当前位置:文档之家› 上拉电阻&单片机硬件抗干扰

上拉电阻&单片机硬件抗干扰

上拉电阻&单片机硬件抗干扰
上拉电阻&单片机硬件抗干扰

上拉电阻的作用

上下拉电阻:

1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:

1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理.

如果有10V的电源 串联了两个两欧的的电阻那么这两个电阻中间的电位就是10除以4再乘以2 ,那么就是5V了,如过我要提高中间的电位,我在在中间电位点和另一个2欧电阻串联一个1欧的电阻  那么这个中间电位点就是 10除以5在乘以3,那么就是6v了所以相对与5v就提高了1v,只是电流降了0.5A

关于单片机硬件抗干扰

在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?

一、下面的一些系统要特别注意抗电磁干扰:

1、微控制器时钟频率特别高,总线周期特别快的系统。

2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

3、含微弱模拟信号电路以及高精度A/D变换电路的系统。

二、为增加系统的抗电磁干扰能力采取如下措施:

1、选用频率低的微控制器:

选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。

2、减小信号传输中的畸变

微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。在印制线路板上,信号通过一个7W的电阻和一段25cm 长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。

当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。

用以下结论归纳印刷线路板设计的一个规则:

信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。

3、减小信号线间的交叉干扰:

A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交叉干扰。干扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不是很长时,AB上看到的实际是两个脉冲的迭加。CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。

4、减小来自电源的噪声

电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微控制器的复位线,中断线,以及其它一些控制线最容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。

5、注意印刷线板与元器件的高频特性

在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。印刷线路板的过孔大约引起0.6pf的电容。一个集成电路本身的封装材料引入2~6pf电容。

一个线路板上的接插件,有520nH的分布电感。一个双列直扦的24引脚集成电路扦座,引入4~18nH

的分布电感。这些小的分布参数对于这行较低频率下的微控制器系统中是可以忽略不计的;而对于高速系统必须予以特别注意。

6、元件布置要合理分区

元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。

7、处理好接地线

印刷电路板上,电源线和地线最重要。克服电磁干扰,最主要的手段就是接地。

对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。对噪声和干扰非常敏感的电路或高频噪声特别严重的电路应该用金属罩屏蔽起来。

8、用好去耦电容。

好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz 左右,也就是说对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地方和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。

每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微控制器构成的系统,取0.1~0.01uf之间都可以。

三、降低噪声与电磁干扰的一些经验。

能用低速芯片就不用高速的,高速芯片用在关键地方。

可用串一个电阻的办法,降低控制电路上下沿跳变速率。

尽量为继电器等提供某种形式的阻尼。使用满足系统要求的最低频率时钟。

时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。用地线将时钟区圈起来,时钟线尽量短。I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。

闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。(10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。时钟、总线、片选信号要远离I/O线和接插件。模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。元件引脚尽量短,去耦电容引脚尽量短。关键的线要尽量粗,并在两边加上保护地。高速线要短要直。对噪声敏感的线不要与大电流,高速开关线平行。

石英晶体下面以及对噪声敏感的器件下面不要走线。弱信号电路,低频电路周围不要形成电流环路。任何信号都不要形成环路,如不可避免,让环路区尽量小。每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状电容时,外壳要接地。

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

硬件抗干扰的一些方法

一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到×××s之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 3、减小信号线间的交叉干扰: A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是

单片机上拉电阻的抗干扰设计方案

单片机上拉电阻的抗干扰设计 在电子电路设计中,干扰的存在让设计者们苦不堪言,干扰会导致电路发生异常,甚至会导致最终的产品无法正常使用。如何巧妙地减少甚至避免干扰始终是设计者们关心的重点,其中单片机的抗干扰设计就是较为重要的一环,本文将为大家介绍与上拉电阻有关的单片机抗干扰。 想要实现单片机抗干扰,首先要综合考虑各I/O 口的输入阻抗,采集速率等因素设计I/O 口的外围电路。一般决定一个I/O 口的输入阻抗有3种情况。 第一种情况:I/O 口有上拉电阻,上拉电阻值就是I/O 口的输入阻抗。人们大多用4K-20K电阻做上拉,(PIC的B 口内部上拉电阻约 20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。(如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。) 第二种:I/O 口与其它数字电路输出脚相连,此时I/O 口输入阻抗就是数字电路输出口的阻抗,一般是几十到几百欧。

可以看出用数字电路做中介可以把阻抗减低到最理想,在许多工业控制板上可以看见大量的数字电路就是为了保证性能和保护MCU 第三种:I/O 口并联了小电容。 由于电容是通交流阻直流的,并且干扰信号是瞬间产生,瞬间熄灭的,所以电容可以把干扰信号滤除。但代价是造成I/O 口收集信号的速率下降,比如在串口上并电容是绝不可取的,因为电容会把数字信号当干扰信号滤掉。 对于一些特殊器件,如检测开关、霍尔元件等,是能够进行并电 容设计的,这主要是因为其开关量的变化较为迟缓,并不能形成很高的速率,所以即便电路中并联电容,对信号的采集也是不会有任何影响的。本文主主要对于上拉电阻有关的如何规避单片机干扰进行了介绍,正被单片机干扰困扰的朋友不妨花上几分钟阅读,相信一定会有所收获。

如何提高视频的抗干扰能力

视频监控系统中的各种干扰解决方法大全监控系统在各领域中的应用越来越多,在不同环境、不同安装条件和不同施工人员下,由于线路、电气环境的不同,或是在施工中疏忽,容易引发各种不同的干扰。这些干扰就会通过传输线缆进入闭路电视监控系统,造成视频图像质量下降、系统控制失灵、运行不稳定等现像,直接影响到整个系统的质量。因此了解视频监控系统有哪些干扰,有助于根据不同的情况采取相应的措施,对提高监控系统工程质量,确保系统的稳定运行非常有益。 1视频监控中的各种干扰 1.1木纹状的干扰 这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因: (1)视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω以及参数超出规定也是产生故障的原因之一。由于产生上述的干扰现象不一定就是视频线不良而产生的故障,因此这种故障原因在判断时要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。若真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。 (2)由于供电系统的电源不“洁净”而引起的。这里所指的电源不“洁净”,是指在正常的电源(50周的正弦波)上叠加有干扰信号。而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。比如本电网中有大功率可控硅调频调速装置、可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS供电就基本上可以得到解决。

单片机的抗干扰能力

单片机的抗干扰能力 在我一次产品中有AVR 和PIC 两种芯片同时存在,当用AVR 推动继电器-- 再推动接触器。用PIC 来显示。发现PIC 居然有点小小的干扰,不得不在外围电路上加措施才解决问题。都说PIC 的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。 1。电源用变压器变压12V ,7805 稳压,输入输出均接电解电容和104 电容。 2。单片机最小系统,用3 个I/O ,按钮,指示灯,驱动三极管(继电器-- 再推动接触器)不用的管脚不管。 3。干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104 电容。 4。软件,最小最简单,不加任何处理只推动作用。 5。元件选择,PIC 的用PIC16C54 ,PIC16F54 ,PIC16F877A , PIC16F716。AVR 的选用M8。AT28 , AT13。 接下来做测试了: PIC16C54 :先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,真是稳如泰山。再用接触器线圈引线缠绕芯片。在6 圈以下还是稳如泰山。上了7 圈就有干扰 了。看来PIC16C54 真是强悍啊。佩服。接下去就试PIC16F54

了。 PIC16F54 :先是接触器放在芯片旁边。不得了!程序简直没有办法运行,和PIC16C54 简直一个在天上,一个在地下。万思不得其解。查阅PIC 资料都说PIC 的F 系列比C 系列差,就是F 系列的不同产品抗干扰也不一样。于是又测试 PIC16F716 。PIC16F716 : 先是接触器放在芯片旁边。果然好多了,10 次也就1 次复位。PIC16F877A : 先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在 1 圈就有干扰复位了。 以上就是对我有的几种PIC 片子的测试结果。接下来对AVR 的M8 做测试。 M8:先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1 圈就有干扰复位了。 AT28 :结果和PIC16F54 一样。 AT13 :先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论 怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1-2 圈就有干扰复位了。从我自己测试的效果看,PIC 的C 系列很好。F 系列的早期产品如PIC16F54 很

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

过零比较器的性质及其抗干扰能力的提高

过零比较器的性质及其抗干扰能力的提高 1114211班郝建响01 能够实现对两个或多个进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序的比较功能的或装置称为比较器。其基本功能是对两个输入电压进行比较,并根据比较结果输出高电平或低电平电压,据此来判断输入信号的大小和极性。电压比较器常用于自动控制、波形产生与变换,模数转换以及越限报警等许多场合。比较器是将一个模拟电压与一个基准电压相比较的。比较器的两路输入为,输出则为信号,当输入电压的差值增大或减小时,其输出保持恒定。 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr,一个是待测Vu。一般Vr从正相输入端接入,Vu从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 (a)反相输入;(b)同相输入

通常用阈值电压和传特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种 情况下,输出电压的变化规律,然后画出传输特性。 分析如下电路: 1)R11作为上拉电阻,作用不大,取值范围很宽,当运放使用LM358的时候,不用也可以。不过,有些比较器是集电极开路的,当使用集电极开路的比较器的时候,这个上拉电阻是必须的。 2)运算放大器组成一个施密特触发器(也叫做滞回触发器),使触发信号有一个滞回,从而使触发后能够可靠翻转,避免小的干扰信号造成触发器误动作。R10叫做滞回电阻,也可以称作正反馈电阻。 由于有了R10,电路才有了滞回特性。调节R10的大小,可以调节滞回的深浅。当R10 无穷大(开路)的时候,电路就失去了滞回特性,从而变成了一个单纯的比较器。 为了更好地说明R10 的作用,我们假定VCC是10伏。那么,当没有R10的时候(R10 开路),输入到2脚的电压低于5负的时候,1脚输出为高电平。2脚高于5伏的时候,1脚输出低电平。这里没有滞回特性。运放就是作为一个比较器。如果在5伏左右,有一个零点几伏的干扰信号叠加进来,就会使比较器产生误动作,频繁地来回翻转。

单片机软硬件抗干扰技术

单片机软硬件抗干扰技术 在工业控制、智能仪表中都普遍采用了单片机,单片机抗干扰措施提到重要议事日程上来。单片机抗干扰措施不解决,其它工作也是白费劲。要解决单片机干扰问题,必须先找出干扰源,然后采用单片机软硬件技术来解决。 干扰源:主要来自外部电源、内部电源,印制板排版走线互相干扰,周围电磁场干扰,外部干扰一般通过IO口输入等 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干 扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。 影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 形成干扰的基本要素有三个: (1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 1 干扰的分类 1.1 干扰的分类 干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分: 可分为放电噪声音、高频振荡噪声、浪涌噪声。 按传导方式分:可分为共模噪声和串模噪声。 按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 1.2 干扰的耦合方式 干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我们有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种: (1)直接耦合: 这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。 (2)公共阻抗耦合:

单片机系统硬件电路抗干扰常用方法

单片机系统硬件电路抗干扰常用方法实践 影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 形成干扰的基本要素有三个: (1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 干扰的分类 1 干扰的分类 干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分: 可分为放电噪声音、高频振荡噪声、浪涌噪声。 按传导方式分:可分为共模噪声和串模噪声。 按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 2 干扰的耦合方式 干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种: (1)直接耦合: 这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。从而很好的抑制。 (2)公共阻抗耦合: 这也是常见的耦合方式,这种形式常常发生在两个电路电流有共同通路的情况。为了防止这种耦合,通常在电路设计上就要考虑。使干扰源和被干扰对象间没有公共阻抗。 (3)电容耦合: 又称电场耦合或静电耦合。是由于分布电容的存在而产生的耦合。 (4)电磁感应耦合: 又称磁场耦合。是由于分布电磁感应而产生的耦合。 (5)漏电耦合: 这种耦合是纯电阻性的,在绝缘不好时就会发生。常用硬件抗干扰技术 针对形成干扰的三要素,采取的抗干扰主要有以下手段。 1 抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

如何提高工控设备的抗干扰能力-

如何提高工控设备的抗干扰能力? 工控设备的核心问题,就是抗干扰能力,如果抗干扰能力不够高,那么,这个设备就是没有多大用处。 要提高工控设备的抗干扰能力,首先就是要学会正确的使用plc。 1.PLC的内核电源和输入输出接口电源应该独立。 绝大多数的用户,在设计系统电源时,只有一个电源,PLC的内核和接口都用这个电源。懂得光耦原理的人就会发现,这种接法,会把光耦旁路掉,也就是说,光耦完全没有起到隔离的作用,整个PLC完全是在“裸奔”,没有任何的保护能力,非常危险的!正确的做法是多加一个电源,专门只给PLC内核供电。输入输出接口可以共用一个电源。 2.PLC的输出口如果接到感性负载,例如电磁阀,继电器等有线圈的负载,需要在负载两端反向加一个吸收二极管。具体的方法,可以到我们的网站查看产品的接线图。 如果没有这个反向二极管,在电磁阀或继电器断开的瞬间,会产生一个反向电动势。这个反向电动势,和输出口的电源叠加在一起,会大大超过输出三极管(或场效应管)的电压承受极限,导致三极管击穿。对于反向二极管的参数,只要是电流不小于继电器电流,耐压不低于接口电源电压就

行了,像1N4004,1N4007都没有任何问题。另外,市场上的电磁阀,接线如果标有正负极的,就表示里面已经有了吸收电路,不用外接二极管了。 3.电源的选择。 干扰信号都是高频信号。比较典型的干扰信号源有变频器,可控硅调压电路。现在市面上的电源大多是开关电源,体积小,效率也很高,但是,最大的缺点就是,高频干扰信号可以长驱直入。而过去的老式电源,里面有个很大体积的变压器那种,体积大,效率低,但是对于高频干扰信号却可以很有效的抑制。所以,在选择内核电源时,应该选择老式变压器电源。 如果找不到老式变压器电源,可以在开关电源前接一个1:1的隔离变压器,或在内核电源的输入端接共模线圈,用来阻隔高频干扰。 4.布局。 干扰有2个途径,一是导线传导,二是空间辐射传导。以上的1和3就可以解决导线传导的干扰。对付空间干扰,最有效的办法就是加屏蔽罩(千万不要以为加屏蔽罩是可有可无的)。配电柜就是个很好的屏蔽罩。但是,屏蔽罩对于来自内部的干扰却束手无策。由于继电器甚至接触器一般也装配在在配电柜里面,继电器在断开的瞬间会产生一个高频干扰,这个干扰就会通过空间辐射,干扰PLC的工作。这时

上拉电阻&单片机硬件抗干扰

上拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理. 如果有10V的电源 串联了两个两欧的的电阻那么这两个电阻中间的电位就是10除以4再乘以2 ,那么就是5V了,如过我要提高中间的电位,我在在中间电位点和另一个2欧电阻串联一个1欧的电阻  那么这个中间电位点就是 10除以5在乘以3,那么就是6v了所以相对与5v就提高了1v,只是电流降了0.5A 关于单片机硬件抗干扰 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

电子产品的抗干扰能力和电磁兼容性要点

如何提升电子产品的抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提升抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰? (1) 微控制单元时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D 变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施? (1) 选用频率低的微控制单元? 选用外时钟频率低的微控制单元可以有效降低噪声和提升系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制单元产生的最有影响的高频噪声大约是时钟频率的3 倍。 (2) 减小信号传输中的畸变 微控制单元主要采用高速CMOS 技术制造。信号输入端静态输入电流在1mA 左右,输入电容10PF 左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端透过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd〉Tr 时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3 到1/2 之间。微控制单元构成的系统中常用逻辑电话组件的Tr(标准延迟时间)为3 到18ns 之间。 在印制线路板上,信号透过一个7W 的电阻和一段25cm 长的引线,在线延迟时间大致在4~20ns 之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2 个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td〉Trd 的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则? 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 (3) 减小信号线间的交叉干扰? A 点一个上升时间为Tr 的阶跃信号透过引线A B 传向B 端。信号在AB 在线的延迟时间是Td。在D 点,由于A 点信号的向前传输,到达B 点后的信号反射和AB 线的延迟,Td 时间以后会感应出一个宽度为Tr 的页脉波信号。在 C 点,由于AB 上信号的传输与反射,会感应出一个宽度为信号在AB 在线的延迟时间的两倍,即2Td 的正脉波信号。这就是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at 有关,与线间距离有关。当两信号线不是很长时,AB 上看到的实际是两个脉波的迭加。 CMOS 工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电路是迭加100~200mv 噪声并不影响其工作。若图中AB 线是一模拟信号,这种干扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。原因是,大面积的地减小了信号线的特性阻抗,信号

如何解决单片机的抗干扰问题

如何解决单片机的抗干扰问题 随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。这对我们单片机系统的可靠性与安全性构成了极大的威胁。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。 1 干扰对单片机应用系统的影响 1.1测量数据误差加大 干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。特别是检测一些微弱信号,干扰信号甚至淹没测量信号。 1.2 控制系统失灵 单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。 1.3 影响单片机RAM存储器和E2PROM等 在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。 1.4 程序运行失常 外界的干扰有时导致机器频繁复位而影响程序的正常运行。若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。 2 如何提高我们设备的抗干扰能力 2.1 解决来自电源端的干扰

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

综述单片机控制系统的抗干扰设计

摘要:单片机应用系统在发动机电喷中得到了广泛的应用,然而由于发动机工作环境恶劣,提高控制系统的抗干扰性至关重要。分析了单片机干扰的主要来源,并从硬件和软件抗干扰设计中总结了一些取得良好抗干扰性的方法。 关键词 在进行单片机应用开发的过程中,经常遇到在实验室调整很好的单片机一到工作现场就会出现这样或那样的问题,这主要是由于设计未充分考虑到外界环境存在的干扰,如机械震动、各种电磁波和环境温差都会影响硬件系统的性能,导致电控单元不能正常工作。鉴于此本文较全面分析了干扰单片机应用系统的因素并结合自己的研究课题,提出一些可增强系统抗干扰性的方法。 1单片机系统的主要干扰源 (1)无线电设施的射频干扰; (2)发动机上的高压点火线圈向外辐射磁场强度大、频带宽的电磁波; (3)单片机内部的晶振电路是内部干扰源之一; (4)数字电路本身门电路频繁的导通、截止造成电源地线电流变化,也会产生很大的高频电磁干扰,各种开关电子设备通断时产生的急剧变化的电流会产生较宽频谱干扰; (5)外界交流电路中产生的工频干扰亦会影响模拟电路输出信号的准确性。 2干扰的耦合方式 隔离干扰源与控制系统之间的耦合信道。表1列出了干扰源的主要干扰方式及特征。

3单片机的硬件抗干扰设计 断干扰的传输信道。常用的措施有:滤波技术、去耦技术、屏蔽技术和接地技术。 3.1电源电路的设计 源耦合逻辑电路产生的干扰进入模拟电路,二是为了避免传感器通过电源耦合对ECU干扰。各功能模块供电系统如图1所示,皆采用7812和7805三端稳压集成芯片,且都单独对电源进行负压差保护,这样不会因其中某一稳压电源出现故障而影响整个系统电路;使用低通滤波器亦可减少以高次谐波为主的干扰源,从而改善电源波形;在输出端采用了过压保护电路。通过上述设计可大大提高供电的 可靠性。图中D 1、D 2 用于负压差保护,防止压差击穿稳压器的be结使器件永久 失效,稳压管WY1、晶闸管Q 1用于过压保护,电容E 1 、E 2 、C 1 、C 2 使输出电压波 3.2模拟电路抗干扰设计 比较大,因此在模拟电路中应选择低温漂系数的集成放大器;在模拟电路中共模信号对电路板影响较大,故在模拟电路中采用差动放大电路,可得出两端输出信号;接收时,将双端信号转化为单端信号,可非常有效地抑制共模信号。若电路中输入信号变化比较大,需在放大器或比较器前加输入端保护电路以避免器件的损坏。外界交流电路产生的工频干扰对模拟信号有较大的影响,在电路中采用有源滤波器和低通滤波器。 3.3选用时钟频率低的单片机 干扰。因此选用低频率的单片机是提高抗干扰性的原则之一。其同为1 μs时,8051单片机外时钟为12 MH z,Atmel公司单片机外时钟为6 MHz,而Microchip和Motorola 的单片机时钟频率为4 MHz。 3.4输入、输出隔离 用的隔离方法有光电隔离、继电器隔离和变压器隔离。变压器隔离是传递脉冲输入、输出信号时,不能传递直流分量,因此常用于不要求传递直流分量的输入输

相关主题
文本预览
相关文档 最新文档