当前位置:文档之家› 地球物理测井课程设计报告.doc

地球物理测井课程设计报告.doc

地球物理测井课程设计报告.doc
地球物理测井课程设计报告.doc

《测井方法原理》课程设计

指导老师:

专业:

班级:

姓名:

年月日

一、课程设计的目的和基本要求

本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。

二、课程设计的主要内容

1. 运用所学测井知识对某油田实际测井资料进行(手工)定性和(计算机)定量分析。

2. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行岩性识别。

3. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行储层划分,用声波速度、密度及中子曲线进行储层物性评价。

4. 根据划分出的渗透层,读出储层电阻率值。并根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。

5. 上述岩性识别、物性评价及含油气性评价定量分析程序要求学生用所学C语言独立编写。

三、基本原理

“四性”关系及其研究方法:

1.岩性评价

岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。

a.定性分析

定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先要掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征,在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种特征。

表1 主要岩石的测井特征

在对淡水泥浆井,地层剖面由砂岩、粉砂岩、煤层和泥岩四种岩石组成。如果测井资料有自然电位、自然伽马、微电极、密度和电阻率曲线,则可按下列步骤区分它们:

(1)用自然电位和微电极测井曲线把渗透层和非透层区分开:砂岩和粉砂岩的自然电位有明显负异常,微电极有正幅度差,而煤层和泥岩自然电位无异常,微电极无幅度差。

(2)利用自然电位、自然伽马和微电极测井曲线区分砂岩和粉砂岩:砂岩的自然电位、自然伽马测井曲线的异常幅度大于粉砂岩的曲线异常幅度,在微电极测井曲线砂岩异常幅度差大于粉砂岩异常幅度差。

(3)利用电阻率和密度曲线可区分泥岩和煤层,煤层为高阻,泥岩为低阻;泥岩密度测井值较高而煤层密度测井值在剖面上看则很低。

b .定量计算

储集层的岩性评价的定量解释主要是指确定储集层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,还可以进一步确定泥质在岩石中分布的形式和粘土矿物的成分。在定量计算方面主要是计算泥质含量和粘土含量。泥质含量是指岩石中颗粒很细的细粉砂(小于0.1mm)与湿粘土的体积占岩石体积的百分数,用符号Vsh 表示;当需要把泥质区分为细粉砂和湿粘土时,则要计算岩石的粘土含量,它表示岩石中湿粘土的体积占岩石体积的百分数,用符号Vclay 表示。

本次课程设计中用的是:自然伽马确定泥质含量

除钾盐层外,沉积岩放射性的强弱与岩石中含泥质的多少有密切的关系。岩石含泥质越多,自然放射性就越强。

一般常用的经验方程如下:

V sh = 2

GCUR ?△GR - 1 2GCUR - 1

△GR = GR - GR min GR max - GR min

式中Vsh 为地层泥质含量;△GR 为自然伽马相对值;GR 为自然伽马测井读数;GR min 为目的层段自然伽马测井读数最小值,即纯砂岩层段的自然伽马测井读数;GR max 为目的层段自然伽马测井读数最大值,即纯泥岩层段的自然伽马测井读数;GCUR 为经验系数,与底层的地质时代有关,可按地层时代在较广泛的地区由岩心分析资料求得。通常,对第三纪地层GCUR =3.7,老地层GCUR =2.0。

2.物性评价 物性是指是指岩石的物理性质,主要包括孔隙度、渗透率等方面。一般常用孔隙度测井曲线来判断物性,包括声波时差AC 、密度测井DEN ,中子测井CNL 等。

储层物性反映的是储层质量的好坏,决定了油区的丰度和储量。应用测井资料对储层物性评价,主要是通过储层的有效孔隙度、绝对渗透率、有效渗透率、孔渗关系等进行储层的

评价分类。

测井计算反映储层物性的参数主要有孔隙度、渗透率、泥质含量以及粒度中值,甚至颗粒分选系数等,显然储层孔隙度高、渗透率大、泥质含量低、粒度大而均匀则储层物性好,相反,储层孔隙度低、渗透率小、泥质含量高、粒度细或颗粒不均匀则储层物性差。

A. 孔隙度

孔隙度是反映储层物性的重要参数,也是储量、产能计算及测井解释不可缺少的参数之

一。目前,用测井资料求取储层孔隙度的方法已经比较成熟,精度完全可以满足油气储量计算和建立油藏地质模型的需要。

本次课程设计用的是:声波时差测井定量计算孔隙度

含水纯地层:Φ=Φs=

tma △-tf △tma △-t △

含泥质水层:Φ=Φs-SH tma

△-tf △tma △-tsh △ B. 渗透率

渗透率是评价油气储层性质和生产能力的又一个重要参数。由于受岩石颗粒粗细、孔隙弯曲度、孔喉半径、流体性质、粘土分布形式等诸多因素影响,使测井响应与渗透率关系非常复杂,各影响因素之间尚无精确的理论关系,所以只能估计渗透率。

本次课程设计估计渗透率的公式:PERM=0.6021*e (21.88*POR)

3.含油气性评价 含油性是指还油的多少,其研究主要根据已有的岩心资料、试油资料、测井资料。储集层的含油性是指岩层孔隙中是否含油气以及油气含量大小。地质上对岩心含油级别的描述分为饱含油、含油、微含油、油斑及油迹,其含油性依次降低。应用测井资料可对储集层的含油性作定性判断,更多的是通过定量计算饱和度参数来评价储集层的含油性。 通常计算的饱和度参数有:地层含水饱和度S w ,束缚水饱和度S wb ,可动水饱和度S wm ;含油气饱和度Sh 或含油饱和度S o ,含气饱和度S g ,残余油饱和度S or ,可动油饱和度S om 以及冲洗带可动油体积V om =φS om 和残余油体积V or =φS or 。应用这些参数来评价储集层的含油性。 本次课程设计运用阿尔奇公式来计算地层的含水饱和度以判断含油气情况。

1000()(1)t w n w m n n m

W w t R R abR a b b F I S R R S S R φφ======-,

其中Sw 为含水饱和度;a 为与岩性有关的比例系数,一般为0.6~1.5;m 为岩石胶结指数,常取2左右;b 为与岩性有关的常数,常取1;n 为饱和度指数,常取2;Rw 为地层水电阻率;Rt 为地层含油时的电阻率;Φ为岩石孔隙度。

虽然阿尔奇公式本来是对具有粒间孔隙的纯地层得出的,但实际上,它们可用于绝大多数常见储集层。在目前常用的测井解释关系式中,只有阿尔奇公式最具有综合性质,它是连接孔隙度测井和电阻率测井两大类测井方法的桥梁,因而成为测井资料综合定量解释的最基本解释关系式。

4.电性评价

电性是指一切测井响应特征,测井曲线的质量和来源地可靠度成为首要条件。通过研究分析关键井的测井响应曲线,结合岩心分析资料、录井资料、试油资料等,建立关键井的“四性”关系,从而就未取心的井开展电性,岩性,物性及含油性研究。

四、实例分析

本次课程设计是利用赵老师的测井资料,利用CARBON软件进行数据处理,绘制图件,对该井的储集层进行相应的岩性、物性和含油饱和性评价。本课程设计对1250m到1320m段进行分析评价。成果图如下:(见下页)

1.岩性评价

a.定性划分岩性

①1252.65m-1255.10m井段:SP曲线偏离泥岩基线出现负异常,GR值为低值,微电极

RNL﹥RMN,用微电极划分薄层,故这一井段为薄层渗透性岩层。

②1272.65m-1283.95m井段:SP曲线偏离泥岩基线出现明显负异常,GR值为低值,微

电极RNL﹥RMN,可运用SP曲线半幅值法划分岩性剖面,也可根据微电极分离处确定界限位置。

③1290.95m-1312.35m井段:SP曲线偏离泥岩基线出现明显负异常,GR值为低值,微

电极RNL﹥RMN,可运用SP曲线半幅值法划分岩性剖面,也可根据微电极分离处确定界限位置。

b.定量计算泥质含量

经验方程如下:

V sh = 2GCUR

?△GR - 1 2GCUR - 1

△GR = GR - GR min GR max - GR min

1252.65m-1255.10m 井段:GR=2.213,代入上式,得出Vsh=0.17117

1272.65m-1283.95m 井段:GR=1.466,代入上式,得出Vsh=0.058346 1290.95m-1312.35m 井段:GR=1.359,代入上式,得出Vsh=0.044398

2.物性评价

a.定性评价

孔隙度测井系列曲线主要有:声波时差测井,密度和中子测井。从声波时差曲线中可以看出:上述划分的砂岩段中的曲线幅度较为稳定,泥岩井段严重坍塌,出现“周波跳跃”现象。对于渗透率,一般认为孔隙度大的井段渗透率也相应较好。

b.定量计算

对储集层的物性评价是通过对相应砂岩层的孔隙度和渗透率计算,本课程设计运用的公式:

ma sh ma sh f ma f ma

t t t t V t t t t φ?-??-?=-??-??-?, K=0.6021*e (21.88*Φ)

①1252.65m-1255.10m 井段:△t=240.948,代入公式得,Φ=0.180083,K=30.96549 ②1272.65m-1283.95m 井段:△t=236.378,代入公式得,Φ=0.17226,K=26.09449 ③1290.95m-1312.35m 井段:△t=240.948,代入公式得,Φ=0.173777,K=26.97514

3.含油气性评价

含油气评价主要是根据已给数据的电阻率曲线形态及相关数据分析其含油性好坏,计算

含油饱和度或含水饱和度。

a.定性评价

从所绘曲线定性评价各个目的层段含油气性时,主要是观察电阻率曲线形态,一般电阻率越大含油性越好。

b.定量计算 计算含油饱和度主要是利用阿尔奇公式:1

()w n w m t abR S R φ

=、So = 1- S w

①1252.65m-1255.10m 井段:Rt=22.479,代入公式得,So=0.476213,但由于该层段为薄层,测得的电阻率受围岩影响较大,故该数据不准确。

②1272.65m-1283.95m 井段:Rt=15.057,代入公式得,So=0.330947

③1290.95m-1312.35m 井段:Rt=18.148,代入公式得,So=0.395902

四、结果分析

通过上述计算可以得到:该井段储集层主要为砂岩层;其物性较差,为低孔低渗储集层;含油饱和度一般。可得研究段主要的的储集层段有:1252.65m-1255.10m 、

1272.65m-1283.95m 、1290.95m-1312.35m 三段。其泥质含量的平均值分别为17.1%、5.8%,

4.4%;孔隙度平均值分别为18.0%、17.2%、17.5%;含油饱和度平均值分别为47.6%(不准确)、33.1%、39.6%。这三段的孔隙度属于低孔,但也可作为油气的有效储层。含油饱和度一般,具有一定的勘探开发价值。

五、总结

在对测井资料处理时,岩性评价一般使用自然电位、自然伽马、井径测井曲线;物性评价时一般根据声波时差、密度及中子测井曲线;含油气评价时一般用电阻率测井曲线,并利用阿尔奇公式算出含水饱和度进而得出含油饱和度,以此判断地层含油气情况。

地球物理测井不仅可以解决勘探中的问题,也能解决开发中的问题;不仅能直接解决和含油气有关的问题,而且在研究地质构造、地层压力、岩石强度和沉积环境的等一系列地质问题方面也有重要进展;不仅能够解决找矿问题,还能解决一些工程问题。所以说,学好《测井方法原理》并能把理论与实际结合起来是非常重要的。

参考文献

赵军龙.测井方法原理.西安:陕西人民教育出版社,2008

一、目的与要求

本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。

本课程设计报告的主要内容有:

1.运用所学的测井知识识别某油田裸眼井和套管井实际测井资料。

2.使用井径、自然伽马和自然电位划分砂泥岩井段划分渗透层和非渗透层。

3.根据密度、声波和中子孔隙度测井的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。

4.根据划分出的渗透层,读出裸眼井和生产井储层电阻率值。

5.根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。

6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。

二、基本原理

1. 岩性研究方法

岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。

a.岩性定性评价

定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征。在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种主要特征。

在对淡水泥浆钻的井内,地层剖面由砂岩、粉砂岩、煤层和泥岩四种岩石组成。如果测井资料有自然电位、自然伽马、微电极、密度和电阻率曲线,则可按下列步骤区分它们:

显负异常,微电极有正幅度差,而煤层和泥岩自然电位无异常,微电极无幅度差。

②利用自然电位、自然伽马和微电极测井曲线区分砂岩和粉砂岩:砂岩的自然电位、自然伽马测井曲线的异常幅度大于粉砂岩的曲线异常幅度,在微电极测井曲线砂岩异常幅度差大于粉砂岩异常幅度差。

③利用电阻率和密度曲线可区分泥岩和煤层:煤层一般为高阻,泥岩为低阻;泥岩密度测井值较高而煤层密度测井值在剖面上则很低

(1)利用自然伽马、自然电位进行储集层的划分在泥岩段自然电位曲线接近于泥岩基线,由于泥岩对放射性粒子具有较强的吸附性能,因而在自然电位曲线上其值有明显的正差异,在泥岩段井径测井曲线明显扩大而砂岩则缩小

(2)利用各种曲线中进行岩性划

b.岩性定量评价

储集层的岩性评价的定量解释主要是指确定储集层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,还可以进一步确定泥质在岩石中分布的形式和粘土矿物的成分。

岩石类别评价是按岩石的主要矿物成分确定岩石类别,如砂岩、泥质砂岩、粉砂岩等。在定量计算方面主要是计算泥质含量。泥质含量是指岩石中颗粒很细的细粉砂(小于0.1mm)与湿粘土的体积占岩石体积的百分数,用符号Vsh表示。

目前测井方法都不是对泥质含量进行直接测量,而是选择能反映地层泥质含量的测井响应来建立测井解释模型。通常泥质含量的求取方法主要有自然伽马测井和自然电位测井,此外,还可应用自然伽马能谱测井、电阻率以及孔隙度测井(声波、密度、中子)交会法等方法。

①然伽马确定泥质含量

由自然伽马测井方法原理可知,沉积岩放射性的强弱与岩石中含泥质的多少有密切的关系。岩石含泥质越多,自然放射性就越强。故可用自然伽马求泥质含量。一般常用的经验方程如下:

Vsh=1212????cGRc

△GR = GR - GRmin GRmax- GRmin

式中Vsh为地层泥质含量;△GR为自然伽马相对值;GR为自然伽马测井读数;GRmin 为目的层段自然伽马测井读数最小值,即纯砂岩层段的自然伽马测井读数;GRmax为目的层段自然伽马测井读数最大值,即纯泥岩层段的自然伽马测井读数;c为经验系数。与底层的地质时代有关,可按地层时代在较广泛的地区由岩心分析资料求得。通常,对第三纪地层c=3.7,老地层c=2.0。

泥岩泥岩基线高值低、平均值低、平均值大于钻头

大于直径

300

粉砂岩明显异常中等值中等正幅

度差异

低于砂岩小于钻头

直径

260-400

砂岩明显异常低值明显正幅

度差异

中等到高、

致密砂岩

小于钻头

直径

250-450

②自然电位确定泥质含量

从自然电位测井的基本理论可知,自然电位异常与地层中泥质含量有密切的关系,而且随着砂岩地层中泥质含量的增加,自然电位异常幅度会随之减少,故可以利用自然电位测井曲线定量计算地层的泥质含量。一般常用的经验方程如下:

Vsh =1212????cSPc

△SP = ( SP-SBL-SSP )/SSP

式中Vsh为地层泥质含量;△SP为自然电位相对值;SP为自然电位测井读数;SSP为目的层段自然电位异常幅度,即纯砂岩层段与泥岩基线之间的的自然电位测井差值;SBL 为目的层段自然电位测井读数最大值,即纯泥岩层段的自然电位测井读数——泥岩基线;c 为经验系数。

此外,自然伽马能谱、中子、电阻率测井曲线具有同自然伽马和自然电位曲线相似的变化特征,因此,也能在很大程度上指示泥质含量的变化,其计算公式与上式基本相同。

2. 物性研究方法

物性是指是指岩石的物理性质,主要包括孔隙度、渗透率等方面。其资料包括地质资料、岩心资料和测井资料等。通过研究取心井的地质资料、岩心资料,查看测井曲线的响应特征,并通过前面的岩性分析来判断物性的好坏,总结出孔隙度的规律和渗透率的大小,并建立在取心井上的孔隙度、渗透率的密度的预测解释模型。一般常用孔隙度测井曲线来判断物性,包括声波时差AC、密度测井DEN,中子测井CNL等。

储层物性反映的是储层质量的好坏,决定了油区的丰度和储量。应用测井资料对储层物性评价,主要是通过储层的有效孔隙度、绝对渗透率、有效渗透率、孔渗关系等进行储层的评价分类。

测井计算反映储层物性的参数主要有孔隙度、渗透率、泥质含量以及粒度中值,甚至颗粒分选系数等,显然储层孔隙度高、渗透率大、泥质含量低、粒度大而均匀则储层物性好,相反,储层孔隙度低、渗透率小、泥质含量高、粒度细或颗粒不均匀则储层物性差。

a.孔隙度

孔隙度是反映储层物性的重要参数,也是储量、产能计算及测井解释不可缺少的参数之一。目前,用测井资料求取储层孔隙度的方法已经比较成熟,精度完全可以满足油气储量计算和建立油藏地质模型的需要。

声波、密度、中子三孔隙度测井的应用及体积模型的提出,给测井信息与地层的孔隙度之间搭起了一个有效而简便的桥梁。这三种测井方法是相应于地层三种不同的物理特性,并从三种不同角度上提供了地层孔隙度信息。经验表明,三孔隙度的测井系列对于高、中、低孔隙度的地层剖面以及不同的储层类型,一般都具有较强的求解能力,并能较好地提供满足于地质分析要求的地层孔隙度数据。为便于查看和对比,把常用的声波、密度、中子测井计算孔隙度的公式归纳于表2。

表2 常用的计算孔隙度公式

表中和前面的分析可知,残余油气特别是气层对声波、密度以及中子测井计算的孔隙度影响是不同的。

在气层上,由于密度测井读数与含水地层相比偏低,因而在不考虑孔隙中流体性质的情况下,计算孔隙度偏高;而对中子测井而言,由于气体的含氢指数小于标准水层的含氢指数,因而计算孔隙度比实际孔隙度偏低。为此,在测井解释中,经常采用孔隙度测井在气层上的这一特点,来判断气层。

b.渗透率

渗透率是评价油气储层性质和生产能力的又一个重要参数。由于受岩石颗粒粗细、孔隙弯曲度、孔喉半径、流体性质、粘土分布形式等诸多因素影响,使测井响应与渗透率关系非常复杂,各影响因素之间尚无精确的理论关系,所以只能估计渗透率。

目前,国内外已经发展了多种估算渗透率的解释方法,主要包括以下几种方法:

①用电阻率估计渗透率

根据实验资料知道,渗透率有如下关系式:

K = Φ3 f T2S2

其中K为渗透率;Φ为孔隙度;f是孔隙管道截面形状有关的参数,等于2 ~ 3;T为孔隙管道曲率;S为岩石比表面积,即单位体积岩石中的颗粒表面积总和。

从上式可以看出,岩石的颗粒越细,则岩石比面就越大,孔隙管道曲率就越大,因而渗透率就越小。

另外,在过渡带以上的油层中,地层的电阻率主要取决于束缚水饱和度,而束缚水饱和度又与岩石比面有关。比面愈大,束缚水饱和度越大,则渗透率愈底,而束缚水饱和度愈大,电阻率就愈小,此即为电阻率求渗透率的地质依据。

由于渗透率与电阻率之间的关系复杂,因而各个地区都根据该地区的岩心测井资料来作出电阻率与渗透率的相关关系,其经验公式的一般形式为:

K = CRtd

式中,系数C和指数d按区域及层位统计确定。

在确立了这种统计关系后,即可根据电测资料的地层真电阻率确定储层渗透率。此外,估算渗透率也可用以下方法:用孔隙度和束缚水饱和度确定渗透率、用孔隙度和粒度中值确定渗透率或使用地区性经验公式。

3. 含油气性研究方法

储集层的含油性是指岩层孔隙中是否含油气以及油气含量大小。地质上对岩心含油级别的描述分为饱含油、含油、微含油、油斑及油迹,其含油性依次降低。应用测井资料可对储集层的含油性作定性判断,更多的是通过定量计算饱和度参数来评价储集层的含油性。

通常计算的饱和度参数有:地层含水饱和度Sw,束缚水饱和度Swb,可动水饱和度Swm;含油气饱和度Sh或含油饱和度So,含气饱和度Sg,残余油饱和度Sor,可动油饱和度Som 以及冲洗带可动油体积V om=φSom和残余油体积V or=φSor。应用这些参数来评价储集层的含油性。

a.含油气性定性评价

三者都存在于储集层中,测井曲线具有以下特征:

水层表现自然电位负异常,幅值偏大,电阻率低值,若为淡水泥浆则径向电阻率梯度显示增阻侵入的特点。

油层表现自然电位负异常,幅值偏小,电阻率高,径向电阻率梯度显示减阻侵入特点,声波曲线中△t变大,密度测井测得密度变小,中子测井测得孔隙度变小。

气层除具与油层相同特征外,还出现Δt明显变大或“周波跳跃”,密度测井值明显变小,中子伽马高值等特点。

b.含油气性定量评价

评价油气层是测井资料综合解释的核心。含水饱和度是划分油、水层的主要标志,是最重要的储集层参数。

计算含水饱和度,通常依据以电阻率测井为基础的阿尔奇公式:

1000()(1)twnwmnnmWwtRRabRabbFISRR SSRφφ======?

其中Sw为含水饱和度;a为与岩性有关的比例系数,一般为0.6~1.5;m为岩石胶结指数,常取2左右;b为与岩性有关的常数,常取1;n为饱和度指数,常取2;Rw为地层水电阻率;Rt为地层含油时的电阻率;Φ为岩石孔隙度。

阿尔奇公式是对具有粒间孔隙的纯地层得出的,但实际上可用于绝大多数常见储集层。

阿尔奇公式在目前常用的测井解释关系式中最具有综合性质,它是连接孔隙度测井和电阻率测井两大类测井方法的桥梁,因而成为测井资料综合定量解释的最基本解释关系式。三、实际资料处理

本次课程设计是利用提供的测井资料,利用相关计算软件进行数据处理、绘制图件从而对该油气田的储集层进行相应的岩性、物性和含油饱和性评价。本次课程设计对1250m到1320m段进行分析评价。

(一)岩性评价

利用第二部分所用原理,用所给的测井资料做出图件。在所做的图件上进行岩性划分,并利用自然伽马计算泥质含量的公式,计算出泥质含量。

1.定性划分

运用自然伽马GR、自然电位SP、井径曲线的特征对研究段进行岩性划分。可将研究段划分为5段,其中1270 - 1285m、1290m - 1310m三段的自然伽马值较低、自然电位为负异

常、井径曲线显示为缩径,可判断出此三段为砂岩层;相反的可判断出1250m - 1270m、1285m - 1290m、1310m - 1320m三段为泥质含量较高的岩层段。其中1250m - 1270m又可细划出1252m – 1255m、1260m – 1263m两段细砂岩夹层。

2.定量计算

定量评价是利用自然伽马计算泥质含量的公式:

Vsh=1212????cGRc

△GR = GR - GRmin GRmax- GRmin

对研究段的泥质含量进行计算,所求结果如表3所示:(将泥质含量>30%的化为泥岩段,较低的化为砂岩段)

(二)物性评价

价是对以划分出的五段砂岩层的孔隙度与渗透率进行相关的说明与计算。

1. 定性评价

从声波时差曲线中可以看出:上述划分的砂岩段中的曲线幅度较为稳定,孔隙度较好。对于渗透率,一般认为孔隙度大的井段渗透率也相应较好。

2. 定量计算

对储集层的物性评价是通过对相应砂岩层的孔隙度计算,本课程设计通过已计算出的泥质含量和声波时差值代入式φ=mafmashshmafmattttVtttt??????????????

中可以求得所划分的砂岩段的孔隙度。利用提供的补充资料中孔隙度与渗透率的关系式PERM=0.6021*EXP(21.88*POR)进而可以计算出砂岩段的渗透率。所求结果如表4所示:

表4 各砂岩段孔隙度和渗透率

这五段砂岩层孔隙度和渗透率良好,可以作为有效的油气储层。

(三)含油气性评价

1.定性评价

从所绘曲线定性评价各目的层段含油气性时,主要是观察电阻率曲线形态,一般电阻率越大含油性越好。比较三段储集层。从测井曲线图中可以看出:1290m - 1300m段比其它两段的电阻率要大,显示其含油性比其它两段好。

2.定量计算

最常用的方法是利用阿尔奇公式:1()wnwmtabRSRφ=、So = 1- Sw求得所划分的砂岩段的含油饱和度。所求结果如表5所示:

(三)综合解释

根据所给测井数据和经过相应处理、计算得到的数据利用软件可得到以下解释曲线(如附图所示)。

地球物理课程设计报告样本

《地球物理测井》课程设计 指导老师 专业地质学 班级 姓名 学号

一、课程设计目的: 通过对《地球物理测井》基本理论与方法的学习,对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。 二、课程设计的主要内容: 1.运用所学的测井知识识别某油田裸眼井和套管井实际测井资料。 2.使用井径、自然伽马和自然电位划分砂泥岩井段划分渗透层和非渗透层。 3.根据密度、声波和中子孔隙度测井的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。 4.根据划分出的渗透层,读出裸眼井和生产井储层电阻率值。 5.根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。 三、基本原理: (一)岩性划分 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 1 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征。 岩性自然电位自然伽马微电极电阻率井径声波时差 泥岩泥岩基线高值低、平值低、平值大于钻头 直径 大于300 页岩近于泥岩基线高值低、平值低、平值较泥 岩高大于钻头 直径 大于300 粉砂岩明显异常中等值中等正幅度 差异低于砂岩小于钻头 直径 260-400 砂岩明显异常(Cw≠ Cmf)低值明显正幅度 差异 中等到高,致 密砂岩高 小于钻头 直径 250-450(幅度较 为稳定)

最新地球物理测井知识点复习

《地球物理测井方法》复习资料 一填空或选择填空 1 当地层电阻率大于(或小于)泥浆电阻率自然电位测井曲线显示(或) 2 砂岩(或渗透地层)地层显示 3 SP表示曲线 4 一般自然电位曲线有、两条线,当泥值含量越大,曲线越接近线; 5、一般用和计算泥值含量 6、当地层水淹时自然电位曲线出现 7、伽马射线一般与地层发生、、 8、一般泥值含量越大自然伽马曲线值越 9、深海沉积比浅海环境自然存在的伽马强度 10、电极系A2M1N为电极距探测深度记录点在 11、侧向测井一般测量、两条曲线,其中反映侵入带电阻率,反映原状地层电阻率,当地层含油时,大于,三、七、双侧向测井深度的记录点 分别为,且分别记录电位; 12、一般用三条探测深度不同分别反映、、的视电阻率曲线反映地层 的含油性能,其中浅侧向反映,深侧向反映,微球形聚焦测井反映 13、感应测井的有用信号和无用信号的差别 14、在油基泥浆一般用曲线反映地层的电阻率 15、单元环几何因子的物理意义 16、滑行波成为首波的条件 17、周波跳跃现象主要发生在地层

18、全波列测井一般记录等波 19、固井质量越好,地层波幅度套管波幅度 20、在声波变密度图上地层波显示为套管波显示为 21、一般利用伽马射线与地层介质发生探测地层的密度 22、密度测井记录、两条曲线,若太大表示曲线不合格 23、中子按能量分为 24、快中子进入地层一般有过程,其中是最强的减速剂,是俘获剂 25、含氢指数,中子测井曲线实际反映地层的 26、中子孔隙度在砂岩实际的孔隙度,白云岩则 27、中子寿命 28、水层的中子寿命油层 29、反映地层孔隙度的三种测井分别为 30、GR、CNL、AC、DEN分别表示曲线 二简述题 1、简述扩散电动势形成的机理; 2、简述为什么当水淹时,自然电位曲线出现基线偏移现象; 3、简述自然普通电阻率测井原理; 4、画出梯度电极系测井曲线并简述其特点和应用 5、简述利用侧向测井定性判断油水层的原理 6、简述感应测井的原理 7、简述单发双收和双发双收声系的差别;

地球物理测井课程实验报告

《地球物理测井》课程实验报告 院系:地球科学与工程学院 班级:地质1401 姓名:周天宇 学号: 0130 指导老师:赵军龙 2016年11月9日

1、课程实验的目的 《地球物理测井》课程安排8个学时的上机实验,使学生了解测井数据基本格式、测井曲线基本类型、学会用有关专业软件绘制测井综合曲线图;就实际资料开展岩性、物性及含油气性定性分析,从而为测井资料定量处理奠定基础。 2、课程实验主要内容 常规测井曲线类型 常规测井曲线类型包括:岩性测井系列(包括自然电位、自然伽马、井径测井),孔隙度测井系列(包括声波时差测井、密度测井、中子测井)和电阻率测井系列(包括深中浅探测的普通视电阻率测井、侧向测井以及感应测井等)。 测井资料定性分析方法 1.对于岩性分析,可以根据“表格1”来进行 表格 1 主要岩石的岩性分析测井特征 2.对于砂岩段的物性分析 ⑴声波时差测井值越大,密度测井值越小,中子测井值越大,则物性越好即砂岩的空隙度越发育;(2)如果AC、CNL、DEN变化幅度比较大,则该砂岩段物性不均匀;(3)如果下层物性比上层物性好,则该砂岩段为正韵律地层;(4)如果GR值与AC值增大,则此处为泥质夹层;如果AC值减小且AT值增大,则此处为物性夹层;如果GR值减小,AC值增大,AT 值增大,则此处含钙质夹层;(5)泥岩的声波时差约为280μs/m,泥质砂岩的声波时差约为177μs/m,渗透砂岩的声波时差为400-220μs/m。 3.含油气性分析 在已找到物性较好的砂岩段进行分析,并结合深中浅感应测井和电阻率测井曲线的变化:一般来说,含油砂岩段的电阻率值会明显增大。 测井综合曲线图模板的生成及测井数据的加载

地球物理测井课程设计

《地球物理测井》课程设计 指导老师赵军龙 专业地质学 班级地质0803 姓名娄春翔 学号200811030303 2010年12月20日

一、设计目的: 通过对《地球物理测井》基本理论与方法的学习,对某实际测井资料进行岩性划分与评价、储层识别、物性评价及含油气性评价。获得常规测井资料分析的一般方法,目的是巩固课堂所学的的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究。 课程设计的主要内容: 1.运用所学的测井知识识别某油田裸眼井和套管井实际测井资料。 2.使用井径、自然伽马和自然电位划分砂泥岩井段划分渗透层和非渗透层。 3.根据密度、声波和中子孔隙度测井的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。 4.根据划分出的渗透层,读出裸眼井和生产井储层电阻率值。 5.根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。 二、基本原理: (一)岩性划分 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 1 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征。 岩性自然电位自然伽马微电极电阻率井径声波时差 泥岩泥岩基线高值低、平值低、平值大于钻头 直径 大于300 页岩近于泥岩基线高值低、平值低、平值较泥 岩高大于钻头 直径 大于300 粉砂岩明显异常中等值中等正幅度 差异低于砂岩小于钻头 直径 260-400 砂岩明显异常(Cw≠ Cmf)低值明显正幅度 差异 中等到高,致 密砂岩高 小于钻头 直径 250-450(幅度较 为稳定)

地球物理测井-名词解释

相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。 视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。 周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。 康普顿效应:当伽马光子的能量较核外束缚电子的结合能大的多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动成角的方向散射,这种效应称为康普顿效应。 声波时差:声波传播单位距离所用的时间。 绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。 增阻侵入(泥浆高侵):地层电阻率较低,侵入带电阻率Ri大于原状地层电阻率Rt的现象。地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。 视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。 含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。 有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。 缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。 储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。 残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。扩散电动势:在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed。 扩散吸附电动势:泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成吸附扩散电动势,记为Eda。 自然电位负异常:当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。 自然电位正异常:当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。 泥浆侵入:在钻井过程中,通常保持泥浆柱压力稍大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫泥浆侵入。 泥浆高侵:侵入带电阻率Ri大于原状地层电阻率Rt的现象。 泥浆低侵:侵入带电阻率Ri小于原状地层电阻率Rt的现象。

地球物理勘探课程报告

地球物理勘探课程报告 学号:20111002833 班级:012111 姓名:李海亮 指导老师:曲赞

序言 叙述学习本课程的目的、任务和重要性 地球物理勘探方法是以岩矿石等介质的物理性质差异为基础,利用物理学原理,通过观测和研究地球物理场的空间与时间分布规律,以实现基础地质研究,环境工程勘察和地质找矿等目的的一门应用科学。 通过本课程的学习,我们应当了解和掌握各种地球物理勘探方法的基本原理,了解这些勘探方法在基础地质研究,矿产勘查等领域的应用,学会在自己专业中运用地球物理勘探方法;学会利用地球物理资料去分析和解决各种地质问题。 第一节重力勘探 重力方法的物理原理和重力方法的特点 原理重力勘探是利用地质体与围岩之间的密度差在地表产生的重力异常来确定地质体形状、大小、埋深等因素,从而对工作地区的地质构造和矿产分布情况作出判断的一种地球物理勘探方法。重力异常是重力勘探的主要研究对象,其实质就是地壳内部物质密度分布不均匀,地质体与围岩间有质量差,即剩余质量,剩余质量产生了一个指向地质体质量中心的附加引力,该引力在正常重力方向上的投影即为重力异常。得出重力异常后,再对其进行地形、高度、中间层和正常校正后,便可得出由地质体引起的异常。 为了了解不同形状、大小、产状的地质体所引起的异常,需进行异常的正演计算,即计算一些简单规则几何体引起的重力异常特征,利用它们来近似代替不同特征的实际地质体;而反演则正好相反,是已知地质体的异常特性,来推算其几何特征。反演是最终解决实际问题的关键,目标是寻找、研究或推断金属或非金属矿体和研究地质构造等。 特点相比其他勘探方法,重力勘探的特点在于:①可利用重力勘探透过覆 盖层寻找隐伏的地质构造或盲矿体;②仪器轻便、观测简单、工作效率高、施工 进度快、成本低;③应用范围广,目前可用于找矿、划分大地构造单元、石油天 然气勘探、工程勘探等。 如何利用重力方法来解决地质问题(举例说明) 基本方法为:重力勘探——发现异常——综合分析、反演推测——实际探测——正演计算、推测异常是否合理 重力法在天然地震预报,油气、煤炭、金属非金属矿及地下水勘查,海洋环 境调查,了解上地幔的密度变化、研究地壳深部构造及地壳地活动性、划分大地 构造单元等领域有着重要的应用。 例如20世纪70年代在吉林省某地区进行勘探金矿石时,采用的是重力法勘探,成功发现了含铜硫铁矿。该区已发现小型矽卡岩磁铁矿。为了扩大矿区范围,

地球物理测井课程设计报告

一、课程设计的目的和基本要求 本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。 二、课程设计的主要内容 1. 运用所学测井知识对某油田实际测井资料进行(手工)定性和(计算机)定量分析。 2. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行岩性识别。 3. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行储层划分,用声波速度、密度及中子曲线进行储层物性评价。 4. 根据划分出的渗透层,读出储层电阻率值。并根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 5. 上述岩性识别、物性评价及含油气性评价定量分析程序要求学生用所学C语言独立编写。 三、基本原理 “四性”关系及其研究方法: 1.岩性评价 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 a.定性分析 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先要掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征,在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种特征。

(建筑工程设计)油藏工程课程设计报告

(建筑工程设计)油藏工程课程设计报告

油藏工程课程设计报告 班级: 姓名:*** 学号: 指导老师:*** 单位:中国地质大学能源学院 日期:2008年3月2日 目录 第一章油藏地质评价 (1) 第二章储量计算与评价 (8) 第三章油气藏产能评价 (10) 第四章开发方案设计 (14) 第五章油气藏开发指标计算 (17) 第六章经济评价 (22) 第七章最佳方案确定 (25) 第八章方案实施要求 (25) 第一章油(气)藏地质评价 一个构造或地区在完钻第一口探井发现工业油气流后,即开始了油气藏评价阶段。油气藏评价,主要是根据地质资料、地震资料、测井资料、测试资料、取芯资料、岩芯分析、流

体化验和试采等资料,对油气藏进行综合分析研究、认识、评价和描述油藏,搞清油气藏的地质特征,查明油气藏的储量规模;形成油气藏(井)的产能特征,初步研究油气藏开发的可行性,为科学开发方案的编制提供依据。 一、油气藏地质特征 利用Petrel软件对cugb油藏进行地质建模,得出cugb油藏的三维地质构造图(见图1-1)。 图1-1 cugb油藏三维地质构造图 (一)构造特征 由图知:此构造模型为中央突起,西南和东北方向延伸平缓,东南和西北方向陡峭,为典型的背斜构造;在东南和西北方向分别被两条大断裂所断开,圈闭明显受断层控制,故构造命名为“断背斜构造”。 (1) 构造形态: 断背斜构造油藏,长轴长:4.5Km, 短轴长:2.0Km 比值:2.25:1,为短轴背斜。 (2) 圈闭研究: 闭合面积:4.07km,闭合幅度150m。 (3)断层研究: 两条断层,其中西北断层延伸4.89km,东南断层延伸2.836km。 (二) 油气层特征:

地球物理测井学习知识重点复习资料

1、 在扩散过程中,各种离子的迁移速度不同,这样在低浓度溶液一方富集负电荷,高浓度溶液富集正电荷,形成一 个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势记为Ed 。 2、 泥岩薄膜离子扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大 量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成扩散吸附电动势记为Eda 3、 当地层水矿化度大于泥浆滤液矿化度时,储集层自然电位曲线偏向低电位一方的异常称为负异常。 4、 当地层水矿化度小于泥浆滤液矿化度时,储集层自然电位曲线偏向高电位一方的异常称为正异常。 5、 在钻井过程中, 通常保持泥浆柱压力稍微大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液 替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫泥浆侵入. 6、 高侵:侵入带电阻率Ri 大于原状地层电阻率Rt; 7、 低侵:侵入带电阻率Ri 小于原状地层电阻率Rt 8、 梯度电极系:成对电极距离小于不成对电极到成对电极距离的电极系叫梯度电极系。 9、 标准测井:是一种最简单的综合测井,是各油田或油区为了粗略划分岩性和油气、水层,并进行井间地层对 比,对每口井从井口到井底都必须测量的一套综合测井方法。因它常用于地层对比,故又称对比测井。 10、电位电极系:成对电极距离大于不成对电极到成对电极距离的电极系叫电位电极系。 11、侧向测井:在电极上增加聚焦电极迫使供电电极发出的电流侧向地流入地层从而减小井的分流作用和围岩的影响,提高纵向分辨能力,这种测井叫侧向测井又称为聚焦测井 12、横向微分几何因子 : 横向积分几何因子 : 纵向微分几何因子: 纵向积分几何因子 : 13、声系:声波测井仪器中,声波发射探头和接收探头按一定要求形成的组合称为声波测井仪器的声系 14、深度误差:仪器记录点与实际传播路径中点不在同一深度上。 15、相位误差:时差记录产生的误差。 16、周波跳跃:在裂缝发育地层,滑行纵波首波幅度急剧减小,以致第二道接收探头接收到的首波不能触发记录波,而往往是首波以后第二个,甚至是第三或第四个续至波触发记录波.这样记录到到时差就急剧增大,而且是按声波信号的周期成倍增加,这种现象叫周波跳跃. 17、体积模型:把单位体积岩石传播时间分成几部分传播时间的体积加权值。 18、超压地层、欠压地层: 当地层压力大于相同深度的静水柱压力的层位,通常称为超压地层;反之,成为欠压地层。 19、放射性 放射性核素都能自发的放出各种射线。 20.同位素 凡质子数相同,中子数不同的几种核素 21..基态、激发态 基态—原子核可处于不同的能量状态,能量最低状态。 激发态—原子核处于比基态高的能量状态,即原子核被激发了 22.半衰期 原有的放射性核数衰变掉一半所需的时间。 23.α射线—由氦原子核 组成的粒子流。氦核又称α粒子,因而可以说是α粒子流。 24.β射线—高速运动的电子流。V=2C/3(C 为光速),对物质的电离作用较强,而贯穿物质的本领较小 25.γ射线—由γ光子组成的粒子流。γ光子是不带电的中性粒子,以光速运动。 26.含氢指数地层对快中子的减速能力主要决定于地层含氢量。中子源强度和源距一定时,慢中子计数率 就只 的贡献。 介质对的无限长圆柱体物理意义:半径为横积a d r r r dr r G G σ? =≡2 /0 )(的贡献。薄板状介质对无限延伸物理意义:单位厚度的a z dr z r g G σ?∞ ≡0 ),(的贡献。 板状介质对的无限延伸物理意义:厚度纵积a h h h dz z G G σ?-≡2 /2 /)(的贡献。圆筒状介质对的无限长 径为物理意义:单位厚度半a r r dz z r g G σ?∞ ∞ -≡),(

油藏工程课程设计报告.doc

油藏工程课程设计报告 班级: 姓名:*** 学号: 指导老师:*** 单位:中国地质大学能源学院 日期:2008年3月2日

目录 第一章油藏地质评价 (1) 第二章储量计算与评价 (8) 第三章油气藏产能评价 (10) 第四章开发方案设计 (14) 第五章油气藏开发指标计算 (17) 第六章经济评价 (22) 第七章最佳方案确定 (25) 第八章方案实施要求 (25)

第一章油(气)藏地质评价 一个构造或地区在完钻第一口探井发现工业油气流后,即开始了油气藏评价阶段。油气藏评价,主要是根据地质资料、地震资料、测井资料、测试资料、取芯资料、岩芯分析、流体化验和试采等资料,对油气藏进行综合分析研究、认识、评价和描述油藏,搞清油气藏的地质特征,查明油气藏的储量规模;形成油气藏(井)的产能特征,初步研究油气藏开发的可行性,为科学开发方案的编制提供依据。 一、油气藏地质特征 利用Petrel软件对cugb油藏进行地质建模,得出cugb油藏的三维地质构造图(见图1-1)。 图1-1 cugb油藏三维地质构造图 (一)构造特征 由图知:此构造模型为中央突起,西南和东北方向延伸平缓,东南和西北方向陡峭,为典型的背斜构造;在东南和西北方向分别被两条大断裂所断开,圈闭明显受断层控制,故构造命名为“断背斜构造”。 (1) 构造形态: 断背斜构造油藏,长轴长:4.5Km, 短轴长:2.0Km 比值:2.25:1,为短轴背斜。 (2) 圈闭研究: 闭合面积:4.07km2,闭合幅度150m。

(3)断层研究: 两条断层,其中西北断层延伸4.89km ,东南断层延伸2.836km 。 (二) 油气层特征: 油水界面判定: C3 井4930-4940m 段电阻率为低值0.6,小于C1 井4835-4875m 、C2 井4810-4850m 、C 3井4900-4930m 三井段高值3.8,故为水层,以上3段为油层。 深度校正: 平台高出地面6m ,地面海拔94m ,故油水界面在构造图上实际对应的等深线为4930-(6+94)=4830.0m 由C 1、C 2、C 3井的测井解释数据可知本设计研究中只有一个油层,没有隔层(见图1-2)。 图1-2 CUGB 油藏构造图 (三) 储层岩石物性特征分析 表1-1 储层物性参数表 〈1〉岩石矿物分析:由C 1井中的50块样品,C 2中的60块样品,C 3井的70块样品的分析结果:石英76%,长石4%,岩屑20%(其中泥质5%,灰质7%)。可推断该层段岩石为:岩屑质石英砂岩。 水 水 C1 C2 C3 40m 40m 30m 油 -4810m -4900m -4835m

地球物理仪器

地球物理仪器 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

分类号密级 中国地质大学(北京) 课程结课报告 地球物理仪器 学生姓名马敏院(系)地球物理与信息技术 专业电子与通信工程学号 任课教师邓明职称教授 二O一四年四月

1 前言 球物理仪器是认识地球、资源探测、工程勘察、地质灾害监测的重要手段,是地球科学研究的基础,也是前沿技术。在地球物理学领域,地球物理场主体上分为重力场、地磁场、电场、地热场、放射性辐射场和地震波场。日常工作中对矿产资源、油气能源和环境的勘察与监测,对地震灾害的预测与预防,对地球深部圈、层结构以及物质组成和空间状态的探测等都是通过物理场完成的。随着地球物理学在理论、方法和应用方面的不断进步,科学与技术发展的需求日益增加,相应学科的仪器与设备得到了迅速发展,物理学、力学、信息学和计算机技术中的一些新成就得到了广泛应用,地球物理观测的精度和对信息的分辨率不断提高。地球物理勘探仪器是集当代先进技术如传感器、电子、计算机、数据传输和通讯等技术为一体的综合系统。它的革新与发展总是伴随着新技术的推广和完善。地球物理仪器按照所测量的地球物理场,主要分为重力仪、磁力仪、电法仪、浅层地震仪、测井仪以及放射性仪器等。 地球物理仪器在许多部分存在相似的电路,例如模拟通道和数字通道,前置放大电路和滤波电路,A/D采样和数模转换等,除此之外还会连接通信接口、显示接口以及键盘接口等等。但是地球物理仪器往往又有自己的一些特点:(1)频带较宽,大动态范围;(2)高速、高分辨率和高信噪比;(3)集成度高,功能多但是功耗较低;(4)操作简单,轻便灵活,现场实时显示结果,宽工作温度范围,高稳定度在以上各个重要参数中,高分辨率是地球物理仪器的最为关键参数,这是因为在地球物理勘探中,传感器接收的信号一般都很小,如直流电法仪中,测量大地的自然电位时,信号可能只有几uV;地震勘探中,检波器接收的信号也只有几pV;瞬变电磁仪接收到的二次场信号也只有几nv。这就要求A/D转换器具有很高的分辨率,因此目前的地球物理仪器设计中大都采用了24位△∑A/D采样技术,以达到高分辨率的

测井课设

---- 课程设计报告 课程名称:地球物理测井专业班级:勘探0802 学生姓名:程汉列 学号:200811010228成绩:

课程设计目的 1)运用所学的测井知识识别实际裸眼井测井曲线,能读出对 应深度的测井曲线值。 2)岩性识别,应用测井解释原理,使用井径、自然伽马和自 然电位曲线划分砂泥岩井段划分渗透层和非渗透层。 3)物性评价根据密度、声波和中子孔隙度测井的特点,在渗 透层应用三孔隙度测井曲线求出储层的平均孔隙度。 4)电性分析,根据裸眼井电阻率曲线,判断储层的含油性。 5)根据阿尔奇公式计算出裸眼井原始含油饱和度和剩余油 饱和度变化。 6)根据开发过程中含油饱和度的变化,确定储层含油性的变 化,并判断该储层是含油层还是含水层。

课程设计要求 1)识别实际测井曲线,能读出相应深度的测井值。 2)划分渗透层和非渗透层时,要说明岩性测井划分岩性的理 论依据,并根据岩性测井在渗透层和非渗透层的曲线的变化差异,说明划分岩性的依据。 3)储层物性分析。根据三孔隙度曲线,根据其影响因素特征, 求出储层的孔隙度。 4)根据读出裸眼井和生产井储层电阻率值,使用c语言编程, 根据孔隙度测井计算出的孔隙度值和阿尔奇公式,计算裸眼井原始含油饱和度和套管井剩余油饱和度。 5)用e x c e l处理的结果验证编程处理结果的正确性。 6)课程设计报告应包括以下部分:①实际测井曲线的方法原 理及曲线特征;②结合曲线数值的变化特征,运用测井原理分析所使用方法的依据;③从测井原始曲线所读取的数据文件。 ④说明储层孔隙度计算原理,经计算机处理得到地层的孔隙度 数值。⑤根据阿尔奇公式计算渗透层段裸眼井含油饱和度和套管井含油饱和度,说明其的变化,并判断油水层⑤附上处理井段数据的源程序。

地球物理测井试题库

二、填空 1、 储集层必须具备的两个基本条件是孔隙性和_含可动油气_,描述储集层的基本参数有岩性,孔隙度,含油气孔隙度,有效厚度等。 2、 地层三要素倾角,走向,倾向 3、 岩石中主要的放射性核素有铀,钍,钾等。沉积岩的自然放射性主要与岩石的_泥质含量含量有关。 4、 声波时差Δt 的单位是微秒/英尺、微秒/米,电阻率的单位是欧姆米。 5、 渗透层在微电极曲线上有基本特征是_微梯度与微电位两条电阻率曲线不重合_。 6、 在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率_大于油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命长于_水层的热中子寿命。 7、 A2.25M0.5N 电极系称为_底部梯度电极系,电极距L=2.5米。 8、 视地层水电阻率定义为Rwa= Rt/F ,当Rwa ≈Rw 时,该储层为水层。 9、 1- Sxo ﹦Shr ,Sxo-Sw ﹦Smo ,1-Sw ﹦Sh 。 10、 对泥岩基线而言,渗透性地层的SP 可以向正或负方向偏转,它主要取决于地层水和泥浆滤液的相对矿化度。在Rw ﹤Rmf 时,SP 曲线出现负异常。 11、 应用SP 曲线识别水淹层的条件为注入水与原始地层水的矿化度不同。 12、 储层泥质含量越高,其绝对渗透率越低。 13、 在砂泥岩剖面,当渗透层SP 曲线为正异常时,井眼泥浆为盐水泥浆_,水层的泥浆侵入特征是低侵。 14、 地层中的主要放射性核素分别是铀,钍,钾。沉积岩的泥质含量越高,地层放射性越高。 15、 电极系A2.25M0.5N 的名称底部梯度电极系,电极距2.5米。 16、 套管波幅度低_,一界面胶结好。 17、 在砂泥岩剖面,油层深侧向电阻率_大于_浅侧向电阻率。 18、 裂缝型灰岩地层的声波时差_大于_致密灰岩的声波时差。 19、 微电极曲线主要用于划分渗透层,确定地层有效厚度。 20、 气层声波时差_高,密度值_低,中子孔隙度_低,深电阻率_高,中子伽马计数率_高_。 21、 如果某地层的地层压力大于_正常地层压力,则此地层为高压异常。 22、 油层的中子伽马计数率低于地层水矿化度比较高的水层的中子伽马计数率,油层电阻率大于地层水矿化度比较高的水层电阻率。 23、 地层三要素_倾角,倾向,走向。 24、 单位体积地层中的含氯量越高,其热中子寿命越短。 25、 h s φ=_________,t R F =_________。 一、填空题 26、 以泥岩为基线,渗透性地层的SP 曲线的偏转(异常)方向主要取决于_泥浆滤液_和 地层水的相对矿化度。 当R w >R mf 时,SP 曲线出现__正_异常,R w

大学物理实验课程设计实验报告

大学物理实验课程设计实验报告 大学物理实验课程设计实验报告北方民族大学 大学物理实验 实验报告 指导老师:王建明 姓名:张国生 学号:XX0233 学院:信息与计算科学学院 班级:05信计2班 重力加速度的测定

一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=秒×两点间隔数.由公式

h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0

nsinα=mω2x 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g.∴g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量

地球物理测井习题

选择 1、岩性相同,岩层厚度及地层水电阻率相等情况下,油层电阻率比水层电阻率①大 2、岩石电阻率的大小,反映岩石④导电性质。 3、岩石电阻率的大小与岩性②有关。 4、微电位电极第探测到②冲洗带电阻率 5、泥浆高侵是侵入带电阻率①大于原状地层电阻率 6、侧向测井电极系的主电极与屏蔽电极的电流极性④相同。 7、在三侧向测井曲线上,水层一般出现②负幅度差。 8、自然电位曲线是以①泥岩电位为基线。 9、侵入带增大使自然电位曲线异常值②减小。 10、声幅测井曲线上幅度值大说明固井质量②差 11、声幅测井仪使用②单发、单收测井仪。 12、声波速度测井曲线上钙质层的声波时差比疏松地层的声波时差值④小。 13、地层埋藏越深,声波时差值②越小。 14、砂岩的自然伽马测井值,随着砂岩中的③泥质含量增多而增大。 15、地层密度测井,在正源距的情况下,随着地层的③孔隙度增大而r计数率增大。 16、在中子伽马测井曲线上,气层值比油层的数值②大。 17、补偿中子测井,为了补偿地层含氯量的影响,所以采用③双源距探测。 18、进行井壁中子员井,采用正源距测井,地层的含氢量增大,超热中子计数率①减小。 19、进行补偿中子测井,采用正源距测井,地层含氢量减小,则探测的热中子计数率②增大。 20、进行碳氧比能谱测井,油层的C/O ③大于水层的C/O。 21、在一条件下,地层水浓度越大,则地层水电阻率②越小。 22、含油岩石电阻率与含油饱和度②成正比。 23、在渗透层处,当地层水矿化度①大于泥浆滤液矿化度时,自然电位产生负异常。 24、水淹层在自然电位曲线上基线产生④偏移。 25、侧向测井在主电极两侧加有②屏蔽电极。 26、油层在三侧向测井曲线上呈现①正幅度差。 27、在高阻层底界面出现极大值,顶界面出现极小值,这种电极第叫②底部梯度电极系。 28、地层的泥质含量增加时,自然电位曲线负异常值②减小。 29、梯度电极系曲线的特点是①有极值。 30、在声波时差曲线上,读数增大,表明地层孔隙度①增大。 31、声波时差曲线上井径缩小的上界面出现声波时差值②减小。 32、利用声波里头值计算孔隙度时会因泥质含量增加孔隙度值④增大。 33、声幅测井曲线上幅度值小,则固井质量②好。 34、砂岩层的自然伽马测井值,随着砂岩的泥质含量增加而④增大。 35、进行地层密度测井采用正源距情况下,地层密度值增大,则散射伽马计数率值②减小。 36、油层和水层的C/O,前者比后者①大。 37、地层的含氯量增加,则中子测井测到的热中子计数率②减小。 38、岩性相同的淡水层和盐水层相比,热中子的计数率,前者比后者④大。 39、自然伽马测井曲线,对应厚层的泥岩位置时,它的数值①高。 40、r射线和物质发生光电效应,则原子核外逸出的电子称②光电子。 41、岩层孔隙中全部含水岩石的电阻率比孔隙中全部含油时的电阻率②小。 42、地层水电阻率与地层水中所含盐类的化学成分①有关。 43、地层水电阻率与地层水中含盐浓度②成反比。 44、高侵是②水层储层的基本特征。 45、微电位电极系②大于微梯度电极系的探测深度。 46、梯度电极系的记录点在②成对电极中点。 47、电极系排列为M2.28A0.5B形式的电极系叫③底部梯度电极系。 48、泥浆电阻率很小时,测量出的电阻率曲线变③平直。 49、为了划分薄层侧向测井要求主电极0A的长度②小。 50、水层在侧向测井曲线上呈现出④负幅度差。 51、在自然电位曲线上,岩性、厚度、围岩等因素相同时,油层的自然电位幅度值②小于水层的。 52、储层渗透性变小,则微电极曲线运动的正幅度差①变小。 53、地层的声速随泥质含量增加而④减小。 54、声波时差值曲线在井径扩大的下界面出现②减小。 55、声波时差值和孔隙度有①正比关系。 56、裂缝性地层在声波时差曲线上数值②增大。 57、相同岩性的地层老地层的时差值①小于新地层的时差值。 58、国际单位制的放射性活度单位是③贝克勒尔。 59、用自然伽马测井资料可以估算储层的③泥质含量。 60、地层的含氯量越多,则中子的扩散长度(La)②越短。 61、当储层中全部充满水时,该层电阻率用符号③R0表示。 62、含油岩石电阻率与含水饱和②成反比。 63、当地层水的浓度,温度一定时,地层水中盐类化学成分不同,电阻率②不同。 64、在一定条件下,地层水温度越高,则电阻率③越小。 65、水层的电阻率,随地层水电阻率增大而②增大。 66、三侧向电极系,主电极A0与屏蔽电极A1A2电位④相等。 67、三侧向测井的聚焦能力取决于②屏蔽电极的长度。 68、侧向测井适合在②盐水泥浆中进行测井。 69、岩性相同,地层水电阻率也相同,厚度不同的油层,自然电位值也④不同。 70、当地层水电阻率②小于泥浆滤液电阻率时,自然电位产生负异常。 71、声波时差曲线在井径扩大的上界面出现①增大t 值。 72、气层的声波时差值②大于油水层的声波时差值。 73、地层声速随储层孔隙度增大而 2减小。 74、对未固结的含油砂岩层,用声波测井资料计算的孔隙度②偏大。 75、单位时间里发生核衰变的核数叫 2活度。 76、泥岩中自然放射性核素②最多。 77、r射线与物质发生①光电效应,则核外逸出光电子。

地球物理测井》试题及答案

一、 名词解释 可动油气饱和度地层可动油气体积占地层孔隙体积的百分比。 w xo mo S S S -=有效渗透率地层含有多相流体时,对其中一种流体测量的渗透率。 地层压力 指地层孔隙流体压力。?=H f f gdh h P 0 )(ρ康普顿效应 中等能量的伽马光子穿过介质时,把部分能量传递给原子的外层电子,使电子脱离轨道,成为散射的自由电子,而损失部分能量的伽马光子从另一方向射出。此效应为康普顿效应。 热中子寿命 热中子自产生到被介质的原子核俘获所经历的时间。 1、在砂泥岩剖面,当渗透层SP 曲线为_负异常_,则井眼泥浆为_淡水泥浆,此时,水层的泥浆侵入特征是___泥浆高侵__,油气层的泥浆侵入特征是___泥浆低侵__。反之,若渗透层的SP 曲线为_正异常_,则井眼泥浆为_盐水泥浆_,此时,水层的泥浆侵入特征是 泥浆低侵__,油气层的泥浆侵入特征是__泥浆低侵。 2、地层天然放射性取决于地层的___岩性__和_沉积环境____。对于沉积岩,一般随地层__泥质含量___增大,地层的放射性_ 增强___。 而在岩性相同时,还原环境下沉积的地层放射性___高于_氧化环境下沉积的地层。 3、底部梯度电阻率曲线在_高阻层底部__出现极大值,而顶部梯度电阻率曲线在___高阻层底顶部__出现极大值。由此,用两条曲线可以确定_高阻层的顶、底界面深度_。 4、电极系B2.5A0.5M 的名称__电位电极系___,电极距0.5米_______。 5、电极系3.75M 的名称___底部梯度电极系 ,电极距_4米______。 6、在灰岩剖面,渗透层的深、浅双侧向曲线幅度_低___,且_二者不重合_;而致密灰岩的深、浅双侧向曲线幅度_____高__,且_二者基本重合_。 7、感应测井仪的横向积分几何因子反映仪器的_横向探测特性__,若半径相同,横向积分几何因子_越大_,说明感应测井仪的___横向探测深度越浅___。同理,感应测井仪的纵向积分几何因子反映仪器的__纵向探测特性_,若地层厚度相同,纵向积分几何因子_越大_,说明感应测井仪的__纵向分层能力越强_。 8、渗透层的微电极曲线_不重合_,泥岩微电极曲线__重合__,且_幅度低___;高阻致密层微电极曲线__重合___,且__幅度高____。 9、气层自然伽马曲线数值__低__,声波时差曲线___大(周波跳跃)_,密度曲线 低 ,中子孔隙度曲线__低__,深电阻率曲线_高__,2.5米底部梯度电阻率曲线在气层底部__出现极大值___。用密度或中子孔隙度曲线求地层孔隙度时,应对曲线做 轻质油气___校正。 10、根据地层压力与正常地层压力的关系,可把地层划分为_正常压力地层_____、低压异常地层、_高压异常地层______。如果某地层的地层压力_大于(小于)____正常地层压力,则此地层为_高压(低压)异常地层___。 11、伽马射线与物质的作用分别为___光电效应___、_康普顿效应___、___电子对效应__。伽马射线穿过一定厚度的介质后,其强度 减弱___, 其程度与介质的_密度__有关,介质_密度___越大,其__减弱程度____越大。 12、根据中子能量,把中子分为___快中子__、__中等能量中子__和慢中子;慢中子又分为____超热中子__、___热中子__。它们与介质的作用分别为_ 快中子的非弹性散射__、_快中子的弹性散射_____、__快中子对原子核的活化_、___热中子俘获___。 13、单位体积介质中所含__氢_越高,介质对快中子的减速能力_越强__,其补偿中子孔隙度__越大__。 14、单位体积介质中所含__氯___越高,介质对热中子的俘获能力_越强_,其热中子寿命__越短_,俘获中子伽马射线强度__越强__。 15、地层三要素__倾角、_倾向、_走向,其中,_倾向_与__走向_相差_90o_。 16、蝌蚪图的四种模式__红模式_、___蓝模式_、__绿模式_、__乱模式__。 17、描述储集层的四个基本参数_岩性 、_孔隙度_、_渗透率_、含油饱和度__。 18、 =-w xo S S _ mo S ______, =-xo S 1_ hr S , =-w S 1_ h S 。 xo xo S =φφ , =mo S φmo φ,=h S φh φ_____。地层总孔隙度与次 生孔隙度、原生孔隙度的关系_ 21φφφ+=_。 判断并改错视地层水电阻率为 F R R wa 0 =。 错误,视地层水电阻率为 F R R t wa = 。

相关主题
文本预览
相关文档 最新文档