当前位置:文档之家› [2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答
[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题?

【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域的应力分布,会使问题的解答精度不足。

【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。

【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。

【3-3】如果某一应力边界问题中有m 个主要边界和n 个小边界,试问在主要边界和小边界上各应满足什么类型的应力边界条件,各有几个条件?

【解答】在m 个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15),共2m 个;在n 个次要边界上,如果能满足精确应力边界条件,则有2n 个;如果不能满足公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界条件来代替2个精确应力边界条件,共3n 个。

【3-4】试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?

【解答】⑴相容条件:

不论系数a 取何值,应力函数3

ay Φ=总能满足应力函数表示的相容方程,式(2-25).

⑵求应力分量

当体力不计时,将应力函数Φ代入公式(2-24),得

6,0,0x y xy yx ay σσττ====

⑶考察边界条件

上下边界上应力分量均为零,故上下边界上无面力.

x

y

l

O

h

图3-8

左右边界上;

当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()

0y x y x f τ

===

右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0

y x y x l

f τ

=== 应力分布如图所示,当l h ?时应用圣维南原理可以将分布的面力,等效为主矢,主矩

x

y

O

x

f x

f

主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。 偏心距e :

因为在A 点的应力为零。设板宽为b ,集中荷载p 的偏心距e :

2()0/6/6

x A p pe

e h bh bh σ=

-=?= 同理可知,当a <0时,可以解决偏心压缩问题。 【3-5】取满足相容方程的应力函数为:⑴

2,ax y Φ=⑵2,bxy Φ=⑶3,cxy Φ=试求出应力分量(不计体力),画出图3-9所示弹性体边界上的面力分布,并在小边界上表示出面力的主矢量和主矩。

【解答】(1)由应力函数2

ax y Φ=,得应力分量表达式

0,2,2x y xy yx ay ax σσττ====-

考察边界条件,由公式(2-15)()()

()()x yx s x y xy s y l m f s m l f s στστ?+=??+=??

①主要边界,上边界2

h

y =-上,面力为

()22=-=x h

f y ax ()2y h f y ah =-=

②主要边界,下边界2h

y =,面力为

()2,2x h f y ax ==- ()2

y h

f y ah ==

e

P

P

e

x

y

l

O

/2h 图3-9

/2

h ()

l h ?A

③次要边界,左边界x=0上,面力的主矢,主矩为 x 向主矢:/2

0/2()0h x x x h F dy σ=-=-

=?

y 向主矢:/2

0/2

()0h y xy x h F dy τ=-=-=?

主矩:/2

0/2

()0h x x h M ydy σ=-=-

=?

次要边界,右边界x=l 上,面力的主矢,主矩为 x 向主矢:/2

/2()0h x x x l h F dy σ=-'==?

y 向主矢:/2

/2/2

/2

()(2)2h h y xy x l h h F dy al dy alh τ=--'==-=-?

?

主矩:/2

/2

()0h x x l h M ydy σ=-=

=?

弹性体边界上面力分布及次要边界面上面力的主矢,主矩如图所示 ⑵2bxy Φ=

将应力函数代入公式(2-24),得应力分量表达式

2x bx σ=,0y σ=,2xy yx by ττ==-

考察应力边界条件,主要边界,由公式(2-15)得 在2h y =-

主要边界,上边界上,面力为,022x y h h f y bh f y ???

?=-==-= ? ????

? 在2h y =

,下边界上,面力为,022x y h h f y bh f y ???

?==-== ? ????

? 在次要边界上,分布面力可按(2-15)计算,面里的主矢、主矩可通过三个积分边界条件求得:

在左边界x=0,面力分布为()()00,02x y f x f x by ==== 面力的主矢、主矩为 x 向主矢:()

20

2

0h h x x x F dy σ=-=-

=?

y 向主矢:()

()2200

2

2

20h

h h h y xy x x F dy by dy τ==--=-=--=??

主矩;/2

0/2

()0h x x h M ydy σ=-=-

=?

在右边界x=l 上,面力分布为

()()2,2x y f x l bl f x l by ====-

al

2ah O

x

y

yx

τxy

τah al

2

面力的主矢、主矩为 x 向主矢:()

/2

/2

/2/222h h x x x l

h h F dy bldy blh σ=--'===??

y 向主矢:()

()/2/2

/2

/2

'20h h y xy x l

h h F dy by dy τ=--==-=??

主矩:()/2

/2

/2

/2

'20h h x x l h h M ydy blydy σ=--=

==?

?

弹性体边界上的面力分布及在次要上面力的主矢和主矩如图所示

ah

O

y

xy

τal

2x

ah

xy

τ

(3)3cxy Φ=

将应力函数代入公式(2-24),得应力分量表达式

26,0,3x y xy yx cxy cy σσττ====-

考察应力边界条件,在主要边界上应精确满足式(2-15) ①2

h

y =-

上边界上,面力为 23,0242x y h h f y ch f y ???

?=-==-= ? ????

?

②h

y=

2

下边界上,面力为 23,0242x y h h f y ch f y ???

?==-== ? ????

?

次要边界上,分布面力可按(2-15)计算,面力的主矢、主矩可通过三个积分边界求得: ③左边界x=0上,面力分布为

()()()()

()()2/20/2/2

/2

2

30

/2

/2

h/20-h/2

00,03x 0

1340

x y h x x x h h h y xy x h h x x f x f x cy F dy y F dy cy dy ch M ydy στσ=-=--======-==-=--==-=???

?

面力的主矢、主矩为向主矢:向主矢:主矩:

④右边界x l =上,面力分布为

()()26,3x y f x l cly f x l cy ====-

面力的主矢、主矩为 x 向主矢()

/2

/2

/2

/2

60h h x x x l

h h F dy clydy σ=--'=

==??

y 向主矢:()()/2

/2

2

3/2

/2134h h y y x l h h F dy cy dy ch σ=--'==-=-?

?

主矩:()/2

/223/2

/21

62

h h x x l

h h M ydy cly dy clh σ=--'===?

?

弹性体边界上的面力分布及在次要边界上面力的主矢和主矩,如图所示

【3-6】试考察应力函数223(34)2F xy h y h

Φ=

-,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。

【解答】(1)将应力函数代入相容方程(2-25)

4444

22420?Φ?Φ?Φ

++=????x x y y

,显然满足 (2)将Φ代入式(2-24),得应力分量表达式

312,0,x y Fxy h σσ=-=2

234(1)2==--xy yx F y h h

ττ

(3)由边界形状及应力分量反推边界上的面力: ①在主要边界上(上下边界)上,2

h

y =±

,应精确满足应力边界条件式(2-15),应力()

()

/2

/2

0,0y

yx y h y h στ=±=±==

因此,在主要边界2h y =±

上,无任何面力,即0,022x y h h f y f y ???

?=±==±= ? ????

? ②在x=0,x=l 的次要边界上,面力分别为:

22340:0,1-2x y F y x f f h h ??

=== ???

x

y

l

O

/2h 图3-9

/2

h ()

l h ?

3

221234:,12x y Fly F y x l f f h h h

??

==-

=-- ???

因此,各边界上的面力分布如图所示:

③在x=0,x=l 的次要边界上,面力可写成主矢、主矩形式:

x=0上 x=l 上

1212h/2

/2

/2/2h/2

/2

/2/2h/2/2

12-h/2

/2

=0, 0=, =0, h N x N x h h h S y S y h h h x x h x F f dy F f dy y F f dy F F f dy F M f ydy M f ydy Fl

-----======-===-????

?

?

向主矢:向主矢:主矩:

因此,可以画出主要边界上的面力,和次要边界上面力的主矢与主矩,如图:

(a) (b)

因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题。

【3-7】试证232333(431)(2)410qx y y qy y y

h h h h

Φ=-+-+-能满足相容方程,并考察它在图3-9所示矩形板和坐标系中能解决什么问题(设矩形板的长度为l ,深度为h ,体力不计)。

【解答】(1)将应力函数Φ代入式(2-25)

44

0x ?Φ=?,44324qy y h

?Φ=?,42233

122422qy qy

x y h h ?Φ--=?=

?? 代入(2-25),可知应力函数Φ满足相容方程。 (2)将Φ代入公式(2-24),求应力分量表达式:

2232336435x x qx y qy qy

f x y h h h

σ?Φ=-=-+-

? 232343(1)2y y q y y

f y x h h

σ?Φ=-=-+-?

22

236()4

xy yx qx h y x y h ττ?Φ==-=--??

(3)考察边界条件,由应力分量及边界形状反推面力: ①在主要边界2

h

y =-

(上面),应精确满足应力边界条件(2-15) ()()()()

()()()()()()()()/2/2/2

/2

3

30

00,222152

/20,/20

0340,00

5x yx y y y h y h x yx y y y h y h x x y xy x x h h f y f y q

h

y f y h f y h x qy qy f x f x h h

τστσστ=-=-====???

?=-=-==-=-= ? ?????=-=========-=-==-=在主要边界下面,也应该满足在次要边界上,分布面力为 应用圣维南原理,可写成三个积分的应力边界条件:

x

y

l

O

/2h 图3-9

/2

h ()

l h ?

3/2

/2

3/2/2/2

/23/2

/2

3/2

/2340

50

340

5h h N x h h h S y h h h x h h qy qy F f dy dy h h F f dy qy qy M f ydy ydy h h ---

---??

==-= ??

?==??

==-= ??

?????

?

④在次要边界x l =上,分布面力为

()()23336435x x x l

ql y qy qy f x l h h h

σ====-+-

()()

2

2364y xy x l

ql h f x l y h τ=??===-- ???

应用圣维南原理,可写成三个积分的应力边界条件:

23/2

/2

33/2/22

/2/223/2/2

23/2/22

33/2/2643()056()4

6431'()52h h N x h h h h s y h h h h x h h ql y qy qy F f x l dy dy h h h ql h F f x l dy y dy ql h ql y qy qy M f x l ydy ydy ql h h h ------??

'===-+-= ??

?????'===--=-?? ???????===-+-=- ????

?????

综上,可画出主要边界上的面力分布和次要边界上面力的主矢与主矩,如图

q

ql

2

12

ql x

y

o

q

(a) (b)

因此,此应力函数能解决悬臂梁在上边界受向下均布荷载q 的问题。 【3-8】设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q (图3-10),试求应力分量。

【解答】采用半逆法求解。

由材料力学解答假设应力分量的函数形式。 (1)假定应力分量的函数形式。

根据材料力学,弯曲应力y σ主要与截面的弯矩有关,剪应力xy τ主要与

截面的剪力有关,而挤压应力x σ主要与横向荷载有关,本题横向荷载为零,则0x σ=

x

y

o

b

g

ρh

()h b ?q

图3-10

(2)推求应力函数的形式

将0x σ=,体力0,x y f f g ρ==,代入公式(2-24)有

220x x f x y

σ?Φ

=-=?

对y 积分,得

()f x y

=? (a ) ()()1yf x f x Φ=+ (b )

其中()()1,f x f x 都是x 的待定函数。 (3)由相容方程求解应力函数。 将(b )式代入相容方程(2-25),得

()()

44144

0d f x d f x y dx dx

+= (c ) 在区域内应力函数必须满足相容方程,(c )式为y 的一次方程,相容方程要求它有无数多个根(全竖柱内的y 值都应满足它),可见其系数与自由项都必须为零,即

()()4414

0,0d f x d f x dx dx

== 两个方程要求

()()32321,f x Ax Bx Cx f x Dx Ex =++=+ (d )

()f x 中的常数项,()1f x 中的常数项和一次项已被略去,因为这三项在Φ的表达式中

成为y 的一次项及常数项,不影响应力分量。将(d )式代入(b )式,得应力函数

()()3232y Ax Bx Cx Dx Ex Φ=++++ (e )

(4)由应力函数求应力分量

220x x f x y

σ?Φ

=-=? (f )

226262y y f y Axy By Dx E gy x

σρ?Φ

=-=+++-? (g)

2232xy Ax Bx C x y

τ?Φ

=-=---?? (h)

(5)考察边界条件

利用边界条件确定待定系数A 、B 、C 、D 、E 。 主要边界0x =上(左):

()000,()0x xy x x στ====

将(f ),(h )代入

()00x x σ==,自然满足

0()0xy x C τ==-= (i )

主要边界x b =上,

()0x x b σ==,自然满足

()xy x b q τ==,将(h )式代入,得

2()32xy x b Ab Bb C q τ==---= (j )

在次要边界0y =上,应用圣维南原理,写出三个积分的应力边界条件:

()200

0()62320b

b

y y dx Dx E dx Db Eb σ==+=+=?? (k )

()3200

()6220b b y y xdx Dx E xdx Db Eb σ==+=+=?? (l )

()23200

()320b b yx y dx Ax Bx C dx Ab Bb Cb τ==---=---=?

? (m )

由式(i ),(j),(k ),(l ),(m )联立求得

2, , 0q q

A B C D E b b

=-

==== 代入公式(g ),(h)得应力分量

230, 13, 2x y xy qx x q gy x x b b b b σσρτ????==

--=- ? ?????

【3-9】图3-11所示的墙,高度为h ,宽度为b ,h b ?,在两侧面上受到均布剪力q 的作用,试应用应力函数

3

Axy Bx y Φ=+求解应力分量。

【解答】按半逆解法求解。

⑴将应力函数代入相容方程(2-25)显然满足。 ⑵由公式(2-24)求应力分量表达式,体力为零,有

220x y σ?Φ==?,226y Bxy x σ?Φ==?,223xy yx A Bx x y

ττ?Φ

==-=--??

⑶考察边界条件:

在主要边界2x b =-上,精确满足公式(2-15)

()/2/20,()x xy x b x b q στ=-=-==-

第一式自然满足,第二式为

23

4

A Bb q --=- (a)

②在主要边界x=b/2上,精确满足式(2-15)

()()/2/20,x xy x b x b q στ====-

第一式自然满足,第二式为

23

4

A Bb q --=- (b)

③在次要边界y=0上,可用圣维南原理,写出三个积分的应力边界条件:

()

/2

/20

0b y

b y dx σ-==? 满足 ()

/2

/2

0b y

y b xdx σ=-=? 满足

()()3

/2

/2

2

0/2/2

1

304

b b yx y b b dx A Bx dx Ab Bb τ=--=--=--=?? (

c ) 联立(a )(c )得系数

22,2q q

A B b

=-=

代入应力分量表达式,得

222120,,1122x y xy q q x xy b b σστ??

===- ???

q

q o

y

x

/2b ()

h b ?h

/2

b 图3-11

【3-10】设单位厚度的悬臂梁在左端受到集中力和力矩作用,体力可以不计,l h ?(图3-12),试用应力函数233Axy By Cy Dxy Φ=+++求解应力分量。

【解答】采用半逆解法求解

(1)将应力函数代入相容方程(2-25),显然满足 (2)由应力函数求应力分量,代入公式(2-24)

()226603x y xy yx B By Dxy A Dy σσττ??

=++????=????==-+????

(a) (3)考察边界条件

①主要边界/2y h =±上,应精确满足应力边界条件

()

/2

0y

y h σ=±=, 满足

()/20,xy y h τ=±= 得23

04

A Dh += (b )

②在次要边界x=0上,应用圣维南原理,写出三个积分的应力边界条件

()()/2/2

0/2/2262h h N

x N N x h h F dy F B Cy dy F B h

σ=--=-?+=-?=-

?? ()()/2/230/2/2

226h h x x h h M

ydy M B Cy ydy M C h

σ=--=-?+=-?=-?? ()()/2/223

0/2/2134

h h xy s s s x h h dy F A Dy dy F Ah Dh F τ=--??=-?-+=-?+=???? (c ) 联立方程(b )(c )得

332,2s s F F

A D h h

=

=- 最后一个次要边界()x l =上,在平衡微分方程和上述边界条件均已满足的条件下是必然满足的,故不必在校核。

将系数A 、B 、C 、D 代入公式(a ),得应力分量

332212120

3142N s x y S xy F F M y xy h h h F y h h σστ?

?=---??

=????

?=-- ?????

【3-11】设图3-13

中的三角形悬臂梁只受重力作用,而梁的

密度为ρ,试用纯三次式的应力函数求解。

【解答】采用半逆解法求解

(1) 检验应力函数是否满足相容方程(2-25)

设应力函数3

2

2

3

=Ax Bx y Cxy Dy Φ+++,不论上式中的系数如何取值,纯三次式的应力函数总能满足相容方程(2-25)

(2) 由式(2-24)求应力分量

由体力分量0,x y f f g ρ==,将应力函数代入公式(2-24)得应力分量:

2226x x f x Cx Dy y σ?Φ

=-=+? (a )

2262y y f y Ax By gy y σρ?Φ

=-=+-? (b )

222xy Bx Cy x y

τ?Φ

=-=--?? (c )

(3)考察边界条件:由应力边界条件确定待定系数。 ①对于主要边界0y =,其应力边界条件为:

0()0

y y σ==,

0()0

yx y τ== (d )

将式(d )代入式(b ),(c ),可得

0=0A B =, (e )

②对于主要边界tan y x α=(斜面上),应力边界条件:

在斜面上没有面力作用,即0x y f f ==,该斜面外法线方向余弦为,sin l α=-,cos m α=.由公式(2-15)

,得应力边界条件 tan tan tan tan sin ()cos ()0sin ()cos ()0x y x yx y x xy y x y y x ααααασατατασ====-?+?=?

?-?+?=?

(f )

将式(a )、(b )、(c )、(e )代入式(f ),可解得

2cot ,cot 2

3

g

g

C D ρραα=

=-

(g )

将式(e )、(g )代入公式(a )、(b )、(c ),得应力分量表达式:

2cot 2cot cot x y xy gx gy gy

gy σραρα

σρτρα

?=-?

=-??

=-? 【分析】本题题目已经给定应力函数的函数形式,事实上,也可通过量纲分析法确定应

力函数的形式。

按量纲分析法确定应力函数的形式:三角形悬臂梁内任何一点的应力与x y g αρ,,和有关。由于应力分量的量纲是1

2

L MT

--,而,x y 的量纲是L ,g ρ的量纲是12

L MT

--,又是

量纲—的数量,因此,应力分量的表达式只可能是x 和y 的纯一项式,即应力分量的表达式只可能是,A gx B gy ρρ这两种项的结合,其中A ,B 是量纲一的量,只与α有关。应力函数又比应力分量的长度量纲高二次,即为x 和y 的纯三次式,故可假设应力函数的形式为

3223Ax Bx y Cxy Dy Φ=+++。

【3-12】设图3-5中简支梁只受重力作用,而梁的密度为ρ,试用§3-4中的应力函数(e )求解应力分量,并画出截面上的应力分布图。

【分析】与§3-4节例题相比,本题多了体力分量

0,

x y f f g ρ==。去除了上边界的面力。依据§3-4,应

力分量的函数形式是由材料力学解答假设的。

【解答】按半逆解法求解。

(1)由§3-4可知应力函数的函数形式为

2

32()2x Ay By Cy D Φ=+++

325432()106A B x Ey Fy Gy y y Hy Ky +++--++,由§3-4可

知,Φ必然满足相容方程(2-25)。

(2)应力分量的表达式:

2

32(62)(62)22622

x x Ay B x Ey F Ay By Hy K σ=+++--++ (a )

32y Ay By Cy D gy σρ=+++- (b )

22(32)(32)xy x Ay By C Ey Fy G τ=-++-++ (c )

【注】y σ项多了-gy ρ

这些应力分量是满足平衡微分方程和相容方程的。因此,如果能够适当选择常数

A B K ???、、、,使所有的边界条件都被满足,则应力分量式(a )、(b )、(c )就是正确的解

答。

(3)考虑对称性

因为yz 面是梁和荷载的对称面,所以应力分布应当对称于yz 面。这样x y σσ和是x 的

偶函数,而xy τ是x 的奇函数,于是由式(a )和式(c )可见

0E F G === (d )

(4)考察边界条件:

①在主要边界2y h =±上,应精确满足应力边界条件(2-15),

22()0,()0y y h yx y h στ=±=±==

将应力分量式(b )、(c )代入,并注意到0E F G ===,可得:

2

323

2208422084223()043()0

4

h h h g

A B C D h h

h h g A B C D h x Ah hB C x Ah hB C ρρ?+++-=???-+-++=???

?-++=??

?--+=?? 联立此四个方程,得:

223

,0,,02

g A B C g D h ρρ=-

=== (e ) 将式(d )、(e )代入式(a )、(b )、(c )

23

226462x g g x y y Hy K h h ρρσ=-

+++ (f ) 3222y g g y y h ρρσ=-+ (g )

22632

xy g g xy x h ρρτ=- (h )

②考察次要边界条件

由于问题的对称性,只需考虑其中的一边,如右边。右边界x l =上,0x f =,不论y 取任何值(22)h y h -≤≤,都有0x σ=。由(f )式可见,这是不可能的,除非,,H K ρ均为零。因此,只能用应力x σ的主矢、主矩为零,即

/2

/2()0h x x l h dy σ=-=? (i ) /2

/2

()0h x x l h ydy σ=-=?

(j )

将(f )式代入式(i )得

/2

2322/264620h h g g x y y Hy K dy h h ρρ-??

-+++= ???

? 积分后得 K=0 (k )

将式(f )代入式(i ),得

/2

2322/264620h h g g l y y Hy K ydy h h ρρ-??

-+++= ???

? 积分后得

221

()10

l H g h ρ=- (l )

将(k )、(l )代入式(f ),得

223222641

6()10

x g g l x y y g y h h h ρρσρ=-++- (m )

考察右边界上切应力分量xy τ的边界条件: 右边界上y f glh ρ=-,则xy τ的主矢为

()/2

/2

22/2

/2632h h xy y x l h h x l

g g

dy xy x dy glh f h ρρτρ=--=??

=-

=-= ??

??

?

可知满足应力边界条件。

将式(g ),(h ),(m )略加整理,得应力分量的最后解答:

2232223222641

6()1022632X y xy

g g l x y y g y h h h g g y y h g g xy x h ρρσρρρσρρτ?=-++-??

?=-+??

?=-??

(n) (5)应力分量及应力分布图

梁截面的宽度取为1个单位,则惯性矩312h I =,静矩是22

82

h y S =-

。 根据材料力学截面法可求得截面的内力,可知梁横截面上的弯矩方程和剪力方程分别为

()()22

,2

s l x M x gh F x ghx ρρ-==-

则式(n )可写成:

()()222

243

()5(14)2x y s xy

M x y y gy I h g y y h F x S bI σρρστ?=+-??

?=

-??

?=??

【分析】比较弹性力学解答与材料力学解答,可知,只有切应力xy τ完全相同,正应力

x σ中的第一项与材料力学结果相同,第二项为弹性力学提出的修正项;y σ表示纵向纤维间

的挤压应力,而材料力学假设为零。对于l>>h 的浅梁,修正项很小,可忽略不计。

【3-13】图3-14所示的悬臂梁,长度为l ,高度为h ,l h ?,在上边界受均布荷载q ,试检验应力函数5

2

3

3

2

2

Ay Bx y Cy Dx Ex y Φ=++++能否成为此问题的解?如可以,试求出应力分量。

【解答】用半逆解法求解。 (1)相容条件:

将应力函数Φ代入相容方程式(2-25),得

120240Ay By +=

要使Φ满足相容方程,应使

1

5

A B =- (a )

(2)求应力分量,代入式(2-24)

323233

22206620306222102262302x y xy Ay Bx y Cy Ay Ax y Cy By D Ey Ay D Ey

Bxy Ex Axy Ex σστ?=++=-+??=++=-++??=--=-??

(b ) (3)考察边界条件

①在主要边界2y h =±上,应精确到满足应力边界条件

3

2()0,20y y h Ah D Eh σ==++=10即-8 (c ) 32(),2y y h q Ah D Eh q σ=-=-+-=-10

即8 (d )

22()0,20yx y h Axh Ex τ=±=-=30

即4 (e )

联立式(a )、(c )、(d )、(e ),可得:

33

3,,,544q q q q A D E B h h h =

=-==- (f ) ②在次要边界0x =上,主矢和主矩都为零,应用圣维南原理,写出三个积分的应力边界条件:

/2

0/2

()0h x x h dy σ=-=?

满足条件

5/2

/2

3

3

0/2/2

()(206)002

h h x x h h Ah ydy Ay Cy ydy Ch σ=--=+=?+=?? (g ) /2

0/2

()0h xy x h dy τ=-=?

满足

将A 的值带入(g ),得

C=10q

h

-

(h ) 将各系数代入应力分量表达式(b ),得

22

22332

23(46)5(134)23(14)2x y xy y y x q h h h q y y h h q x y h h σστ?=--??

?

=--+??

?=--??

【3-14】矩形截面的柱体受到顶部的集中力2F 和力矩M 的作用(图

3-15),不计体力,试用应力函数

233Ay Bxy Cxy Dy Φ=+++求解其应力分量。

【解答】采用半逆解法求解。 (1) 相容条件:

将应力函数代入相容方程(2-25),显然满足。 (2) 求应力分量:将Φ代入(2-24)

226603x y xy A Cxy Dy B Cy σστ??=++????=????=--????

(a ) (3) 考察边界条件。

①在主要边界/2y b =±上,应精确满足应力边界条件 ()

/2

0y

y b σ=±= 满足

()

2/2

3

,4

xy

y b q B Cb q τ=±=-?+= (b )

②在次要边界x=0上,可用圣维南原理,写出三个积分应力边界条件

/2

0/2

()b x x b dy F σ=-=-?

/22

/2(23)

b b Ay Dy F -+=- (

c )

/2

/2()b x x b ydy M σ=-=-? /2

23/2

122b b Ay Dy M -??+=- ??? (d ) ()

/2

/2

b xy

b x o

dy F τ-==-? ()

/23

/2

b b By Cy

F ---=- (e )

联立(b )、(c )、(d )、(e )式得

2F A b =-

,132F B q b ??=-- ???,22F C q b b ??

=- ???

,32M D b =- (f ) 将各系数据(f )代入式(a ),得应力分量解答

232

212120

1362x y xy F F M

q xy y

b b b b F F q q y b b b σστ???=-+--? ?????

=??

?????=--- ? ???????

【分析】本题题目中原教材给出的坐标轴有误,无法计算。x ,y 坐标互换后可以计算,但计算结果与题目提示解答几乎完全不同,又将y 轴调为水平向左为正方向,才得到提示结果。可见,在求解问题时,坐标轴的方向及原点的位置与解答关系密切,坐标轴不同可得到完全不同的结果。

【3-15】挡水墙的密度为1ρ,厚度为b(图3-16),水的密度为2ρ,试求应力分量。

【解答】(1)假设应力分量的函数形式。因为在/2y b =-边界上,

0y σ=;/2y b =边界上,2y gx σρ=-,所以可以假设在区域内y σ为

()y xf y σ=

(2)推求应力函数的形式。由y σ推求Φ的形式

()

22y xf y x σ?Φ

==? ()()212

x f y f y x ?Φ=+?

()()()3

126

x f y xf y f y Φ=++

(3)由相容方程求应力函数。将Φ代入4

0?Φ=,得

44342124442206d f d f x d f d f

x x dy dy dy dy

+++=

要使上式在任意的x 处都成立,必须

4324

4254

321142

432

22

4

0();20();106

0()d f f y Ay By Cy D dy

d f d f A B f y y y Gy Hy Iy dy dy d f f y Ey Fy dy =?=++++=?=--+++=?=+ 代入Φ即得应力函数的解答,其中已经略去了与应力无关的一次项,得应力函数为:

354323232

()()()6106

x Ay By Ay By Cy D x Gy Hy Iy Ey Fy Φ=++++--+++++

(4)由应力函数求应力分量,将Φ代入公式(2-24),注意体力1,0x y f g f ρ==,求得应力分量表达式

()()()()233221232222243222623 6223232223x x y y xy B f x x Ay x Ay By Cy H y Ey F gx

f y x Ay By Cy D x

x A B Ay By C y y Gy Hy I x y σρστ?Φ?

?=-=++--+++

???

?+-?Φ

=-=+++??Φ??

=-=-++++--- ?

????

(5)考察边界条件

在主要边界/2y b =±上,应精确满足应力边界条件

()

()

()3222/2

32/2

22432

/2

8420 0

842330 0

2432

124y

y b y

y b xy y b b b b

gx x A B C D gx

b b b

x A B C D x b b b b A Bb C A B G

Hb I σρρστ==-=±??=-?+++=- ???

??=?-+-+= ???

????

=?-±++±--= ? ?????

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答 徐芝纶 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学简明教程(第四版)_第二章_课后作业题答案

第二章 平面问题的基本理论 【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x y 2 h 1h b g ρo () 2h b >> h x y l /2/2 h M N F S F 1 q q 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F ghb M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()22210000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=?? ??? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M ' N F 'S F '

(完整)[2018年最新整理]弹性力学简明教程(第四版)-课后习题解答

【3-1】为什么在主要边界(大边界)上必须满足精确的应力边界条件式(2-15),而在小边界上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替式(2-15),将会发生什么问题? 【解答】弹性力学问题属于数学物理方程中的边值问题,而要使边界条件完全得到满足,往往比较困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个积分的应力边界条件来代替精确的应力边界条件(公式2-15),就会影响大部分区域的应力分布,会使问题的解答精度不足。 【3-2】如果在某一应力边界问题中,除了一个小边界条件,平衡微分方程和其它的应力边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,固而可以不必校核。 【解答】区域内的每一微小单元均满足平衡条件,应力边界条件实质上是边界上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件。研究对象整体的外力是满足平衡条件的,其它应力边界条件也都满足,那么在最后的这个次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。 【3-3】如果某一应力边界问题中有m 个主要边界和n 个小边界,试问在主要边界和小边界上各应满足什么类型的应力边界条件,各有几个条件? 【解答】在m 个主要边界上,每个边界应有2个精确的应力边界条件,公式(2-15),共2m 个;在n 个次要边界上,如果能满足精确应力边界条件,则有2n 个;如果不能满足公式(2-15)的精确应力边界条件,则可以用三个静力等效的积分边界条件来代替2个精确应力边界条件,共3n 个。 【3-4】试考察应力函数3 ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】⑴相容条件: 不论系数a 取何值,应力函数3 ay Φ=总能满足应力函数表示的相容方程,式(2-25). ⑵求应力分量 当体力不计时,将应力函数Φ代入公式(2-24),得 6,0,0x y xy yx ay σσττ==== ⑶考察边界条件 上下边界上应力分量均为零,故上下边界上无面力.

弹性力学基础(程尧舜 同济大学出版社)课后习题解答

1 图2.4 习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 解:(1)pi iq qj jk pq qj jk pj jk pk δδδδδδδδδδ===; (2)()pqi ijk jk pj qk pk qj jk pq qp e e A A A A δδδδ=-=-; (3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ???=?=a b c d e e ()()()()()i j l m il jm im jl i i j j i i j j a b c d a c b d a d b c δδδδ=-=- ()()()()=??-??a c b d a d b c 。 2.5设有矢量i i u =u e 。原坐标系绕z 轴转动θ系,如图2.4所示。试求矢量u 在新坐标系中的分量。 解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。 1112cos sin i i u u u u βθθ''==+,

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学简明教程_第四章_课后作业题答案

第四章 平面问题的极坐标解答 【4-8】 实心圆盘在r ρ=的周界上受有均布压力q 的作用,试导出其解答。 【解答】实心圆盘是轴对称的,可引用轴对称应力解答,教材中的式(4-11),即 2 2(12ln )2(32ln )20A B C A B C ρ?ρ? σρρσρρτ? =+++? ???=-+++?? ?? =?? (a) 首先,在圆盘的周界(r ρ=)上,有边界条件()=r q ρρσ=-,由此得 -q 2 (12ln )2A B C ρσρρ = +++= (b) 其次,在圆盘的圆心,当0ρ→时,式(a )中ρσ,?σ的第一、第二项均趋于无限大,这是不可能的。按照有限值条件(即,除了应力集中点以外,弹性体上的应力应为有限值。),当=0ρ时,必须有0A B ==。 把上述条件代入式(b )中,得 /2C q =-。 所以,得应力的解答为 -q 0ρ?ρ?σστ===。 【4-9】 半平面体表面受有均布水平力q ,试用应力函数 2(sin 2)ΦρB φC φ=+求解应力分量(图4-15)。 【解答】(1)相容条件: 将应力函数Φ代入相容方程40?Φ=,显然满足。 (2)由Φ求应力分量表达式 =-2sin 222sin 222cos 2B C B C B C ρ?ρ?σ?? σ??τ??+?? =+??=--??

(3)考察边界条件:注意本题有两个?面,即2 π ?=± ,分别为?±面。在?±面 上,应力符号以正面正向、负面负向为正。因此,有 2()0,??πσ=±= 得0C =; -q 2 (),ρ??πτ=±= 得2 q B =-。 将各系数代入应力分量表达式,得 sin 2sin 2cos 2q q q ρ?ρ?σ?σ?τ? ?=?? =-??=?? 【4-14】 设有内半径为r 而外半径为R 的圆筒受内压力q ,试求内半径和外半径的改 变量,并求圆筒厚度的改变量。 【解答】本题为轴对称问题,只有径向位移而无环向位移。当圆筒只受内压力q 的情况下,取应力分量表达式,教材中式(4-11),注意到B =0。 内外的应力边界条件要求 r r ()0,()0;(), ()0 R R q ρ?ρρ?ρρρρρττσσ=======-= 由表达式可见,前两个关于ρ?τ的条件是满足的,而后两个条件要求 r 2 22,20A C q A C R ?+=-??? ?+=??。 由上式解得 22 2 ,C () 2() 22 22 qr R qr A R -r R -r =-=。 (a) 把A ,B ,C 值代入轴对称应力状态下对应的位移分离,教材中式(4-12)。 ()()222211cos sin ,(R r )qr R u I K E ρμρμ??ρ?? =-++++??-? ? (b) sin cos 0u H I K ?ρ??=-+=。 (c) 式(c )中的ρ,?取任何值等式都成立,所以各自由项的系数为零

弹性力学简明教程 课后习题答案

《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取 它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。

3-2 用逆解法求解。由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是: 主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到 (4)由求应力。 (5)主要边界x=0,b上的条件为 次要边界y=0上,可应用圣维南原理,三个积分边界条件为 读者也可以按或的假设进行计算。 3-6 本题已给出了应力函数,应首先校核相容方程是否满足,然后再求应力,并考察边界条件。在各有两个应精确满足的边界条件,即 而在次要边界y=0 上,已满足,而的条件不可能精确满足(否则只有A=B=0, 使本题无解),可用积分条件代替: 3-7 见例题2。 3-8 同样,在的边界上,应考虑应用一般的应力边界条件(2-15)。

弹性力学简明习题提示与参考答案

题提示和答案 《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切 应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取

它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得 出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。 3-2 用逆解法求解。由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出 应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边 界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在 x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

弹性理论考试题及答案

需求的价格弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 价格需求量 b. 需求量价格 正确答案是:价格需求量 当某商品的价格上升6%,而需求量减少9%时,该商品属于需求__________弹性。当某商品的价格下降5%而需求量增加3%时,该商品属于需求__________弹性。选择一项: a. 富有缺乏 b. 缺乏富有 正确答案是:富有缺乏 若某种商品的需求无弹性,则其需求曲线是一条的线。 选择一项: a. 与横轴平行(与横轴垂直) b. 与横轴垂直(与纵轴平行) 正确答案是:与横轴垂直(与纵轴平行) 收入弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 收入需求量 b. 需求量收入

正确答案是:收入需求量 税收负担在经营者和消费者之间的分割称为,税收负担最终由谁承担称为。 选择一项: a. 税收归宿税收分摊 b. 税收分摊税收归宿 正确答案是:税收分摊税收归宿 如果某种商品需求富有弹性而供给缺乏弹性,则税收就主要落在身上。选择一项: a. 消费者 b. 生产者 正确答案是:生产者 在需求的价格弹性小于1的条件下,卖者适当__________价格能增加总收益。选择一项: a. 提高 b. 降低 正确答案是:提高 需求弹性的弹性系数是指__________与__________的比值。

选择一项: a. 需求量变动的比率价格变动的比率 b. 价格变动的比率需求量变动的比率 正确答案是:需求量变动的比率价格变动的比率 需求缺乏弹性是指需求量变动的比率__________价格变动的比率,需求富有弹性则是指需求量变动的比率__________价格变动的比率。 选择一项: a. 小于大于 b. 大于小于 正确答案是:小于大于 一般来说,生活必需品的需求弹性__________,而奢侈品的需求弹性。 选择一项: a. 大小 b. 小大 正确答案是:小大 若某种商品需求量变动的比率大于价格变动的比率,该商品属于需求__________弹性。若某种商品需求量变动的比率小于价格变动的比率时,该商品属于需求 __________弹性。 选择一项:

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。

弹性力学试卷及答案

一、概念题(32分) 1、 如图所示三角形截面水坝,其右侧受重度为γ的水压力作用,左侧为自 由面。试列出下述问题的边界条件 解:1)右边界(x=0) 1 1 2)左边界(x=ytg β) 1 1 由: 2 2 2、何谓逆解法和半逆解法。 答:1. 所谓逆解法,就是先设定各种形式、满足相容方程的应力函 数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。 4 2. 所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。 4 3、已知一点的应力状态,试求主应力的大小及其作用的方向。 200,0,400x y xy MPa MPa σστ===- 解:根据公式122x y σσσσ+=± 2 和公式11tan x xy σσατ-=,求出主应力和主应力方向: 2 2000512.31312.322MPa σσ+==- 2 512200tan 0.7808,3757'11400 αα-==-=- 2 4、最小势能原理等价于 以位移表示的平衡微分 (3) 方程和 应力 (3) 边界条件,选择位移函数仅需满足 位移 (2) 边界条件。 二、图示悬臂梁,长度为l , 高度为h ,l >>h ,在梁上边界受均布荷载。试检验应力函数 523322ΦAy Bx y Cy Dx Ex y =++++ 能否成为此问题的解?,如果可以,试求出应力分量。(20分) 000y x x xy x σγτ=-===() () cos ,cos cos ,cos()2sin l n x m n y βπ ββ====+=-() () () () x y l m x xy s s l m xy y s s f f σττσ+=+=???? ?( ) ()() () cos sin 0 cos sin 0 x xy s s xy y s s σβτβτβσβ-=+=?????

弹性力学简明教程(第四版)_习题解答

【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x M 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()222 10000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=????? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M '

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的, 即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:(1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问

相关主题
文本预览
相关文档 最新文档