当前位置:文档之家› 弹塑性力学讲义第十一章塑性力学基础知识

弹塑性力学讲义第十一章塑性力学基础知识

弹塑性力学讲义第十一章塑性力学基础知识
弹塑性力学讲义第十一章塑性力学基础知识

力学基础知识点

一.力的基本概念 (一)二力平衡 定义:物体在两个力的作用下能保持静止或匀速直线运动状态,则称这两个力是一对平衡力,或叫作二力平衡。 1)两力平衡的条件:①作用在一个物体上;②大小相等;③方向相反;④作用在同一直线上。 2)两个平衡的力的合力为零。 3)二力平衡的结果:物体保持静止状态或做匀速直线运动状态。 4)注意:物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。(二)惯性 惯性:物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫做惯性定律。 ①惯性是物体的固有属性,一切物体在任何情况下都具有惯性。 ②惯性的大小只与物体的质量有关,而与物体是否运动、运动的快慢、是否受外力等都没有关系。 ③注意:惯性不是“力”,叙述时,不要说成“物体在惯性的作用下”或“受到惯性的作用”等说法。 (三)牛顿第一定律 牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。 1)它包含两层含义①静止的物体在不受外力作用时总保持静止状态; ②运动的物体在不受外力作用时总保持匀速直线运动状态。 2)牛顿第一定律是理想定律。 3)物体不受力,一定处于静止或匀速直线运动状态,但处于静止或匀速直线运动状态的物体不一定不受力。 另:牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律。 (四)力的合成 力的合成:已知几个力的大小和方向,求合力的大小和方向叫做力的合成。 1)当二力方向相同时,其合力的大小等于这两个力之和;方向与两力的方向相同; 数学表述:F合=F1+F2。 2)当二力方向相反时,其合力的大小等于这两个力之差,方向为较大力的方向; 数学表述:F合=F1-F2(其中:F1>F2)。 (五)合力 合力:如果一个力产生的效果跟两个力共同作用产生的效果相同,这个力就叫做那两个力的合力。 理解:①合力的概念是建立在“等效”的基础上,也就是合力“取代了分力,因此合力不是作用在物体上的另外一个力,它只不过是替了原来作用的两个力,不要误认为物体同时还受到合力的作用。②两个力合成的条件是这两个力须同时作用在一个物体上,否则求合力无意义。(六)摩擦力 1)摩擦力定义:两个互相接触的物体,当它们要发生或已经发生相对运动时,就会在接触面是产生一种阻碍相对运动的力,这种力就叫摩擦力。 2)摩擦的种类:滑动摩擦、滚动摩擦、静摩擦。滚动摩擦力远小于滑动摩擦力。 3)滑动摩擦力的影响因素:①与物体间的压力有关;②与接触面的粗糙程度有关; ③与物体的运行速度、接触面的大小等无关。压力越大、接触面越粗糙,滑动摩擦力越大。

华南理工大学土木工程专业本科教学计划

华南理工大学土木工程专业本科教学计划 工程力学创新班(本硕、本博连读) Engineering Mechanics 专业代码:080102(本科)、0801(硕士)、080102(博士) 学制:4年(本科)、3+1+2年(硕士)、3+1+4年(博士) 培养目标: 本专业培养的是热爱祖国,德智体全面发展,以力学专业知识和分析方法从事高水平科技研究的优秀人才。 目标1:(扎实的基础知识)培养学生具有扎实的力学基础知识,为高层次的力学基础研究和工程应用研究选拔一批优秀人才。 目标2:(解决问题能力)培养学生解决与力学有关的工程技术问题的理论分析能力和实验技能。 目标3:(团队合作与领导能力)培养学生在团队中的沟通和合作能力,特别是在重大科研与工程项目中的协调能力。 目标4:(工程系统认知能力)鼓励学生从实际工程中提取与力学相关的科学技术问题,并且应用所学知识解决问题,服务工程实践。 目标5:(专业的社会影响评价能力)培养学生综合应用理论分析、实验研究、数值仿真的能力,合理解决工程实际问题。 目标6:(全球意识能力)培养学生能够适应全球化的发展需求,具备国际竞争的能力。 目标7:(终身学习能力)培养学生具备终身学习能力,持久地应用力学理论知识、计算方法和实验技术等解决工程科学问题。 专业特色: 采用本硕博一体化的人才培养模式,缩短学制,保证必要的力学基础知识和专业技能的培养;加强数学、力学基础知识,培养实验和计算能力,结合土木、机械和航空航天等工程背景,进行宽口径大类培养;实行导师制,引导学生参与学科前沿研究,加强国际化交流,重视工程实践,培养高水平复合型人才。 培养要求: 课程目标体系构成,每门课的设置都有相对应的培养目的,即学生所获得相应的知识、能力和素质。 知识架构: A1 文学、历史、哲学、艺术的基本知识;

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

工程力学基础知识

工程力学基础知识 第1篇 静力学 1、平面汇交力系平衡的充要条件是该力系的合力等于零。即: ∑∑==0,0y x F F 2、平面汇交力系简化的依据是平行四边形法则。 3、平面汇交力系可列2个独立方程,求解2个未知量。 4、在平面问题中力对点之矩不仅与力的大小有关而且与矩心位置有关。(方向:绕矩心逆正顺负) 5、合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于所有分力对于该点之矩的代数和。 6、力和力偶是静力学的两个基本要素。 7、平面力偶系的合成结果是一个力偶,汇交力系的合成结果是一个力。(注:力只能与力平衡;力偶只能与力偶平衡) 8、平面力偶系平衡的充要条件是:力偶系中各力偶矩的代数和为零。即 :∑=0i M 9、平面任意力系简化的依据是力线平移定理。 10、力线平移定理揭示了力与力偶的关系。 11、平面任意力系可列3个独立方程,求解3个未知量。 第2篇 材料力学 1、杆件的四种基本变形:轴向拉伸或压缩、剪切、扭转、弯曲 2、为使杆件能正常工作应满足(三个考虑因素):强度要求、刚度要求、稳定性要求。

3、材料力学对变形固体所做的四个基本假设:连续性假设、均匀性假设、各向同性假设、小变形假设。 4、求内力的方法为截面法。 轴向拉压部分 5、轴向拉压的受力特点:外力合力的作用线与杆的轴线重合。 轴向拉压的变形特点:杆件产生沿轴线方向的拉伸或压缩。 6、轴向拉压杆横截面上的内力为轴力(符号N F ),该力产生正应 力σ,公式为:A F N =σ,其中A 为横截面面积。 7、圣维南原理:应力分布只在力系作用区域附近有明显差别,在离开力系作用区域较远处,应力分布几乎均匀。 8、低碳钢拉伸的四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形(颈缩)阶段。 9、衡量材料塑性的指标:伸长率和断面收缩率。 10、拉压杆强度计算的三类问题: (1)校核: []σσ≤??? ??=max max A F N (2)设计截面尺寸:A F A N ≥ (3)确定许可荷载:[]A F ?≤σ 11、拉压杆变形:EA Fl l =? 扭转部分 12、扭转时外力偶矩的计算公式:n P M k e 9549 =,其中k P 单位为kw ,n 单位为min r 。 13、扭矩正负号判断:右手定则(具体见教材145页)。

研究生入党积极分子思想汇报2019

研究生入党积极分子思想汇报2019 x年下学期开学,本人已经进入了研究生二年级,开学一个月以来本人在思想、学习、生活等方面都有了一些新的变化。 思想上,本人继续坚持马列主义、*思想,以此作为人生的指导 思想,深刻领会*理论和新时期“xxxx重要思想”,对21世纪建设和 谐社会的思想有了全面完整的理解。日常生活中本人用这些先进思想 严格要求自己,思想上与党中央高度保持一致,听党话,跟党走,关 心国家大事,注重周围事,对国家取得的每一个成就都感到发自内心的、无比的高兴,衷心希望祖国欣欣向荣、日益强大。平时本人注意 自己的一言一行、一举一动,以一个*员应有的素质来要求自己,不但 要做一个21世纪合格的研究生,而且要积极向党组织靠拢,向党组织 看齐。与同学相处严于律己、宽以待人、关心他人、乐于助人、积极 参加各项健康有益的活动、和睦相处,同学取得了成功会感到由衷的 高兴,同学遇到了困难会热情的伸出援助之手;与老师交往中本人尊敬 师长、礼貌有加、不卑不亢,积极主动和老师联系,虚心请教疑难问题;与陌生人接触本人礼貌待人、热心帮忙、有礼有度,争取给别人留 下好印象。生活上本人勤俭节约,不铺张浪费,穿着整洁朴素,不给 父母增加经济负担,自己通过做家教或去相关培训机构授课等兼职形 势解决生活问题。 学习上,本人继续严格要求自己,刻苦钻研,有所付出有所收获。本人已经步入研二,在过去一年学习的基础上,本人已经积累了初步 的基础知识和必要的研究方法,形成了初步的研究水平,在广泛搜集 相关资料已及切实体会的基础上,本人利用暑假和开学初这段时间尝 试着写了一篇论文:《新形势下高等教育自学考试的困境和出路》, 在这篇论文里面本人详细分析了高等教育自学考试的历史贡献、现阶 段出现危机的原因、优势所在、解决危机获得发展的有效办法,论文 已经过导师指导,准备在近期发表出去。本学期学校开设了四门选修课,本人坚持不迟到、不早退、不旷课,专心听课,积极参与课堂讨论,认真完成各科作业;另外,本人还选修了导师开的一门课:学校公

力学基础知识总结

第二章 质点运动学 基础知识总结 ⒈基本概念 2 2)(dt r d dt v d a dt r d v t r r === = )()()(t a t v t r ?? (向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件: 000,,v v r r t t ===) ⒉直角坐标系 ,,???222z y x r k z j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/, /. v v v v v k v j v i v v z y x z y x ,,???222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/. a a a a a k a j a i a a z y x z y x ,,???222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x 2 22222,,,,dt z d dt dv a dt y d dt dv a dt x d dt dv a dt dz v dt dy v dt dx v z z y y x x z y x ========= ),,(),,(),,(z y x z y x a a a v v v z y x ?? ⒊自然坐标系 ||,,?);(ττττ v v dt ds v v v s r r == == ρτττττ2222 2,,,??v a dt s d dt dv a a a a n a a a n n n = ==+=+= )()()(t a t v t s ττ?? ⒋极坐标系 22,??,?θ θθv v v v r v v r r r r r +=+== dt d r v dt dr v r θ θ== , ⒌相对运动 对于两个相对平动的参考系

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

力学基础知识测试题

力学基础知识测试 姓名班级 一、选择题 1、关于平衡力,下列说法正确的是() A.只有物体静止时,它受到的力才是平衡力 B.作用在一条直线上的两个力大小相等,这两个力一定是平衡力 C.物体在平衡力的作用下,一定处于静止状态或匀速直线运动状态D.物体受到的拉力和重力相等,这两个力一定是平衡力 2、关于力与运动的关系,下列说法正确的是() A.物体不受力时,保持静止状态B.物体不受力时,运动状态不变 C.有力作用在物体上时,物体的运动状态就改变 D.有力作用在物体上时,物体一定不会保持静止状态 3、图3所示的情景中,属于二力平衡的是 A B C D 图3

4、一列在平直轨道上行驶的列车,车厢内顶上的一颗小螺丝钉松动后掉在地板上,则小螺丝钉落在地板上的位置是() A.正下方B.正下方的前侧C.正下方的后侧D.不能确定 5、在北京奥运会中,龙清泉获得了男子举重52kg级冠军,为祖国赢得了荣誉。当龙清泉将125kg的杠铃稳稳地举过头顶静止不动时,下列各对力中属于平衡力的是() A.运动员受到的压力和运动员的重力B.杠铃对运动员的压力和运动员对杠铃的支持力 C.杠铃对运动员的压力和杠铃受到的重力D.杠铃受到的重力和运动员对杠铃的支持力 6、北京奥运,举世瞩目,下列有关奥运项目比赛的现象中,不能用惯性知识解释的是 ( ) A.射到球门框架上的足球被反弹 B.跳远运动员起跳前要助跑一段距离 C.射击比赛中子弹离开枪膛后继续向前运动 D.百米赛跑运动员到达终点时不能马上停下 7、惯性在日常生活和生产中有利有弊,下面四种现象有弊的是 () A.锤头松了,把锤柄在地面上撞击几下,锤头就紧紧的套在锤柄上B.往锅炉内添煤时,不用把铲子送进炉灶内,煤就随着铲子运动的方向进入灶内 C.汽车刹车时,站在车内的人向前倾倒D.拍打衣服可以去掉衣服上的尘土- 8、当猴子倒挂树枝上静止时,下列说法正确的是 () A.树枝对猴子的拉力和猴子所受的重力是一对平衡力 B.猴子对树枝的拉力和猴子所受的重力是一对平衡力 C.猴子对树枝的拉力和树枝对猴子的拉力是一对平衡力 D.猴子所受的重力和树枝所受的重力是一对平衡力 9、在抗震救灾时,用飞机空投物品,物品下落过程中,如果它所受的力全部消失,那么它将做() A.匀速运动B.减速运动C.加速运动D.曲线运动

弹塑性力学讲义简答题

研究生弹塑性考试试题 1. 简答题:(每小题2分) (1) 弹性本构关系和塑性本构关系的各自主要特点是什么? (2) 偏应力第二不变量J 2的物理意义是什么? (3) 虚位移原理是否适用于塑性力学问题?为什么? (4) 塑性内变量是否可以减小?为什么? (5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么? (6) 解释:在应力空间中为什么应力状态不能位于加载面之外? (7) π平面上的点所代表的应力状态有何特点? (8) 举例说明屈服条件为各向同性的物理含义? 2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分) 3. 试确定下面的平面应变状态是否存在?(6分) εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数 4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。(15分) y x a b A B C O (第4题图) (第5题图) 5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。试证,为了将薄

板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。并求挠度和反力。(15分) 6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数 ?=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy 能否成立。若能成立求出应力分量。(15分) (第6题图) 7. 8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可 忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明 σz =2 1(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。(10分)

力学结构基础知识

建筑力学基本知识 第十一章 静力学基础知识 第一节 力的概念及基本规律 一、力的概念 1、力的概念 物体与物体之间的相互机械作用。不能离开物体单独存在,是物体改变形状和运动状态的原因。 2、力的三要素 大小(单位N kN )、方向、作用点。力是矢量。 二、基本规律 1、作用力与反作用力原理 大小相等、方向相反、作用在同一直线上,分别作用在两个不同的物体上。 2、二力平衡条件(必要与充分条件) 作用在同一刚体(形状及尺寸不变的物体)上两个力,如果大小相等、方向相反、作用在同一直线上,必定平衡。与作用力与反作用力的区别。 非刚体不一定成立。 3、力的平行四边形法则 力可以依据平行四边形法则进行合成与分解,也可以根据三角形法则进行合成与分解 4、加减平衡力系公理 作用在物体上的一组力称为力系。如果某力与一力系等效,则此力称为力系的合力。 在刚体的力系中,加上或减去一个平衡力系,不改变原力系对刚体的作用效果。 5、力的可传性原理 作用在刚体上的力沿其作用线移动,不会改变该力对刚体的作用。 力的可传性只适用于同一刚体。 第二节 平面汇交力系 力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面 汇交力系。 平面汇交力系的合力可以根据平行四边形法则或三角形法则在图上进行合成也可以进行解析求解。 一、力在坐标轴上的投影 F x 和F y 分别称为力F 在坐标轴X 和Y 上的投影,当投影指向与坐标轴方向相反时,投影为负。注意:力在坐标轴上的投影F x 和F y 是代数量,力F 的分力F x / 和F y /是矢量,二者绝对值相同。 显然 二、合力投影定理 121121 ......n Rx x x ix nx ix i n Ry y y iy ny iy i F F F F F F F F F F F F ===++++==++++=∑∑ 或者 于是,得到合力投影定理如下: 力系的合力在任一轴上的投影F Rx 或F Ry ,等于力系中分力在同一轴上的投影的代数和。 三、平面汇交力系的合成与平衡条件

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

力学基础知识复习

力学基础知识复习 力学这章是我们学习物理的基础,特别是受力分析,对形成我们的物理思想特别的重要,可是对于大多数同学来说,在学习力学这部分知识时时常会错误的从主观上判断问题,这节我们通过练习,对这部分知识再强化一下。 讲一讲: 重点: 1. 掌握力是物体对物体的作用。力不能脱离物体而独立存在,力有相互性和矢量性。记住力的国际单位。 2. 了解力的作用效果。力可以使物体发生形变;力是改变物体运动状态(速度的大小和方向)的原因,而不是维持物体运动的原因。 3. 了解力的分类,从力的性质来分,常见力有重力、弹力和摩擦力。理解三种力的产生条件,大小和方向的特征。了解重心概念,掌握胡克定律,初步会画物体受力的示意图。 难点: 1. 弹力的方向:在挤压形变中,弹力总是垂直接触面指向被支持或被挤压物。在拉伸形变中物体所受到的拉力总是沿着悬线指向悬线收缩的方向。 2. 摩擦力的产生条件:直接接触,有挤压且存在相对运动或相对运动的趋势。碰到摩擦力大小问题,先分清是滑动摩擦力还是静摩擦力,f N 滑 =μ注意压力不一定等于重力, f 滑与接触面积大小和物体匀速、加减速无关。而f 静 要结合受力情况根据平衡条件或运动 规律去求,范围从“0”至最大静摩擦力。 例题精讲: 1. 画出从下各力的图示,并指出施力物体。 (1) 竖直悬线对物体的拉力150N 施力物体:悬线 (2) 与水平方向或30?角,人对箱子斜向下的推力 画力的图示时要画在受力物体上,要定标度,画出力的方向。

施力物体是人2. 画出物体A,受力的示意图。 A沿斜面向上运动光滑球静止 光滑球静止A、B都静止 解答: 撤去侧面挡板,A仍能静止,

金属塑性_知识点汇总

金属塑性成形原理复习指南 第一章绪论 1、基本概念 塑性:在外力作用下材料发生永久性变形,并保持其完整性的能力。 塑性变形:作用在物体上的外力取消后,物体的变形不能完全恢复而产生的永久变形成为塑性变形。 塑性成型:材料在一定的外力作用下,利用其塑性而使其成形并获得一定的力学性能的加工方法。 2、塑性成形的特点 1)其组织、性能都能得到改善和提高。 2)材料利用率高。 3)用塑性成形方法得到的工件可以达到较高的精度。 4)塑性成形方法具有很高的生产率。 3、塑性成形的典型工艺 一次成形(轧制、拉拔、挤压) 体积成形 塑性成型 分离成形(落料、冲孔) 板料成形 变形成形(拉深、翻边、张形) 第二章金属塑性成形的物理基础 1、冷塑性成形 晶内:滑移和孪晶(滑移为主)滑移性能(面心>体心>密排六方) 晶间:转动和滑动 滑移的方向:原子密度最大的方向。 塑性变形的特点: ① 各晶粒变形的不同时性; ② 各晶粒变形的相互协调性; ③ 晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 合金使塑性下降。 2、热塑性成形 软化方式可分为以下几种:动态回复,动态再结晶,静态回复,静态再结晶等。 金属热塑性变形机理主要有:晶内滑移,晶内孪生,晶界滑移和扩散蠕变等。 3、金属的塑性 金属塑性表示方法:延伸率、断面收缩率、最大压缩率、扭转角(或扭转数) 塑性指标实验:拉伸试验、镦粗试验、扭转试验、杯突试验。 非金属的影响:P冷脆性 S、O 热脆性 N 蓝脆性 H 氢脆 应力状态的影响:三相应力状态塑性好。 超塑性工艺方法:细晶超塑性、相变超塑性 第三章金属塑性成形的力学基础 第一节应力分析 1、塑性力学基本假设:连续性假设、匀质性假设、各向同性假设、初应力为零、体积力为零、体积不变假设。

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

(完整版)初中物理力学基本知识要点集

初中物理力学基本知识要点集 引言 1、物理研究的内容:力的、热的、光的、电的现象。 2、怎样学好物理: (1)视观察和实验;(2)勤于思考,着重理解;(3)重视知识的应用。 第一章测量的初步知识 §1.1长度的测量误差 一、长度 1、长度测量最常用的工具:刻度尺。 2、长度的单位:千米(km)、米(m)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、 纳米(nm)。 3、米是长度国际单位的主单位。 4、长度单位之间的换算。 5、单位换算的格式:例:83千米=83×103米=8.3×104米 二、刻度尺的使用 1、刻度尺使用前要观察:零刻线、量程、分度值。 2、刻度尺的使用: (1)用刻度尺测量时,尺要沿着所测长度;(2)不利用磨损的零刻线; (3)读数时视线要与尺面垂直。 3、读数——有效数字读法 (1)了解刻度尺的分度值;(2)读出长度末端前的刻线读数; (3)多余部分自己估读;(4)要估读到分度值的下一位。 4、测量结果是由数字和单位组成。 三、误差 1、误差的定义:测得的数值和真实值之间也必然存在差异,这个差异叫误差。 2、误差产生的原因:(1)人为原因;(2)测量的仪器之间的差异。 3、减小误差的方法:多次测量求平均值。 4、误差和错误: 误差只能减小,不能避免;错误可以避免。 §1.2实验:用刻度尺测长度 1、作业本长、宽的测量方法。 2、细铜丝直径的测量方法。 3、硬币直径的测量方法。

第二章简单的运动 §2.1机械运动 一、机械运动 1、物理学里把物体位置的变化叫机械运动,简称运动。 2、机械运动是宇宙中最普遍的现象,所有的物体都在做机械运动。 二、参照物 1、参照物的定义:说物体在运动还是静止,要看以另外的哪个物体作标准,这个被选作标准的 物体叫参照物。 三、匀速直线运动 1、定义:快慢不变、经过的路线是直线的运动,叫做匀速直线运动。 §2.2速度和平均速度 一、速度 1、速度的物理意义:速度用来表示物体运动的快慢。 2、匀速直线速度的定义:在匀速直线运动中,速度的大小等于运动物体在单位时间内通过的路 程。 3、速度的公式: 速度=路程/时间v=s/t 4、速度的单位及单位换算: (1)单位:米/秒读作米每秒 千米/时读作千米每时 (2)单位换算:1米/秒=3.6千米/时 5、速度值的物理意义: 例:7.2米/秒:一个物体做匀速直线运动,它在1秒内通过的路程是7.2米。 二、变速运动 1、定义:常见的运动物体的速度是变化的,这种运动叫变速运动。 2、平均速度:描述变速直线运动快慢的物理量是平均速度,它等于路程除以通过这段路程所用 的时间。 §2.4路程和时间的计算 1、计算路程、时间、速度。 2、计算路程、时间、速度的比值。 3、多段路程、时间、速度的计算。 4、过桥及往返问题。 第七章质量和密度

流体力学基本概念和基础知识..

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

弹塑性力学讲义全套

弹塑性力学 弹塑性力学 绪论:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。 弹塑性力学是固体力学的一个重要分支,是研究弹性和塑形物体变形规律的一门学科。它推理严谨,计算结果准确,是分析和解决许多工程技术问题的基础和依据。在弹塑性力学中,我们可以看到很多学习材料力学、结构力学等学科所熟知的参数和变量,一些解题的思路也很类似,但是我们不能等同的将弹塑性力学看成材料力学或者是结构力学来学习。材料力学和结构力学的研究对象及问题,往往也是弹塑性力学所研究的对象及问题。但是,在材料力学和结构力学中主要采用简化的初等理论可以描述的数学模型;在弹塑性力学中,则将采用较精确的数学模型。有些工程问题(例如非圆形断面柱体的扭转、孔边应力集中、深梁应力分析等问题)用材料力学和结构力学的方法求解,而在弹塑性力学中是可以解决的;有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的理论,而弹塑性力学则可以给出用初等理论所得结果可靠性与精确度的评价。在弹塑性力学分析中,常采用如下简化假设:连续性假设、均匀各向同性、小变形假设、无初应力假设等假设。 弹塑性力学基本方程的建立需要从几何学、运动学和物理学三方面来研究。在运动学方面,主要是建立物体的平衡条件,不仅物体整体要保持平衡,而且物体内的任何局部都要处于平衡状态。反映这一规律的数学方程有两类,即运动微分方程和载荷的边界条件。以上两类方程都与材料的力学性质无关,属于普适方

相关主题
文本预览
相关文档 最新文档