当前位置:文档之家› 逆变器SPWM控制电路与设计

逆变器SPWM控制电路与设计

逆变器SPWM控制电路与设计
逆变器SPWM控制电路与设计

信息技术 Information Technology

3.3 空间信息更新方法

3.3.1 利用GIS软件功能更新

随着GIS软件的发展,当前流行的GIS软件平台提供了时态GIS部分空间信息更新要求。如ArcGIS9.2针对时态GIS的数据组织需求以及功能需求,提供相应的解决方案,包括:时

间数据的存储格式NetCDF、时空数据建模、历史数据归档功能、多维数据图表分析、时间动画、追踪分析功能、实时数据获取等功能。

3.3.2 利用数据库功能自动更新

目前,大多数行业的G I S利用空间数据引擎(如:ArcSDE)将空间数据存储到关系型(如:SQL Server)或对象关系型(如:Oracle)数据库中。这些数据库提供触发器功能,触发器是针对单一数据表所撰写的特殊存储过程,当数据表发生添加、删除、更新操作时,自动执行所编写的脚本。如当空间信息表发生变化时,可使用数据库触发器功能将需要变化前的数据自动存储到历史信息表中。

如果经常要空间数据库定时自动执行一些脚本,如数据库备份、数据的提炼、数据库的性能优化、重建索引、自动重建历史、建立或更新多基态等工作。可利用数据库提供的作业(Job)功能实现空间信息的更新处理。

3.3.3 编写空间信息更新模块

不同的时态GIS对空间信息更新要求不同,利用GIS软件平台功能、数据库触发器和作业功能只能满足一定条件的更新,局限性较大。针对不同行业的时态GIS应用,需利用GIS 平台提供的二次开发功能有针对性编写空间信息更新模块,实现时态GIS空间信息用户手工更新和自动更新功能。

4 结论

时态GIS作为GIS研究和应用的一个新领域,受到普遍的关注。本文分析了时态GIS空间信息的更新问题,为了提高时空数据库存储和管理效率,研究了将空间信息和属性信息分开存储的时空数据库,并设计了时态GIS空间信息更新流程,给出了时态GIS空间信息更新技术和方法。

参考文献:

王贺封.时空数据模型及TGIS研究[J].测绘与空间地理信[1]

息,2006.08.

周晓光,陈军,朱建军等.基于事件的时空数据库增量更新[2]

[J].中国图像图形学报,2006,11(10):1431-1438.

吴正升,胡艳,何志新.时空数据模型研究进展及其发展方[3]

向[J].测绘与空间地理信息,2009.12.

汪汇兵,唐新明,洪志刚.版本差量式时空数据模型研究[4]

[J].测绘科学,2006.09.

李勇,陈少沛,谭建军.基于基态距优化的改进基态修正时[5]

空数据模型研究[J].测绘科学,2007.01.

逆变器SPWM控制电路

的研究与设计

李长华 刘平

(郑州大学信息工程学院,河南 郑州 450001)

摘 要:本文依据SPWM控制原理,以逆变器控制电路

为研究对象,通过分立电路设计出SPWM电路,调制

波为50Hz正弦波,载波为10KHz三角波,输出SPWM

波频率为20KHz。实验证明该电路稳定性好,有效克服

了温飘,反馈迅速,且成本低,输出实现倍频效应,对

逆变器控制的理解和学习有很好的指导作用,具有较高

的实用价值。

关键词:逆变器;SPWM控制;分立电路;倍频

中图分类号:TK-9 文献标识码:B

文章编号:1671-8089(2012)02-0088-03

A Design of SPWM Circuit

of Inverter

Lichanghua Liuping

(The College of ZhengZhou University ZhengZhou

450001 China)

Abstract: The principle of the driver circuit of an inverter

is introduced in this paper. A SPWM control circuit is

designed with discrete components. The frequency of

triangular wave is 10KHz, the sine wave is 50Hz, and the

SPWM is 20KHz. The experimental results show that this

method can work well. Temperature drift is overcome.

And the cost is low. The output frequency is doubled. In

addition, this paper helps us understanding the SPWM

control circuit better. And the pragmatic value of this design

is high.

Key words: inerter; SPWM control; discrete circuit;

frequency doubling

0 引言

逆变器是一种通过半导体功率开关管的开通与关断作用将直流电转化为交流电的电路变换装置[1]。根据输出波形可分为方波逆变器和正弦波逆变器。由于多数负载要求逆变器输出正弦波,所以正弦波逆变器具有更广泛的应用空间。在高频化技术阶段,逆变器输出波形改善以PWM(Pulse Width

[作者简介] 李长华,男,河南新乡人,郑州大学在读研究生,主要从事开关电源设计及逆变器研究。

– 88 – 2012年第11卷第2期

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

PWM逆变器控制电路设计

SPWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下目的:一个单相 50HZ/220V逆变电源,外部采用:交流到直流再到交流的逆变驱动格式。在220V/50HZ外电源停电时,蓄电池就逆变供电。在设计电路时,主要分为正负12V稳压电源到SPWM波发生器(其中载波频率5KHZ)至H逆变电路再到逆变升压变压器再由220V/50HZ输出. 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入直流流电源: 正负12V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:

电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 根据要求,整流电路采用二极管整流桥电容滤波电路,其电路图如图2.1所示:

SPWM逆变电路的工作原理 PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。 1.PWM控制的基本原理 PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

离网逆变器控制策略

逆变器控制策略: 逆变器的控制目标是提高逆变器输出电压的稳态和动态性能。稳态性能主要是指输出电 压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD 和负载突变时的动态响应水平。在这些指标中输出电压THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%。 1、离网逆变器的控制性能要求主要是使其输出电压具有良好的控制抗扰性。 离网逆变器采用输出电容电流内环和输出电压外环的双闭环控制。 电流调节器可以实现快速加减速和电流限幅作用,同时使系统的抗电源扰动和负载扰动 的能力增强。 电压调节器主要是控制输出电压的稳定。 2、基于LC 滤波器的离网型逆变器 图2 基于LC 滤波的电压型离网逆变器主电路 图3 基于LC 的VSI 输出电压单闭环控制结构 图5 基于电容电流反馈的单位调节器内环控制结构 1VD 3VD 5VD 2VD 6VD 4VD 1 V 3V 5V 4V 6V 2V U V W dc C C R L dc u + -L i o i C i L u C u i u 调节 器 PWM K 1sL R +-i u o i C *u C u L i -1sC -C i ? ? ?C u L u *Cq u cq u PI P PWM K 1sL sC 1iq u C *i C i ????oq i +----

图14 基于同步坐标系的LC-VSI 双环控制结构 PI PI P P Inv.Park Trans Inv.Clarke Trans SPWM Generator Clarke Trans Park Trans Clarke Trans Park Trans *q s U *sd U sd U q s U *sd I *q s I q s I d s I a s I βs I A U βs U a s U B U A I B I 1 1ov T s +11 e T s +1 1oi T s +PI 1Ls 1Cs P 11 oi T s +11 ov T s +*Cq u C *i iq u oq i cq u C i +-+- + -+ -电流内环

无源三相PWM逆变器控制电路设计-参考模板

无源三相PWM逆变器控制电路设计 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1注意事项 控制框图 设计装置(或电路)的主要技术数据 主要技术数据

输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 3.在整个设计中要注意培养独立分析和独立解决问题的能 力 4.课题设计的主要内容是主电路的确定,主电路的分析说 明,主电路元器件的计算和选型,以及控制电路设计。 报告最后给出所设计的主电路和控制电路标准电路图。 5.课程设计用纸和格式统一 三设计内容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图

根据要求,整流电路采用二极管整流桥电容滤波电路, 其 电路图如图2.1所示: 图2.1 考虑电感时电容滤波的三相桥式整流电路及其波形 a )电路原理图 b )轻载时的交流侧电流波形 c )重载时的交流侧电流波形 1. 其工作原理如下所示: 该电路中,当某一对二级管导通时,输入直流电压等于交流 侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。 当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。 设二极管在局限电路电压过零点δ角处开始导通,并以二极 管VD 6和VD 1开始同时导通的时刻为时间零点,则线电压为 a)c)R 462 i i

电压型逆变器

电压型逆变电路[浏览次数:约247次] ?电压型逆变电路是指由电压型直流电源供电的逆变电路。它的直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗。电压型 逆变电路主要应用于各种直流电源。 目录 ?电压型逆变电路种类 ?电压型逆变电路原理 ?电压型逆变电路特点 电压型逆变电路种类 ?1、单相电压型逆变电路 (1)单相半桥电压型逆变电路 优点:简单,使用器件少 缺点:交流电压幅值Ud/2,直流侧需两电容器串联,要控制两者电压均衡 (2)单相全桥电压型逆变电路,由两个半桥电路的组合,是单相逆变电路中应用最多的。 (3)带中心抽头变压器的逆变电路 2、三相电压型逆变电路 三个单相逆变电路可组合成一个三相逆变电路,应用最广的是三相桥式逆变电路。 电压型逆变电路原理 ?以三相电压型逆变电路为例:图1是一个三相电压型逆变电路的主电路。直流电源采用相控整流电路,由普通晶闸管组成。逆变电路由6个导电臂组成,每个导电臂均由具有自关断能力的全控型器件及反并联二极管组成,所以实际上也是一种全控型逆变电路。负载为感性,星形接法,在整流电路和逆变电路之间并联大电容Cd。由于Cd的作用,逆变入端电压平滑连续,直流电源具有电压源性质。

逆变电路中各全控器件控制极电压信号的时序如图2b所示。信号脉宽为180°,每隔60°有一次脉冲电平的变化,任何时刻有3个脉冲处于高电平。相应地在主电路中也有3个导电臂处于导通状态。 依此类推,可得uAO波形如图2c所示。其他两相uBO和uCO波形分别滞后于uAO120°和240°。根据uAB=uAO-uBO,可得uAB波形如图2e所示。由图可见,逆变电路输出电压uAB、uBC和uCA是分别互差120°的交变四阶梯波。该波形不随负载而

无源三相PWM逆变器控制电路设计65427

目录 第一章:课程设计的目的及要求 (2) 第二章整流电路 (5) 第三章逆变电路 (9) 第四章PWM逆变电路的工作原理 (11) 第五章三相正弦交流电源发生器 (14) 第六章三角波发生器 (15) 第七章比较电路 (16) 第八章死区生成电路 (18) 第九章驱动电路 (20) 附录 参考文献 课程设计的心得体会

第一章:课程设计的目的及要求 一、课程设计的目的 通过电力电子计术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索 需要的文献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 1. 自立题目 题目:无源三相PWM逆变器控制电路设计 注意事项: ①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计容。 控制框图 设计装置(或电路)的主要技术数据 主要技术数据 输入交流电源: 三相380V,f=50Hz 交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流: 电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH

设计容: 整流电路的设计和参数选择 滤波电容参数选择 三相逆变主电路的设计和参数选择 IGBT电流、电压额定的选择 三相SPWM驱动电路的设计 画出完整的主电路原理图和控制电路原理图 2.在整个设计中要注意培养灵活运用所学的电力电子技术 知识和创造性的思维方式以及创造能力 要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

逆变器的分类和主要技术性能评价

逆变器的分类和主要技术性能评价 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为 50~60Hz的逆变器;中频逆变器的频率一般为 400Hz到十几KHz;高频逆变器的频率一般为十几KHz到MHz。 2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能 1、额定输出电压 在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。对输出额定电压值的稳定准确度一般有如下规定: (1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。 (2)在负载突变(额定负载 0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的± 8%或±10%。 2、输出电压的不平衡度 在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如 5%或 8%。 3、输出电压的波形失真度 当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值不应超过 5%(单相输出允许 10%)。 4、额定输出频率 逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频 50Hz。正常工作条件下其偏差应在±1%以内。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

逆变器保护电路设计

安阳师范学院本科学生毕业设计报告逆变器保护电路设计 作者秦文 系(院)物理与电气工程学院 专业电气工程及其自动化 年级 2008级专升本 学号 081852080 指导教师潘三博 日期 2010.06.02 成绩

学生承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何贡献均以在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名: 导师签名: 日期:

逆变器保护电路设计 秦文 (安阳师范学院物理与电气工程学院,河南安阳 455002) 摘要:本文针对SPWM逆变器工作中的安全性问题,阐述了如何利用电路实现保护复位和死区调节。在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果,但是却对逆变器的安全运行意义重大。 关键词:保护电路;复位电路;死区调节 1 引言 在现在的系统中电力器件的应用也越来越广而与此同时对器件的保护也被认识了其重要性。电子器件很易被损坏,保护电路的要求也很苛刻。在工程应用中,为了使SPWM 逆变器安全地工作,需要有可靠的保护系统。一个功能完善的保护系统既要保证逆变器本身的安全运行,同时又要对负载提供可靠的保护。 随着电力电子技术的发展,功率器件如IGBT、MOSFET等广泛应用于PWM变流电路中。对于任何固态的功率开关器件来讲,都具有一定的固有开通和关断时间,对于确定的开关器件,固有开通和关断时间内输入的信号是不可控的,称为开关死区时间,它引起开关死区效应,简称为死区效应。在电压型PWM逆变电路中,为避免同一桥臂上的开关器件直通,必须插入死区时间,这势必导致输出电压的误差。该误差是谐波的重要来源,它不但增加了系统的损耗,甚至还可能造成系统失稳。 随着电力电子技术的发展,逆变器主电路、控制电路发生了较大变化,其性能不断改善,当然,保护电路也应随之作相应完善。逆变器保护电路主要包括过压保护、过载(过流) 保护、过热保护等几个方面。 本文仅就保护复位电路与死区控制电路与的实现进行了分析和研究。 2 保护电路设计 较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。 2.1 死区控制电路的结构设计 死区控制电路的电路拓扑结构如图所示,其主要功能是确保主电路中的开关管S 1、S 2 不能同时导通。死区电路的波形图如图1所示,从图中可以明显地看出开关管S 1和S 2 的驱 动信号没有使S 1与 S 2 同时导通的重叠部分,这就是两个主开关管之间存在所谓的“死区”。 而通过改变HEF4528芯片的输出信号脉宽,就可以调节驱动信号的脉宽。(具体的方式是 通过改变HEF4528芯片的外接RC电路的参数值实现的,如图2所示)如图3所示R t 、C t 的值与输出脉宽的关系在本文中,选择电位器P2的阻值为10kΩ,电容C237的容值为103pF,因此由图3可知,输出信号的脉宽大约为10μs 。

逆变电源控制算法哪几种

https://www.doczj.com/doc/3c9135339.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.doczj.com/doc/3c9135339.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

逆变器SPWM控制电路与设计

信息技术 Information Technology 3.3 空间信息更新方法 3.3.1 利用GIS软件功能更新 随着GIS软件的发展,当前流行的GIS软件平台提供了时态GIS部分空间信息更新要求。如ArcGIS9.2针对时态GIS的数据组织需求以及功能需求,提供相应的解决方案,包括:时 间数据的存储格式NetCDF、时空数据建模、历史数据归档功能、多维数据图表分析、时间动画、追踪分析功能、实时数据获取等功能。 3.3.2 利用数据库功能自动更新 目前,大多数行业的G I S利用空间数据引擎(如:ArcSDE)将空间数据存储到关系型(如:SQL Server)或对象关系型(如:Oracle)数据库中。这些数据库提供触发器功能,触发器是针对单一数据表所撰写的特殊存储过程,当数据表发生添加、删除、更新操作时,自动执行所编写的脚本。如当空间信息表发生变化时,可使用数据库触发器功能将需要变化前的数据自动存储到历史信息表中。 如果经常要空间数据库定时自动执行一些脚本,如数据库备份、数据的提炼、数据库的性能优化、重建索引、自动重建历史、建立或更新多基态等工作。可利用数据库提供的作业(Job)功能实现空间信息的更新处理。 3.3.3 编写空间信息更新模块 不同的时态GIS对空间信息更新要求不同,利用GIS软件平台功能、数据库触发器和作业功能只能满足一定条件的更新,局限性较大。针对不同行业的时态GIS应用,需利用GIS 平台提供的二次开发功能有针对性编写空间信息更新模块,实现时态GIS空间信息用户手工更新和自动更新功能。 4 结论 时态GIS作为GIS研究和应用的一个新领域,受到普遍的关注。本文分析了时态GIS空间信息的更新问题,为了提高时空数据库存储和管理效率,研究了将空间信息和属性信息分开存储的时空数据库,并设计了时态GIS空间信息更新流程,给出了时态GIS空间信息更新技术和方法。 参考文献: 王贺封.时空数据模型及TGIS研究[J].测绘与空间地理信[1] 息,2006.08. 周晓光,陈军,朱建军等.基于事件的时空数据库增量更新[2] [J].中国图像图形学报,2006,11(10):1431-1438. 吴正升,胡艳,何志新.时空数据模型研究进展及其发展方[3] 向[J].测绘与空间地理信息,2009.12. 汪汇兵,唐新明,洪志刚.版本差量式时空数据模型研究[4] [J].测绘科学,2006.09. 李勇,陈少沛,谭建军.基于基态距优化的改进基态修正时[5] 空数据模型研究[J].测绘科学,2007.01. 逆变器SPWM控制电路 的研究与设计 李长华 刘平 (郑州大学信息工程学院,河南 郑州 450001) 摘 要:本文依据SPWM控制原理,以逆变器控制电路 为研究对象,通过分立电路设计出SPWM电路,调制 波为50Hz正弦波,载波为10KHz三角波,输出SPWM 波频率为20KHz。实验证明该电路稳定性好,有效克服 了温飘,反馈迅速,且成本低,输出实现倍频效应,对 逆变器控制的理解和学习有很好的指导作用,具有较高 的实用价值。 关键词:逆变器;SPWM控制;分立电路;倍频 中图分类号:TK-9 文献标识码:B 文章编号:1671-8089(2012)02-0088-03 A Design of SPWM Circuit of Inverter Lichanghua Liuping (The College of ZhengZhou University ZhengZhou 450001 China) Abstract: The principle of the driver circuit of an inverter is introduced in this paper. A SPWM control circuit is designed with discrete components. The frequency of triangular wave is 10KHz, the sine wave is 50Hz, and the SPWM is 20KHz. The experimental results show that this method can work well. Temperature drift is overcome. And the cost is low. The output frequency is doubled. In addition, this paper helps us understanding the SPWM control circuit better. And the pragmatic value of this design is high. Key words: inerter; SPWM control; discrete circuit; frequency doubling 0 引言 逆变器是一种通过半导体功率开关管的开通与关断作用将直流电转化为交流电的电路变换装置[1]。根据输出波形可分为方波逆变器和正弦波逆变器。由于多数负载要求逆变器输出正弦波,所以正弦波逆变器具有更广泛的应用空间。在高频化技术阶段,逆变器输出波形改善以PWM(Pulse Width [作者简介] 李长华,男,河南新乡人,郑州大学在读研究生,主要从事开关电源设计及逆变器研究。 – 88 – 2012年第11卷第2期

相关主题
文本预览
相关文档 最新文档