当前位置:文档之家› 风力发电电缆

风力发电电缆

风力发电电缆
风力发电电缆

风力发电电缆

风力发电电缆

产品简介

风力发电机专用电缆除满足普通电缆的性能外,还必须满足弯曲半径小、频繁扭转的基本要求,由于风力发电机电缆多用在气候条件较为恶劣的地区,一般多用在我国的北方地区,气候较寒冷,且昼夜温差较大,因此电缆还必须满足环境温度-45℃~+50℃,运行温度为-40℃~+50℃的使用条件。我公司自2005年初开始致力于风力发电机专用电缆技术的研究,参照德国DIN VDE的标准,对风力发电机专用电缆进行结构优化设计,并选用世界上最优的绝缘及护套材料,电缆的性能达到了国际领先水平。风力发电机专用电缆分为动力电缆、控制电缆和数据电缆,电缆的优点如下:

1、具有良好的耐低温和耐磨性,以及耐疲劳性、耐气候老化性能、耐微生物性能,对油品、化学品具有极好的耐腐蚀性。普通电缆不具有耐磨性和耐腐蚀性。

2、抗扭转性能和弯曲性能优异:成品电缆在-40℃的低温环境下,能经受正、反各四转为一次、扭转角度为360°,次数不少于3000次的抗扭转性能试验,要求电缆试验结束后导体不发生断裂、护套表面不产生裂纹。普通电缆不适合在低温情况下扭转。

3、适用环境温度-45℃~+110℃,运行温度为-40℃~+110℃。普通电缆运行温度为0℃~70℃。

4、电缆的敷设温度不低于-30℃,普通电缆的敷设温度为不低于0℃;

5、电缆弯曲半径:固定安装不小于电缆外径的4倍,移动安装不小于电缆外径的5倍。普通电缆的弯曲半径为电缆外径的20倍。

为了保证电缆具有以上优点,我公司从以下方面对电缆进行研究:

1、选用最优质的原材料及最先进的生产设备,保证风力发电电缆具有优异的电性能、耐老化性能、耐腐蚀性能及抗扭转性能。

1.1、导体:导体采用国内最优质的铜材供应商云南铜业股份有限公司的无氧铜,铜的纯度达到99.99%。导体根据用户的要求采用镀锡或不镀锡铜导体,导体采用符合IEC60228规定第五种导体规定的要求。导体表面应光洁、无油污、无损伤绝缘的毛刺,以及凸起或断裂的单线。

1.2、绝缘:绝缘采用耐低温、耐腐蚀、耐油的硅橡胶材料,绝缘的耐低温性能可达-60℃。

1.3、护套:护套采用耐低温、耐磨、耐老化、耐微生物、耐腐蚀性能优异的特殊低烟无卤橡胶材料,护套的耐低温性能可达-50℃。绝缘及护套的生产采用国内最先进的绝缘和护套生产线挤出,同时在挤出时采用国际最先进德国西格拉公司生产的绝缘和护套的外径在线检测仪,使绝缘和护套的厚度挤出均匀。同时在绝缘护套挤出时采用国内最先进的火花在线检测仪,保证绝缘和护套生产时无火花点,保证电缆外径均匀一致,电缆的各项性能优异。

本实用新型公开了风力发电电缆,由缆芯、填充层、包带、内护套、铠装以及外护套组成;所述缆芯由两根绝缘线芯绞合而成,绝缘线芯由导体和挤包在导体外的绝缘层组成,在绝缘线芯之间的空隙通过填充层进行填充;在绝缘线芯和填充层的外表面上用无卤阻燃包带包覆;在包带外表面上挤包一层内护套,该内护套外覆盖一层铠装,且该铠装的外表面上挤

包一层外护套。本实用新型结构合理简单,生产制造容易、成本低、无污染。电缆具有较强的柔性、弹性、可恢复性、抗拉性、能够有效的抑制紫外线。

风能发电用耐寒抗扭阻燃电缆

(执行标准:Q/321084KKB22-2008)

1、企业标准参照HD22.12 S2:2007等标准编制。

2、电缆型号:H07BN4-F

3、电缆的额定电压:U0/U 450/750V、600/1000V。

4、电缆的芯数有1、2、3、4、

5、

6、12、18、24、36。电缆的导体截面范围:1.5~630mm2。

5、电缆导体允许的长期最高工作温度为90℃。电缆导体允许的最大短路温度为250℃(最长5s)。电缆的安装、运行、运输及储存的最低允许温度为-40℃。

6、电缆的导体采用镀锡软铜丝,参照GB/T3956标准中的5类软导体,等同于IEC60228相关要求。

7、电缆的绝缘材料采用EPR(三元乙丙)为基料的橡皮,具有优良的耐热、耐臭氧性能,完全符合DIN VDE 0207第20节的要求。

8、绝缘线芯的颜色识别符合HD 308要求。

9、护套:护套材料采用CR(氯丁橡胶)或CSP(氯磺化聚乙烯)为基料的橡皮,具有优良的耐油、耐寒、抗紫外线、抗扭曲性能,完全符合DIN VDE 0207 第21节的要求。

10、电缆的交流测试电压:3500V/5min。

11、电缆的弯曲半径:最小移动弯曲半径为电缆直径的6倍。最小固定弯曲半径为电缆直径的4倍。

12、特殊性能:●耐油性能依据并符合EN60811-2-1标准要求。●阻燃性能依据并符合IEC60332-1-2标准要求。●低温-40℃状态下10米长电缆正反旋转1440°(4圈)为 1次,旋转10次电缆护套抗扭不开裂,2.5U0/5min电压不击穿。●常温状态下10米长电缆正反旋转1080°(3圈)为1次,旋转3600次电缆护套抗扭不开裂,2.5U0/5min电压不击穿。●电缆具有优良的抗紫外线性能。

13、电缆参数:

14、运输、储存:电缆适应一切交通运输工具。在运输和贮存过程中应注意: a) 防止水分潮气侵入电缆;

b) 防止严重弯曲及其它机械拉伤; c) 防止高温及在阳光下曝晒。

统一风能电缆技术规范促进行业健康快速发展

风能电缆借助国家发展风能等清洁能源的契机,正在成为近期发展速度最快的电缆品种。

作为新能源中技术最成熟、最具规模开发条件和商业化发展前景的发电方式,中国风力发电正呈爆发式增长态势。2004年到2008年,中国风电装机容量增长连续3年超过100%。2008年,中国风电装机容量首次超过500万千瓦,提前完成了国家发改委提出的预期目标,而风电发展目标也在不断提高。2007年,中国制定的2020年装机目标为3000万千瓦,而最近该目标已被上调到1亿千瓦至1.5亿千瓦。随着风电的高速发展,作为风力发电设备配套产品的风力发电用电缆已成为有巨大市场潜力的电缆新品种,正被众多电缆企业所重视。一个5万千瓦的风电场,仅力缆就需要40公里,这对于我国的电线电缆产业来说无疑是一个有巨大增长潜力的市场。

但对于市场巨大的风力发电用电缆,目前既没有国家和行业标准,也没有统一的技术规范,企业各自为政。制造的电缆结构尺寸、使用的材料及性能、电压等级、使用环境、规格、试验方法等等都不统一,给用户的选择和使用造成了很大的麻烦。并且由于没有国家和行业标准,产品要求不规范,产品质量良莠不齐,大量不合格或劣质电缆充斥市场,不仅给用户带来了经济损失,也给电缆设备的安全运行带来了很大的隐患,严重威胁着电气控制设备、电力系统的正常运行及人身财产的安全,同时也严重影响了电缆行业的声誉和风能电缆产业健康快速发展,特别是为高性能风能电缆的发展造成了极为不利的市场环境。

为此,国家电线电缆质量监督检验中心依托二十几年的检测经验和人才优势以及上海电缆研究所五十几年的技术底蕴,应广大风能电缆用户和优秀生产企业的要求,邀请在风力发电用电缆制造方面技术领先的众多电缆制造企业,开展了风能电缆技术规范的编制工作。

经过近一年的技术准备,包括不断地进行验证试验,3月16日和17日,国家电线电缆质量监督检验中心会同国内20多家电缆知名企业在上海进行了风力发电用电缆、氟塑料电缆、硅橡胶电缆和计算机及仪表用电缆的技术规范研讨和论证会。经过充分论证和研讨,国家电线电缆质量监督检验中心和与会企业共同起草并在5月1日正式颁布了《额定电压1.8kV/3kV及以下风力发电用耐扭曲软电缆技术规范》。

《额定电压1.8kV/3kV及以下风力发电用耐扭曲软电缆技术规范》以风力发电用电缆的使用环境条件和国内外各大风机企业的使用技术要求为基础,参照HD22.4S4∶2004、HD22.10、HD22.12、DINVDE0282-4∶2005-02及GB/T5013-2008、IEC60502-1∶2004(GB/T12706.1-2008)、

IEC60092-351∶2004、IEC60092-359∶1999等国内外相关标准和规范,规定了绝缘和护套材料及其性能要求、电压等级、使用环境等。根据风能电缆的使用特点,特别针对常温下耐扭转、低温下耐扭转、高温下耐扭转、负载下耐扭转以及耐盐、耐日光老化等特殊性能要求和试验方法进行了详细而

又明确的规定。

发布实施的风能技术规范对电缆所用原材料的种类和原材料的性能指标及电缆结构和电缆性能指标都做了明确和科学的规定,电缆所用材料指标和性能指标都以国际标准为依据,并在国家电线电缆质量监督检验中心做了大量验证试验,在保证电缆使用性能的前提下,充分考虑到国内技术水平现状和各个企业水平的差异,基本上体现了先进、合理的理念。许多新进入的风能电缆生产企业在生产中依据或参照该技术规范,不仅对电缆原材料有了选用和质量控制的依据,而且对电缆结构和电缆质量要求有了明确的控制标准,从而保证电缆质量能够满足用户要求,避免用户对纷乱市场无所适从而多走弯路的现象发生。规范的颁布推动和规范了风能电缆生产企业特别是技术力量较弱的中小企业的生产和产品质量控制。

同时,国家电线电缆质量监督检验中心多年来为国内外众多风能电缆用户所用风能电缆做检验,积累了大量试验数据,制订的《额定电压1.8kV/3kV及以下风力发电用耐扭曲软电缆技术规范》充分考虑了国内大多数大型风机企业以及许多国外公司的技术要求,所规定的产品性能完全从满足用户使用的角度出发,从而为国内外客户选用和产品质量考核提供了较为科学的依据。

行业中有了统一的风能电缆技术规范,将改变我国风能电缆产品质量监督无参考依据的弊端,扭转国内风能电缆产品型号混乱、质量参差不齐的局面。同时规范制定了科学的技术质量指标,执行以后会使我国风能电缆的产品质量迈上一个新的台阶,将有利于行业发展、监督管理和购买销售,必然会大大促进我国风能电缆的健康快速发展。

风力发电用电缆市场及其技术的发展

随着传统能源价格的不断上涨,国家开始大力发展新能源,其中发展最快、最成熟的是风力发电,风电行业的发展对风力发电用电缆提出了需求。本文介绍了风力发电的现状、风力发电用电缆的性能要求及一项特殊试验--抗扭转试验。

近年来,随着煤炭、石油等传统能源价格的不断上涨,人们日益把希望转向新能源的发展,这些新能源包括太阳能、风能、生物质能、地热能和海洋能等。尽管目前新能源的总体规模还不是很大,世界各国发展水帄参差不齐,但对新能源未来的认同却完全一致。作为一个石油天然气资源匮乏的国家,我国更应把新能源作为战略重点。

雨后春笋般的新能源企业已为能源市场注入了巨大活力,在我国制造太阳能的企业已经有10家左右并成功在海外上市,我国也一跃成为世界上最大的太阳能组件生产国。太阳能虽然发展很快,但规模偏小。相对而言,可以大规模推广的最成熟的新能源是风电。

风电行业发展得如火如荼,催生了对风力发电用电缆的需求。由于风力发电的环境恶劣,风机使用年限较长,且电缆随风机不断转动,对电缆的性能要求也很高,以前一直依赖进口,价格昂贵。近年来国内有多家电缆生产企业进行了研发,已生产出耐低温、耐紫外线、耐油、抗扭转的风力发电用电缆,成为企业新的经济增长点。

1 风电发展的现状

风力发电是目前可再生能源中技术发展最快、最成熟、最具大规模开发和

商业化前景的发电方式,同时风能取之不尽用之不竭,是一种清洁的、可再生的绿色能源,对于调整能源结构、减轻环境污染、实现可持续发展等有着重要的推动作用。

我国幅员辽阔,海岸线长,风力资源可谓极其丰富,国内10m高度层的风能资源总储量达到了32.26亿kW,实际可开发利用的达2.53亿kW。1986年4月,中国第一个风电场在山东荣成并网发电。2006年我国共有91个风电场,安装有风力机组3311台,累计装机容量260万kW。而至2007年底,我国已建成158个风电场,累计装机6469台,装机容量已达到了605万kW。目前,国内风电装机容量已超过700万kW。

2008年3月,国家发改委发布了《可再生能源"十一五"规划>,确定了到2010年,风电总装机容量达到1000万kW,重点建设30个左右10万kW以上的大型风电场和5个百万kW级风电基地,做好甘肃、内蒙古和苏沪沿海千万千瓦级风电基地的准备和建设工作。建设1~2个10万kW级近海风电场试点项目,为今后大规模发展近海风电积累技术和经验。同时,为鼓励国内企业开展风电技术自主创新和引进再创新,在政府投资项目和风电特许权招标项目中,采用与设备制造企业打捆招标等方式支持风电设备国产化和自主技术创新。

在风电场招标制度实行之前,风电更多的是作为地方的形象工程,电价高达1块钱左右,根本无法大规模推广。风电场招标制度的核心是由业主按照上网电价来进行风电场的竞争,为千方百计降低造价,设备国产化也得到了空前发展。在第五轮风电特许权招标中,又有95万kW的风电场名花有主,京能公司获得了30万kW的份额,它的报价是0.468元每度电,几

乎和核电的价格不相上下,已经具备了相当的竞争力。

2风电市场的发展对电缆的需求

当前我国电线电缆市场竞争激烈、日趋饱和,新兴的风电市场为电缆行业提供了难得的市场机会。

大规模开发利用风能,在规划风电场建设时要同时规划电网建设和通讯建设,对电力电缆、通讯电缆提出了需求;海上风场是未来风电发展的方向,这对海底电缆提出了需求;在风力发电机中,有用于机舱内的软电线、控制电缆、资料电缆等,和用于塔架内的布电线、电力电缆等。以一台1.25MW 的风力发电机为例(塔架和机舱内),塔架高度一般为90m左右,仅电力电缆就需要约1km左右。以1个5万kW的风场计算,则需要电力电缆40km。

3 风力发电用电缆的主要性能要求及材料的选用

3.1主要性能要求

(1)风力发电用电缆多用在气候条件恶劣的地区,气温寒冷,昼夜温差大,因此应具有良好的耐低温性,能耐-40°C的低温,且耐紫外线、耐气候老化性能优异。

(2)风力发电用电缆按使用场合分移动和固定安装用电缆。移动用电缆,需频繁扭转,因此应具有良好的抗扭转性能和弯曲性能。

(3)有时会接触油污,在特殊环境下会遭受海水腐蚀,应具有耐油、耐腐蚀的性能。

(4)有良好的阻燃性能。

3.2材料的选用

(1)导体

导体可采用GB/T 3956规定的第5类或6类柔软铜导线,表面应光洁,无油污、无损伤绝缘的毛刺,6mm2及以上规格采用束绞加复绞的结构。

(2)绝缘

绝缘采用乙丙橡胶或硅橡胶,具有优良的耐臭氧和耐热老化性能。

(3)护套

护套采用氯化聚乙烯、氯丁橡胶或氯磺化聚乙烯,具有耐油性能和耐寒性能。

4 风力发电用电缆的一项特殊试验--抗扭转试验

风力发电用电缆因需频繁扭转(主要针对塔架中垂直敷设部分),所以对抗扭转性能提出了很高的要求,用户也指定这项试验必须进行,但目前还没有抗扭转试验的国家标准或行业标准,有关方面正在着手制订。

依据终端用户和电缆企业的要求,抗扭转试验有以下几种形式:

(1)单根电缆常温下的扭转试验

电缆试样自由悬挂,一端固定,另一端与转轮相连,转轮先顺时针扭转3圈(1080°)再逆时针扭转3圈,使电缆恢复到原始状态,此后逆时针扭转3圈再顺时针扭转3圈,使电缆恢复到原始状态,此为1次,进行次数不少于1,000次的试验后,电缆导体不发生断裂,护套表面不产生裂纹。

(2)单根电缆低温(-40°C)下扭转试验

(3)单根电缆在低温下预处理后的扭转试验

(4)成束电缆在通电流状态下的扭转试验

5 结束语

风力发电用电缆还没有专门的产品标准,国外公司一般参照HD22.1/HD22.4、UL44,UL62等标准,国内电缆生产企业一般参照GB5013、GB/T12706或相关的企业标准,目前已有宝胜、远东、上上等多家电缆厂生产的风力发电用电缆在大唐发电、国华风电、中电投等多个风力发电场投入使用。随着风力发电的大规模推广,必将带来对风力发电用电缆的更大的需求。

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

DB21∕T 2081-2013 风力发电机用电缆扭转试验

DB21∕T 2081-2013 风力发电机用电缆扭转试 验 DB21 辽宁省地点标准 DB 21/ Txxxx—2011 风力发电机用电缆扭转试验 Torsion test methods for electric cables used windmill genetator

2011 - XX - XX公布 2011 - XX - XX实施 辽宁省质量技术监督局公布 (报批稿) (本稿完成日期:2011-06-15)

目次 前言II 1范畴1 2规范性引用文件1 3试验设备1 4试件制备1 5试验步骤2 6试验结果及评定3 前言 本规范要紧参照了HD 22.4 S4:2004《额定电压450/750V及以下交联绝缘电缆第4部分:软线和软电缆》、HD 22.10《额定电压450/750V及以下交联绝缘电缆第10部分:EPR(乙丙橡胶)及聚氨酯软线》、HD 22.12《额定电压450/750V及以下交联绝缘电缆第12部分:EPR耐热线及柔性电缆》、DIN VDE 0282-4:2005-02《额定电压450/750V及以下橡胶绝缘电线电缆第四部分:软线和软电缆》及GB/T 5013-2008/IEC 60245-4:200 3《额定电压450/750V及以下橡皮绝缘电缆》、IEC 60502-1:2004(GB/T 12706.1-2002)《额定电压1kV(Um=1.2kV)到30kV(Um=36kV)挤包绝缘电力电缆及附件第1部分: 额定电1kV(Um=1.2kV)和3kV(Um=3.6kV)电缆》、I EC 60092-351:2000《船舶电气设施第351部分:船用可移动的和固定的近海成套动力装置、远程通讯及操纵数据电缆用绝缘材料》、IEC 60092-359《船用电力和通信电缆护套材料》等标准。 本标准的编写符合GB/T 1.1-2009的规定。 本标准由辽宁省产品质量监督检验院提出。 本标准由辽宁省电线电缆标准化技术委员会(LN/TC1102)归口。 本标准负责起草单位:辽宁省产品质量监督检验院。 本标准为首次制定。

风电的发展现状及展望

风电的发展现状及展望 Prepared on 24 November 2020

论文题目:我国风力发电的现状及展望

摘要 风是地球上的一种自然现象,全球的风能约为,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。其能量大大超过地球上水流的能量,也大于固体燃料和液体燃料能量的总和。在各种能源中,风能是利用起来比较简单的一种,它不同于煤、石油、天然气,需要从地下采掘出来;也不同于水能,必须建造大坝来推动水轮机运转;也不像核能那样,需要昂贵的装置和防护设备。另外,风能是一种清洁能源,不会产生任何污染。与其他新能源相比,风能优势突出:风能安全、清洁。而且相对来说,风能是就地取材,且用之不竭,在这一点上,风电优于其他发电。 关键词:风力资源丰富;风电安全且清洁;风能用之不竭 目录

第1章绪论 引言 气候变暖将对全球的生态系统、各国经济社会的可持续发展带来严重影响在尽量不影响生活水平的情况下,透过全球气候升高这个现象,我们现目前必须的意识到节能减排的重要性,而改变目前现状的最直接有效的方法就是选择清洁型(相对于煤石油等而言,对于植物动物等一系列生态环境污染相对而言较少甚至可以达到零的能源)能源来替代传统的火力发电。如:水能、太阳能、风能和核能等。风力发电是目前最快发现的最快的清洁能源,且风能是可再生能源。对它加以使用相对而言能使得时下大地所遭受的环境问题得到一定程度的改善,风力发电与传统发电进行相比较风力发电不会产生二氧化碳以及其他有害气体,所以对风能加以利用,这样能相对有效的改变目前世界所面临的环境问题,这样大大的避免造成臭氧空洞以及形成酸雨之类的自然危害,也有利于降低全球的气温。所以加大风力发电建设是改善现目前世界环境的一个有效途径。在国际上对于新能源的开发这一方面做了许多调查和研究,通过调查研究发现在这一方面德国是做的最好的,从上个世纪80年代末起至今,在德国的风电机组总功率即使已越过1万兆瓦的大关,并且已完成了近万个风力发电机组的安装,所占比例已达到了全球风力发电总量的1/3,然而数据研究表明德国近年来减少了约1700万吨的的温室气体排放,所以通过德国温室气体的排放量减少说明开发风力发电等新能源是减少全球气温升温和减少温室气体排放的有力途径。德国竭力用实际行动为《京都议定书》的减排目标迈出了一大步。我国在风力方面也有着相当丰富的资源,可被开发利用的风能储量约10亿kW左右。 本论文的研究背景及意义 根据气候变化专门委员会(IPCC)的调查研究并所给出的第三次评估报告提供的预测结果显示,预计到22世纪初大地平均气温或许会增高—℃。以及伴随着国民日常需求的的不断提高,经济的高速发展,国民的用电量也日益增长,伴随着电力结构的不断调整优化,技术装备水平的逐步提高,发电机组的不断增大以及技术装备水平的逐步提高。随着大自然给予我们不可再生能源的衰竭、对于用电量的不断升高、全球气温的升温以及生态环境的破坏,对于开发新能源发电已成为迫在眉睫的事情。而我国疆域广阔并且有着十分丰富的风力

太阳能发电和风力发电概述

太阳能发电和风力发电概述 上海力友电气有限公司专业为太阳能发电、风力发电、燃料电池发电、水力发电等各种可再生能源发电系统提供各种完美的工程方案,其产品主要应用于可再生能源并网发电系统、离网型村落供电系统及各类户用电源系统,并可为电网困难地区的通信、交通、路灯照明等提供电力帮助。 一、离网发电系统 风机和光伏组件为发电部件 控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。 蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。

逆变器负责把直流电转换为交流电,供交流负荷使用。逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,逆变器的高效运行也显得非常重要。 产品包括 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源 二、并网发电系统 可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,

风电用电缆最全参数表格

电缆最全参数表格 大截面电缆说明 大截面导线输电技术是指超过经济电流密度所控制的常规的最小截面导线(例如220KV,300 mm2;500KV,4×300 mm2),而采用较大截面的导线(如500KV,4×500 mm2,4×630 mm2、4×800 mm2),以成倍提高线路输送能力的新型输电技术。 大截面导线是指超过经济电流密度所控制的常规的最小截面导线。导线截面增大后,单位长度导线的电阻减小,在热容量限制内,其允许载流量将增大,从而提高其输送功率。大截面导线的使用,能够减少线路走廊数,节约土地资源,对我国耕地面积日益短缺的今天有着非常大的优势。随着导线截面的增加,输电线路的表面场强减小,电晕损失也相应减小,而地面场强增加,但增加的幅度不大,对输电线路影响不大。另外无线干扰与噪音污染也大大降低。输电线路采用大截面导线,将会增加一次性投资,但由于承受更大的应力,设计并建造承受大荷载的杆塔,生产与大截面导线配套的金具是大截面导线广泛应用与发展的关键。目前,我国有许多电线电缆厂家有生产大截面导线的能力,国内大截面导线的施工设备已达工程要求,对于大截面导线的施工已经有了很大的进步,能够独立进行大截面导线的架设,并达到了工程的要求。 大截面导线输电虽然能够提高输送功率,但随着导线截面的增加,杆塔承受荷载增加,架线施工难度加大,投资费用增加。因此,在应用大截面导线时,要根据线路输送容量的实际需求,适当留有一定的裕度,采用合理的大截面导线即可,不要盲目采用过大截面的导线。 采用大截面导线不仅能大大提高线路的输送功率,减少线路走廊数;而且由于减小了导线的电阻,线路损耗大大降低,并且表面电场强度降低,电晕损失也相应减小;另外对于超高压和特高压,还能大大减小其无线电干扰和噪声污染。 大截面导线输电线路的输送容量大,功率损耗小,但由于导线的生产及施工难度大,又要耗费大量钢材。所以,目前还不宜全面采用。根据大截面导线输电技术的优势和特点,大截面导线输电技术用于人口较集中、用电需求大、潮流较

(完整版)我国风力发电的发展现状

我国风力发电的发展现状 我国是世界上风力资源占有率最高的国家,也是世界上最早利用风能的国家之一,据资料统计,我国10m 高度层风能资源总量为3226 GW ,其中陆上可开采风能总量为253 GW ,加上海上风力资源,我国可利用风力资源近1000 GW 。如果风力资源开发率达到60% ,仅风能发电一项就可支撑我国目前的全部电力需求。 我国利用风力发电起步较晚,和世界上风能发电发达国家如德国、美国、西班牙等国相比还有很大差距,风力发电是20 世纪80 年代才迅速发展起来的,发展初期研制的风机主要为1 kW 、10 kW 、55 kW 、220 kW 等多种小型风电机组,后期开始研制开发可充电型风电机组,并在海岛和风场广泛推广应用,目前有的风机已远销海外。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。截止2007 年底,我国风机装机容量已达到6.05 GW ,年发电量占全国发电量的0.8% 左右,比2000 年风电发电量增加了近10 倍,我国的风力发电量已跃居世界第5 位。 1.1 小型风电机组的发展 目前,我国小型风力发电机组技术已相当成熟,建设速度也较快,特别是5 kW 以下风力发电机组的制造技术成熟,已大量使用,并达到批量生产的要求。100 、 200 、300 、500 W 及1 kW 、2 kW 、5 kW 的小型风力发电机,年生产能力可达到5 万台以上。 1.2 大型风电机组的发展

我国大型风电机组的开发研制工作也正在加快。我国大型风电机组基本上依赖进口,通过多年来的开发研制,如今,大型风电机组的主要部件已基本实现国产化,其成本比进口机组低20% ~30% ,国产化是我国大型风电机组发展的必然趋势。我国的大型风电机组从建设之初的山东荣成第一个风力发电场开始,到后来的广东南澳4 台250kW 机组、辽宁营口安装660 kW 风电机组、黑龙江富锦单机960 kW 机组,再到即将在山西、山东、江苏等地安装的大型机组,我国已建成一大批大型风力发电场,使我国风力发电迈上了一个新台阶。 我国风能资源虽然蕴藏丰富,但由于经济实力和技术力量还远不及发达国家,故我国的风力发电普及率还很低。在我国,还有一些无电村,其中部分地区风能资源丰富,应开发利用风力发电。 2 国外风力发电的发展状况 风能的开发利用在国外发达国家已相当普及,尤其在德国、荷兰、西班牙、丹麦等西欧国家,风力发电在电网中占相当比重。20 世纪70 年代发生了世界性的能源危机,欧美国家政府加大补贴投入,鼓励开展风力发电事业。1973 年联邦德国风能资源投入30 万美元,到1980 年投资就增至6800 万美元;美国20 世纪80 年代初期安装了1700 多台风电机组,总装机容量达到3 MW ;1979 年丹麦能源部决定给风轮机设备厂投入补贴,政府拨款建立小型风轮机试验中心,承担发风轮机许可证任务。到20 世纪80 年代末,全球共有大型风轮机近2 万台,总装机容量2 GW 。国际市场风力发电成本不断降低,有些条件较好的风力发电场,机组发电成本仅为8 美分/kWh ,风场运行维修费为1.5 美分/kWh 。从当前世界风力发电情况来看,无论从风机容量投资、年发电量、运行费用及运行稳定性等指标衡量,200 ~500 kW 的中型风电机组都具有较大竞争

风力发电电力电缆

风力发电电力电缆 21世纪,世界各国都将目光投向了核能、光伏、风能等清洁能源,可再生资源的开发已经成为多数国家能源战略。随着大批光伏企业的倒闭,多数国家对于核能的抵制,而风能的清洁性、可再生性、资源广泛性使其备受瞩目,使其成为了所有新能源中最具规模、技术最成熟、最有商业发展前景的发电模式,据不完全统计,我国大陆及近海岸可利用风能资源已近10亿kW,我国《可再生能源中长期发展规划》指出,2020年我国风电总装机容量达到3000万kW,2013-2020年仍是大有可为的黄金时期。同时也促就了风力发电配套的电缆行业的发展,如用于风电机舱和塔筒内的控制电缆、信号电缆、耐扭曲电力电缆等,因风场环境恶劣,且电力电缆随叶轮摆动而扭曲,所以风力发电用电缆一般要求较高,如要求耐低温、耐油、耐扭曲、耐气候、耐紫外线、耐酸碱等,我国目前风力发电电缆暂无国家标准,只有国家电线电缆质量监督检测中心颁发的TICW01-2009《额定电压1.8/3kV及以下风力发电用耐扭曲软电线》行业标准。近年来,相当一部分实力较强的电缆企业积极发展海外风电电缆业务,所以研发生产符合使用国际标准的风电电缆刻不容缓,本文就一种符合UL标准的风力发电电缆的结构设计、材料选择、关键生产工序等做简要介绍。 图1 风力发电所需大类别电缆示意图

2.结构设计思路与材料选择、尺寸界定 2.1 结构设计思路 风力发电电缆使用环境恶劣,须确保电缆在长期使用环境中可以稳定工作,根据美国国家电工法规 NPFA70,电缆型号为WTTC,在UL认证体系中,WTTC涵盖在ZGZN产品类别下,电压等级是0.6/1kV,美标风力发电电缆设计特性如下: 电缆执行标准:UL 2277-2007、UL 1277-2001、UL62-2006、UL1063-2007、UL1685、UL1581 电缆设计使用寿命:20年 敷设位置:风力发电机内的电缆托架、管道 电缆工作温度:-40℃~90℃(干燥或潮湿环境) 电缆最小弯曲:6D D:电缆外径 导体结构:UL62-2006或UL 1063-2007 电缆绝缘护套物理性能满足UL 2277-2007、UL 1277-2001、UL44-2010 阻燃要求:电缆能够经受UL1685规定的垂直托架燃烧20分钟 电缆具有良好的耐油、耐紫外线、耐酸碱、耐盐雾性能满足UL1581 电缆具有良好的低温弯曲性能,可通过UL 1277-2001中规定的成品电缆在-25±2℃,当试验电缆外径≤17.78mm时,在电缆外径5D的中心棒上卷绕4圈,当电缆外径>17.78mm时,在电缆外径5D的中心棒弯曲180° 电缆护套变形试验与热冲击试验满足UL1581和UL 1277 试验电压:2.0kV-3.5kV。 按照以上思路进行设计,拟定导体、绝缘、护套材料,进一步设计模具、产品结构尺寸、试制机台、工艺等及其他涉及的技术方面。 2.2 材料选择与尺寸界定

风力发电的发展

风力发电的发展 xxx 动力10x班 20101020xxxx 摘要:在风电生产过程中既不会产生任何污染物,也不会造成太多的内部能量损耗,同时,因风能属于天然资源,无处不在、无时不有,开发成本十分经济,属于一种节能、洁净、廉价型的优质能源。风力发电是风能利用最重要的形式,也是当今世界能源开发利用中技术最成熟、最具商业化开发前景的领域之一。19世纪末,丹麦首先研制成功了风力发电机组,并建成了世界第一座风力发电站。一个世纪以来,世界各国纷纷研制了类型各异的风力发电设备, 风力发电的重要意义不断受到国际社会的普遍关注与高度重视,对风力发电的学术研究和推广普及工作取得了相当突出的进展。 关键词:新能源风能风力发电 Abstract: In the wind power production process either does not produce any pollutants, it will not cause too much of the internal energy loss, while the wind is due to natural resources, everywhere and at all times there is a very economical development costs, belonging to a kinds of energy saving, clean, inexpensive type of high-quality energy. Wind power is the most important form of wind energy utilization, is today the world's energy development and utilization of technology the most mature, most commercial development of promising areas. 19th century, the first successful development of the Danish wind turbine, and built the world's first wind power station. For a century, the world's countries have developed different types of wind power equipment, wind power continued significance of the general concern of the international community and attaches great importance to academic research on wind power and popularize prominent work has made considerable progress. Keywords:New energy wind energy wind power 1.风力发电概述 1.1风力发电原理 把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵)。风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电临时用电方案

目录 一.临时用电的组织措施 (2) 二.临时用电的技术措施 (2) 三.施工现场临时用电标准 (3) 四、施工现场临时电源危险点预控 (6) 五、对施工现场临时电源的维护工作 (7)

临时用电方案 华能繁峙上狼涧49.5MW风电场工程施工现场临时用电方案的实施,我公司在本次施工中临时用电安全措施如下: 一.临时用电的组织措施: (1)建立临时用电施工组织设计和安全用电技术措施的编制、审批制度,并建立相应的技术档案。 (2)建立技术交底制度。向工作现场的施工人员介绍临时用电施工组织设计和安全用电技术措施的总体意图、技术内容和注意事项,并在技术交底文字资料上履行交底人和被交底人的签字手续,注明交底日期。 (3)建立安全检测制度。从临时用电工程竣工开始,定期对临时用电工程进行检测,主要内容是:接地电阻值,电气设备绝缘电阻值,漏电保护器动作参数等、,以监视临时用电工程是否安全可靠,并做好检测记录。 (4)建立电气维修制度。加强日常和定期维修工作,及时发现和消除隐患,并建立维修工作记录,记载维修时间、地点、设备、内容、技术措施、处理结果、维修人员、等。(5)建立工程拆除制度。工程竣工后,临时用电工程的拆除有统一的组织和指挥、注意事项和防护措施等。 (6)建立安全用电责任制。对临时用电工程各部位的操作、监护、维修分片、分块、分机落实到人,并辅以必要的奖惩。 (7)建立安全教育和培训制度。定期对施工现场的工作人员进行现场临时用电安全教育和培训。 二.临时用电的技术措施: (1)配电箱内的电器安装在金属或非木质的绝缘电器安装板上,然后整体紧固在配电箱箱体内,金属板与配电箱体作电气连接。 (2)配电箱内的各种电器按规定的位置紧固在安装板上,电器与板四周的距离符合工艺标准的要求。 (3)配电箱内的工作零线通过接线端子板连接,与保护零线接线端子板分设。 (4)配电箱内的连接线采用绝缘导线,导线的使用截面不小于2.5mm2的绝缘铜芯导线。(5)配电箱装设在干燥、通风及常温场所。配电箱周围有足够两人同时工作的空间。

新能源风力发电的发展思路探索

新能源风力发电的发展思路探索 发表时间:2019-04-01T11:54:53.143Z 来源:《电力设备》2018年第28期作者:刘波 [导读] 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。 (新疆宏远建设集团有限公司新疆可克达拉市 835213) 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。我国具有大量的风能资源,使得风能在我国有十分广阔的发展前景,国家要继续推动风能产业的发展,保证市场公平,推动风能汗液的技术研发,推动风能发电的全面发展。 关键词:新能源风力发电;发展思路;分析 1风力发电 1.1风力发电的原理和特点 风力发电是一个将风能的机械能转化成电能的过程,这个转化过程由风力发电机和其控制系统实现,当风力进入发电系统后,便成为发电系统的输入信号,系统内的风力控制器输出桨距角信号,对机械的转和输出功率进行调整。机械产生的能量会进入发电机,最后转化成电能进入电网[1]。风能发电的特点在于风能是可再生的,发电厂的建设周期很短,装机规模灵活、具有较高的可靠性,同时运营维护简单,造价低。 1.2风力发电系统的类型 常见的风力发电系统主要有三种,包括恒速感应发电系统,变速恒频双馈式发电系统和变速同步发电系统。恒速感应发电系统在当前使用的最为广泛,这种系统的构造简单,造价很低,发电过程比较容易控制,后期维护投入非常低;但是这类系统存在着不能有效控制无功补偿的问题,使得供电效率很低[2]。变速恒频双馈式发电主要使用在电力生产中,这类系统的优势在于发电具有较高的稳定性,而且容易控制,不需要无功补偿,成本低的同时对风能具有较高的转化效率;但是这类系统比较复杂,使得维护比较困难。变速同步发电系统还处于摸索阶段,而且造价很高,目前并没有太多的使用,但是该系统具备着不需要无功补偿和稳定性高的优势,具有较高的潜力。 2我国新能源风力发电的现状 《可再生能源法》作为我国对新能源发展的规划,其预示着可再生能源将会成为能源发展的重要部分,经过十多年的努力,我国的风力发电水平已经不容小觑,风电装机比重越来越高,到2008年8月,已经进入世界前五,这也标志着中国已经成为可再生能源大国。目前,我国风电产业发展十分迅猛,增长率和总装机量都占全世界第一,已成为全世界范围内风电系统最大的国家。 如今我国对于国内风电发展所需的一般零件都已能够自给自足,但在一些技术要求较高的部件如励磁系统和一些关键电子元件仍然需要从外国大量进口。因此,我国必须在高层技术方面进行创新和突破,才能继续保持高速的发展趋势。 3问题分析 3.1风能能源的评估有待完善 对于风能资源进行评估并以此制定风力发电的规划是我国风力发电进行管理的基础。目前我国的相关机构在开展的风力能源评估还处于有点完善的状态,距离世界上的发达国家还存在明显的差距,因此,开展对于风力发电的相关资料整理以及重新进行调查评估是非常有必要的,相关部门应该更加严格的对我国沿海地区和内陆地区的风力分别进行检测和评估,同时还需要不断对我国现有的风力发电场所产能进行更科学合理的长远规划。 3.2自主创新需要提升 在目前我国对于风力发电产业生态圈建设尚未完成的过程中,我国的企业对于大型兆瓦发电机的信息技术吸收还没有充分进行。与此同时,我国对于风力发电机组中的核心设备和相关零件还无法进行自主生产,这是制约我国风力发电发展的关键问题。因此更快地进行我国风力发电设备制作的自主创新,同时加强完整知识产权的风力发电机组设备的研究,都是保障我国风力发电事业发展的重要目标[1]。 3.3国家电力网络与风力发电的发展不协调 目前我国电力网络设施的管理和运用并没有与风力发电产生足够的协调性。在风力发电场所接入电网的工作并没有很好地得到完成,整个国家电网的发展规划也缺乏对于风力发电场所的重视。就这个问题,还需要我国的政府相关部门更好地制定相应的管理办法,从而保证风力发电场所与国家电网之间可以共同协调发展,更好地为风力发电的发展提供保障。 4新能源风力发电的发展思路 4.1政府提供足够的政策 风力发电是一项十分巨大的工程,没有足够底气的公司是不会冒这个风险的,因此政府如果能够给出一些充满诱惑的“橄榄枝”,那些企业还是会冒一下风险闯一下的。比如,政府颁布多购多奖励,少购少处罚的政策,通过政策来刺激企业的投资,这样能够带动起风力发电的发展。其次,政府可以为企业提供电厂和电网的建设点,并为这些企业提供一定的补助,让害怕风险的企业有了保障,这样就会出现越来越多的企业投资风力发电,达到推动风力发电发展的目的。 4.2实现风力发电的产业化发展 在越来越多的企业投入风力发电后,风电企业就会慢慢变得和其他发电产业一样形成一个产业集群。这些企业能够在产业集群中相互竞争相互促进,就和达尔文自然选择学说一样,在竞争中优胜劣汰,从而营造一个以发展为目标的产业集群。这样就能使电力企业朝着更好的方向前进,促进经济的发展。 4.3政府完善市场检查管理制度 为了解决风电发展规划与电网规划的不相协调,政府应该采取一系列的措施,并且完善监管制度。首先,要吸引其余公司加入风电产业,这就需要政府对风电产业结构体制进行改革,根据市场经济规律在市场中建立一个公平开放、能够为国内投资者提供投资的平台。其次,为了使投资的主体群众保持一个较高的积极性,政府应该放低政策,提供一个多元化的投资平台。同时相关部门还要对风力发电投资项目可能出现的问题有所保障,这就需要政府规范市场秩序,营造一个公平的市场,保证风电产业的高速发展。 4.4明确我国风力发电的发展目标 为了促进我国风力发电的健康发展,同时不断提升我国电网运行过程中的安全性和可靠性,首先需要对我国风力发电的发展目标进行

风力发电行业的发展现状

一、风力发电行业的发展现状?1.世界风力发电行业的发展现状 根据全球风能理事会的统计数据,截至2008年底,世界风电总装机容量达到12079万千瓦,这意味着每年发电2600亿千瓦时,减少二氧化碳排放1.58亿吨。总装机容量排在前五位的国家依次是美国、德国、西班牙、中国和印度,他们的装机容量总和占世界装机容量的72.6%,即8768万千瓦。美国的累计装机容量达到2517万千瓦,占世界装机总量的2 0.8%,超过德国,成为世界第一。 2008年,全球新增装机容量2706万千瓦,新增装机容量排在前五位的国家是美国、中国、印度、德国和西班牙。中国在2008年世界新增装机容量中所占比例为23%。? 2.中国风力发电行业的发展现状 自1986年建设山东荣成第一个示范风电场至今,经过近23年的努力,风电场装机规模不断扩大。根据中国风能协会的统计数据,截止2008年底,全国累计安装风电机组11600多台,装机规模约1215.3万千瓦,装机增长率为106%。装机分布在24个省(市、自治区),比2008年增加了重庆、江西和云南三个省市。累计装机容量排名前五位的省依次是内蒙古、辽宁、河北、吉林和黑龙江。 在累计装机中,中国内资与合资企业产品占61.8%,金风科技的份额最大,占累计总装机的2 1.6%。外资企业产品占38.2%,西班牙歌美飒(Gamesa)的份额最大,占累计总装机的12.8%。 2008年内资(合资)企业新增装机容量排名前十位的依次是华锐、金风、东汽、运达、上海电气、明阳、航天安迅能、湘电、常牵新誉和北重。前三位华锐、金风和东汽的新增装机容量总和约为359万千瓦,占2008年新增装机比例为57.43%。

风力发电系统有哪些设备组成

二、风力发电系统有哪些设备组成 2.1 基本原理和部件组成如下: 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 2.2 风电机结构 机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。

偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风电机偏航。通常,在风改变其方向时,风电机一次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风电机的转动,并通过电话调制解调器来呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 蓄电池:是发电系统中的一个非常重要的部件,多采用汽车用铅酸电瓶,近年来国内有些厂家也开发出了适用于风能太阳能应用的专用铅酸蓄电池。也有选用镉镍碱性蓄电池的,但价格较贵。 控制器和逆变器:风力机控制器的功能是控制和显示风力机对蓄电池的充电,以保证蓄电池不至于过充和过放,以保证蓄电池的正常使用和整个系统的可靠工作。目前风力机控制器一般都附带一个耗能负载,它的作用是在蓄电池瓶已充满,外部负荷很小时来吸纳风力机发出的电能。 逆变器:逆变器是把直流电(12V、24V、36V、48V)变成220V交流电的装置,因为目前市场上很多用电器是220V供电的,因此这一装置在很多应用场合是必须的。 2.3 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上的发电设备相比,有点不同。原因是,发电机需要在波动的机械能条件下运转。 2.3.1 输出电压

风力发电电缆

风力发电电缆 风力发电电缆 产品简介 风力发电机专用电缆除满足普通电缆的性能外,还必须满足弯曲半径小、频繁扭转的基本要求,由于风力发电机电缆多用在气候条件较为恶劣的地区,一般多用在我国的北方地区,气候较寒冷,且昼夜温差较大,因此电缆还必须满足环境温度-45℃~+50℃,运行温度为-40℃~+50℃的使用条件。我公司自2005年初开始致力于风力发电机专用电缆技术的研究,参照德国DIN VDE的标准,对风力发电机专用电缆进行结构优化设计,并选用世界上最优的绝缘及护套材料,电缆的性能达到了国际领先水平。风力发电机专用电缆分为动力电缆、控制电缆和数据电缆,电缆的优点如下: 1、具有良好的耐低温和耐磨性,以及耐疲劳性、耐气候老化性能、耐微生物性能,对油品、化学品具有极好的耐腐蚀性。普通电缆不具有耐磨性和耐腐蚀性。 2、抗扭转性能和弯曲性能优异:成品电缆在-40℃的低温环境下,能经受正、反各四转为一次、扭转角度为360°,次数不少于3000次的抗扭转性能试验,要求电缆试验结束后导体不发生断裂、护套表面不产生裂纹。普通电缆不适合在低温情况下扭转。 3、适用环境温度-45℃~+110℃,运行温度为-40℃~+110℃。普通电缆运行温度为0℃~70℃。 4、电缆的敷设温度不低于-30℃,普通电缆的敷设温度为不低于0℃;

5、电缆弯曲半径:固定安装不小于电缆外径的4倍,移动安装不小于电缆外径的5倍。普通电缆的弯曲半径为电缆外径的20倍。 为了保证电缆具有以上优点,我公司从以下方面对电缆进行研究: 1、选用最优质的原材料及最先进的生产设备,保证风力发电电缆具有优异的电性能、耐老化性能、耐腐蚀性能及抗扭转性能。 1.1、导体:导体采用国内最优质的铜材供应商云南铜业股份有限公司的无氧铜,铜的纯度达到99.99%。导体根据用户的要求采用镀锡或不镀锡铜导体,导体采用符合IEC60228规定第五种导体规定的要求。导体表面应光洁、无油污、无损伤绝缘的毛刺,以及凸起或断裂的单线。 1.2、绝缘:绝缘采用耐低温、耐腐蚀、耐油的硅橡胶材料,绝缘的耐低温性能可达-60℃。 1.3、护套:护套采用耐低温、耐磨、耐老化、耐微生物、耐腐蚀性能优异的特殊低烟无卤橡胶材料,护套的耐低温性能可达-50℃。绝缘及护套的生产采用国内最先进的绝缘和护套生产线挤出,同时在挤出时采用国际最先进德国西格拉公司生产的绝缘和护套的外径在线检测仪,使绝缘和护套的厚度挤出均匀。同时在绝缘护套挤出时采用国内最先进的火花在线检测仪,保证绝缘和护套生产时无火花点,保证电缆外径均匀一致,电缆的各项性能优异。 本实用新型公开了风力发电电缆,由缆芯、填充层、包带、内护套、铠装以及外护套组成;所述缆芯由两根绝缘线芯绞合而成,绝缘线芯由导体和挤包在导体外的绝缘层组成,在绝缘线芯之间的空隙通过填充层进行填充;在绝缘线芯和填充层的外表面上用无卤阻燃包带包覆;在包带外表面上挤包一层内护套,该内护套外覆盖一层铠装,且该铠装的外表面上挤

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

相关主题
文本预览
相关文档 最新文档