μH-10mH。 2、测量精度:5%。 3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。 时间安排: 指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日

目录 摘要 (4) ABSTRACT (5) 1、绪论 (7) 2、电路方案的比较与论证 (7) 2.1电阻测量方案 (7) 2.2电容测量方案 (9) 2.3电感测量方案 (10) 3、核心元器件介绍 (12) 3.1LM317的介绍 (12) 3.2LM337的介绍 (13) 3.3NE555的介绍 (13) 3.4NE5532的介绍 (15) 3.5STC89C52的介绍 (17) 3.6TLC549的介绍 (18) 3.7ICL7660的介绍 (20) 3.81602液晶的介绍 (21) 4、单元电路设计 (23) 4.1直流稳压电源电路的设计 (24) 4.2电源显示电路的设计 (24) 4.3电阻测量电路的设计 (25) 4.4电容测量电路的设计 (26) 4.5电感测量电路的设计 (27) 4.6电阻、电容、电感显示电路的设计 (28) 5、程序设计 (29) 5.1中断程序流程图 (29) 5.2主程序流程图 (30) 6、仿真结果 (30) 6.1电阻测量电路仿真 (30) 6.2电容测量电路仿真 (31) 6.3电感测量电路仿真 (32) 7、调试过程 (33) 7.1电阻、电容和电感测量电路调试 (33) 7.2液晶显示电路调试 (33) 8、实验数据记录 (34)

相关主题
文本预览
相关文档 最新文档