当前位置:文档之家› 排列组合几种常见题型及解法论文

排列组合几种常见题型及解法论文

排列组合几种常见题型及解法论文
排列组合几种常见题型及解法论文

排列组合的几种常见题型及解法

排列组合应用问题,题型繁多,解法独特,但经仔细分析研究,还是有一定规律可循,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。

一、特殊位置法

例17个人站成一排,如果甲不站在中间,有多少种排法?据题目要求,中间是特殊位置,先安排它,有a■■种排法;再安排其余的6个位置,有a■■种排法,由分步计数原理得a■■·a■■=4320种。

二、特殊元素法

例2甲是特殊元素,先安排甲,有种a■■站法,再安排其余的6个人,有a■■种站法,由分步计数原理得a■■·a■■=4320种。

三、捆绑法

例38人排成一排,甲、乙必须分别紧靠站在丙的两旁,有多少种排法?

解:把甲、乙、丙先排好,有a■■种排法,把三个人“捆绑”在一起看成是一个,与其余5个人相当于6个人排成一排,有a■■种排法,所以一共有a■■·a■■=1440种排法。

四、插空法

例4排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

排列组合基本题型方法

排列组合方法汇总 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得 113434 288 C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480 A A A =种不同的排 法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素 中间包含首尾两个空位共有种4 6 A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 4 4 3

排列组合常见题型及解答

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、 3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排

法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

排列组合题型归纳

排列组合题型总结 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 二.间接法当直接法求解类别比较大时,应采用间接法。 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。

练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法() 六.平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法 七.合并单元格解决染色问题 练习1将3种作物种植 在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答) 2.某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答). 图3 图4 3.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数. 4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种 图5 图6

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

排列组合解法大全

排列组合解法大全 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进 行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法 种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式: “含”与“不含” “至少”与“至多” 在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法. ***************************************************************************** 习题 1、三边长均为整数,且最大边长为11的三角形的个数为( C ) (A)25个 (B)26个 (C)36个 (D)37个 2、(1)将4封信投入3个邮筒,有多少种不同的投法? (2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法? (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法? 3、七个同学排成一横排照相. (1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600) (2)某乙只能在排头或排尾的不同排法有多少种?(1440) (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120) (4)甲、乙必须相邻的排法有多少种?(1440) (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)

完整版排列组合题型归纳

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题. 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合常见类型与解法

排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一. 特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的 任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法, 故站法共有:A A 415 5?=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两 人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 4 4种,故站法共有:A A 5244480?=(种) 二. 相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再 进行排列,有A 33种,所以排法共有:A A 6633 4320?=(种)。 三. 相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440?=(种) 四. 定序问题用除法 对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n 个元素进行

超全超全的排列组合的二十种解法

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。 ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。 解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。 A(6,6)=6x5x4x3x2x1=720。 A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。 [计算公式] 排列用符号A(n,m)表示,m≦n。 计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! 此外规定0!=1,n!表示n(n-1)(n-2) (1) 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 组合的定义及其计算公式 1 组合的定义有两种。定义的前提条件是m≦n。 ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。 解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。 [计算公式] 组合用符号C(n,m)表示,m≦n。 公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1) 26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

相关主题
文本预览
相关文档 最新文档