当前位置:文档之家› 浅谈锂电池的安全和质量

浅谈锂电池的安全和质量

浅谈锂电池的安全和质量
浅谈锂电池的安全和质量

浅谈锂电池的安全和质

集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

浅谈锂电池的安全和质量郑州正方科技:

锂电池在我们生活中的应用已经极为广泛了,在很多的数码设备上都能看到锂电池的“踪影”,我们的手机等电子产品功能越来越多,基本上能够代替很多东西,但是电量始终是目前电子产品最大的问题之一,因为手机上看电影以及玩游戏都是极其耗电的,出厂所带的一块或者两块电池以及不能满足我们的需求。所以移动电源成为当下最热的电子产品之一。

移动电源所采用的电池基本上都是可二次使用的锂电池,其中采用18650的圆柱形锂离子电池居多,而相对来讲,锂聚合物电池的安全系数以及能量密度比更适合作为移动电源的内部电池,但是锂聚合物电池的价格却要比锂离子电池的价格高出不少。这也正是锂聚合物电池被使用较少的主要原因。

锂电池创始人Yoshio Niashi也说过,锂离子电池目前最为重要的则是其安全与质量,而并非能力密度比以及体积重量。作为索尼前副总裁,同时也是首席技术官的Yoshio Niashi的这句话也是直截了当的说出了锂离子电池所存在的最大的问题,锂离子电池的不稳定性也是众所周知的。虽然在最近几年得到的不少的改进,但是依然是

不尽人意。

一方面是电芯以及正负极材料本身的问题,另一方面则是外部的安全电路的问题,前者就目前的技术水平来讲,前者属于硬件问题,可提升的空间相对较少,而后者则是主要通过锂电池保护板 >,来保证其安全问题。就国内来讲,锂电池的安全电路设计对于小型放电设备已经是绰绰有余了,但是网上以及媒体上关于所爆出的锂电事故却依然频频不断,归根究底,除了电芯自身的质量有问题之外,还有一点则是锂电池保护板方面出现了问题,虽然国内的保护板技术完全可以应付锂离子电池的安全问题,但是不少厂家为了节约成本,宁可使用次品保护板也不愿意使用安全参数更高的保护板,这样也就直接导致了锂电池市场的鱼龙混杂。锂离子电池的安全问题也就成为了锂离子电池最大的一个问题。并不是说不可以解决,而是不愿意解决。

不管是锂离子电池还是锂聚合物电池,锂电池保护板必然是不可缺少的,尤其是锂电池的应用已经慢慢涉及到大倍率的放电设备,而这些设备或者工具采用的都是成串组合的锂电池组,一旦发生短路或别的意外情况,其造成的后果是极其危险的。所以,除了政府的调管,更多的还需要厂家的严以律己,同时,作为消费者的我们,也更要杜绝此种产品,这样,整个锂电池市场才能得以净化,得以改善!

配比。

静止式锂电池储能系统安全要求示范文本

静止式锂电池储能系统安全要求示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

静止式锂电池储能系统安全要求示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 锂离子储能大概是什么样的组成和框架,简单介绍一 下。目前典型的锂离子储能单元配置基本都是用18650型 锂离子电池,圆柱型的,它可能是几十个,甚至几百个组 合在一起变成一个电池模块,这个电池模块再加上电池管 理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类, 不是一个非常标准化的分类。从应用规模大小来看,通常 情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系 统的配置大概不大于10个千瓦的范围,当然电池储能是按 照容量来定,这里我们只是简单的粗略来分一下,按照功

率,按照装置和发电功率的大小。 这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,

锂电池的安全性设计参考文本

锂电池的安全性设计参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锂电池的安全性设计参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 为了避免因使用不当造成电池过放电或者过充电,在 单体锂离子电池内设有三重保护机构。一是采用开关元 件,当电池内的温度上升时,它的阻值随之上升,当温度 过高时,会自动停止供电;二是选择适当的隔板材料,当 温度上升到一定数值时,隔板上的微米级微孔会自动溶解 掉,从而使锂离子不能通过,电池内部反应停止;三是设 置安全阀(就是电池顶部的放气孔),电池内部压力上升 到一定数值时,安全阀自动打开,保证电池的使用安全 性。 有时,电池本身虽然有安全控制措施,但是因为某些 原因造成控制失灵,缺少安全阀或者气体来不及通过安全 阀释放,电池内压便会急剧上升而引起爆炸。

一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。

锂电池测试方法

锂电池性能测试方法 锂电池是一个要求高品质、高安全的产品、消费者在使用时往往不清楚电池的性能,导致在使用时电池的工作效率往往达不到理想目标,有时甚至盲目使用还会引起电池爆炸事件的发生,人生安全也会受到损伤,因此了解电池的性能也是至关重要的。 锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等 工具/原料 测试仪 硬质棒 钉子 方法/步骤 方法一、自放电测试 镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 1.0V.1C充电80分钟,搁臵15分钟,以1C放电至10V,测其放电容量C1, 再将电池以1C充电80分钟,搁臵24小时后测1C容量C2,C2/C1×100%应小于15% 锂电池的自放电测试为:一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至 3.0V,恒流恒压1C充电至 4.2V,截止电流:10mA,搁臵15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至 4.2V,截止电流100mA,搁臵24小时后测1C容量C2,C2/C1×100%应大于99%. 方法二、内阻测量 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极

容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 方法三、IEC标准循环寿命测试 IEC规定镍镉和镍氢电池标准循环寿命测试为: 电池以0.2C放至1.0V/支后 1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环). 2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环). 3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环) 4.0.1C充电16小时,搁臵1小时,0.2C放电至1.0V(第50个循环),对镍 氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时. EC规定锂电池标准循环寿命测试 电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁臵1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上. 方法四、内压测试 镍镉和镍氢电池内压测试为: 将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸. 锂电池内压测试为:(UL标准)

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

锂电池生产厂易忽视的安全问题及安全对策措施

锂电池生产厂易忽视的安全问题及安全对策措 施 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂电池生产厂易忽视的安全问题 主要危险因素及相应的安全对策措施 近来,在工作中发现,我国锂电池生产企业对锂电池生产中的安全问题认识不足,主要表现在: ①电池液的毒性认识不足,许多企业不知道电池液是有毒的; ②对锂电池的火灾、爆炸危险性认识不足。下面介绍并分析锂电池生产、储存过程中 的毒性危险和火灾、爆炸危险性。 1、中毒危险电池液中一般含有六氟磷酸锂以及作为溶剂使用的碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯。六氟磷酸锂是有毒物质,而上述碳酸酯类物质化学性质则比较稳定,没有被列入有毒物质类,但是可燃。六氟磷酸锂是电池液中 的重要成分,国内及一些国外出品的六氟磷酸锂没有说明其毒性,但据国际知名的 sigma-aldrich(西格玛公司)制定的六氟磷酸锂《化学品安全技术说明书》(CSDS),说 明了其毒性。六氟磷酸锂的性质简述如下:分子式:LiPF6;燃烧性:不燃(0);毒性:中等(2);剌激性:中等(2);化学活性:低(1);慢性影响:中等(2);TLV-TWA:m3(ACGIH)。括号 内的数字表示分级,从0到4共分5级。 TLV-TWA是美国卫生医师协会推荐的时间加权平均浓度的最高允许值。六氟磷酸锂:白色粉末,吸湿性强,遇水易分解;进入体内可损害健康,多次接触可产生累积的毒性效应,呼吸道、眼、皮肤可受到损伤。一些国内企业出品的六氟磷酸锂,产品说明中注明 含氟化氢(也称为氢氟酸)≤10-4。氟化氢为高毒物质,具有强烈的腐蚀性,损伤呼吸 道、眼、皮肤,可引起支气管炎和肺炎,吸收后可产生全身的毒作用。六氟磷酸锂分解 后的产物是高毒性的,应引起注意。韩国三星公司电解液包装桶上标签注明其应在30℃

静止式锂电池储能系统安全要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 静止式锂电池储能系统安全要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1884-31 静止式锂电池储能系统安全要求(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 锂离子储能大概是什么样的组成和框架,简单介绍一下。目前典型的锂离子储能单元配置基本都是用18650型锂离子电池,圆柱型的,它可能是几十个,甚至几百个组合在一起变成一个电池模块,这个电池模块再加上电池管理单元就作为一个基本的储能单元配置。 关于储能装置的技术方案,我只是简单的来分分类,不是一个非常标准化的分类。从应用规模大小来看,通常情况下有三种类型。 第一种类型,属于小规模的运用,小规模的运用跟系统的配置大概不大于10个千瓦的范围,当然电池储能是按照容量来定,这里我们只是简单的粗略来分一下,按照功率,按照装置和发电功率的大小。

这个上面是一个电池管理系统,下面是有多个电池模块这样组成一个系统。 第二种类型是中规模装置,这个电池模块跟小规模的电池模块结构可能不一样,但是总体来说它的组成还是类似的。 第三种类型是大规模装置,就是把各种各样的模块集成的多一点。 目前的大致应用领域,现在锂离子储能系统在德国也受到了国家政策的鼓励,因为德国目前来说,光伏装机容量已经达到了一定程度,再发展的空间也受到了限制。目前来说,光伏发电毕竟还是一个辅助的能源,还不是主要的能源,这跟能源特点有关系,有光了才能发电,没光了就没有,太阳好了发的就多一点,太阳少了就发的少一点,那么这个时候就要有一个类似水库的东西进行消纳,那这就是储能系统。目前储能系统由于价格和其他因素,它的发展还不是那么的快。 完全从技术的角度来说,储能系统的运用,比如

锂电池安全测试项目方案

锂电池安全测试项目分析及解决方案 截止今天,锂离子电池的应用已经取得了巨大的成功,特别是其广泛应用在了在移动电子产品。但不能忽视的是,自从锂离子电池大规模商业化推广以来,与其相关的安全事故就几乎没有停止过。锂离子电池的安全性已经成为制约其进一步发展的关键因素。鉴于电池材料体系、制造过程一致性等原因,对锂离子电池进行安全性检测将非常的重要。 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4.2: Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 150 ± 2°C. After 10 minutes at 150 ±2°C, the test is complete. Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first 10 minutes. Venting is permitted. Section 4.50: Test Procedure: 5 fully charged cells (per cell manufacture's specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 130 ± 2°C. After 1 hour at 130 ± 2°C, the test is ended. Compliance: Cells shall not flame or explode when exposed to 130°C for 1h.

电动工具用圆柱锂电池的一般安全测试方法通用范本

内部编号:AN-QP-HT967 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 电动工具用圆柱锂电池的一般安全测 试方法通用范本

电动工具用圆柱锂电池的一般安全测试 方法通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 圆柱形高功率镉-镍蓄电池具有优异的高倍率放电性能,在市场上占据主导地位,但由于存在污染问题正逐步退出历史舞台,然而电动工具市场日益庞大,世界各国都在致力于开发电动工具用的环保型锂离子电池来代替镍镉电池。绿色环保的锂离子电池具有比能量高、比功率大、自放电小,充电效率高、工作温度宽、无环境污染等特点,性能远远优于镍镉电池。 这类电池可通过过充、短路、针刺、挤压、重物撞击等安全测试,电池不起火,不爆

锂电池安全测试项目方案

锂电池安全测试项目方案 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4、2:Test Procedure:5 cells at80% +/-5%SOC to be placed in oven at ambient temperature、 The oven temperature shall be ramped at52C per minute to1502 C、 After10 minutes at1502C, the test is complete、Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first10 minutes、 Venting is permitted、 Section 4、50: Test Procedure:5 fully charged cells (per cell manufactures specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature、 The oven temperature shall be ramped at52C per minute to1302

锂电池的安全性设计正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 锂电池的安全性设计正式 版

锂电池的安全性设计正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。

有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状

锂电池生产技术测试题及答案

四川鑫唐新能源科技有限公司 技术部培训后考核试题(满分120分) 姓名:工号:部门:分数: 一、填空题(每空1分,共40分) 1、混料浆料出料前检验项目:固含量、粘度、细度。 2、配料的工艺有干法、湿法、螺杆式三种;配料的体系有水系和油系两种。 3、配料工序潜在的问题有加料顺序错误、搅拌时间过长、搅拌时间过短、搅拌速度过慢、搅拌速度过快、真空度过低、搅拌设备漏油、浆料有气泡、颗粒、粉尘大(答对6项得分)等。 4、涂布工序控制点:环境温湿度、涂布面密度、箔材尺寸、涂布速度、烘箱温度、敷料宽度、极带上下涂层错位(答对4项得分)等。 5、涂布的方式有单面连续涂布、单面间隙涂布、双面连续涂布、双面间隙涂布。 6、涂布工序潜在的问题有料槽液面高度过低或过高、走速过慢、走速过快、烘箱温度过高、烘箱温度过低、激光测厚仪失效、导轨不干净、纠偏和张力失效、刀口损伤、挡板磨损(答对6 项得分)等。 7、压实密度的算法:极带涂布净面密度/(极带辊压后厚度-基材厚度),磷酸铁锂材料的压实密度一般不超过cm3,压实密度对电池容量、充放电效率、内阻、循环性(答对2项得分)等电性能有一定的影响,辊压有冷压、热压工艺,辊压方式有一次辊压成型和二次辊压成型。 8、锂电池制造过程中的天敌:水分、毛刺或金属颗粒、粉尘。 9、配料、涂布、辊压、制片、电芯烘烤、电池烘烤(答对4项得分)是本公司的关键工序。 10、叠片的作用是将正、负极片与隔膜良好的叠和,常见的有叠片和卷绕两种方式,本公司的叠片方式为Z字型叠片。 11、组装是将电芯与极柱、外壳组装成电池;方式有螺杆连接、热熔焊接、超声焊接、激光焊接。 12、组装潜在的问题有孔直径不符合要求、包胶不完整、连接松动、极片损伤、壳内有杂物、焊接强度不够、条码混乱、电池漏测(答对5项得分)等。 13、注液的作用是定量对电池注入电解液及检测电池密封性。 14、电池化成即为小电流激活电池,其电极材料与电解液产生化学反应,在电极材料表面形成一层钝化层,固体电解质界面膜,简称 SEI膜;这层

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

锂电池的安全性设计

锂电池的安全性设计为了避免因使用不当造成电池过放电或者过充电,在单体锂离子 电池内设有三重保护机构。一是采用开关元件,当电池内的温度上 升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是 选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级 微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止; 三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。 有时,电池本身虽然有安全控制措施,但是因为某些原因造成 控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压 便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事 故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生 安全事故的概率要小于百万分之一,这也是社会公众所能接受的最 低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子 电池,采用强制散热尤为重要。

选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。 提高现有安全控制技术的性能,首先要提高锂离子电池芯的安全性能,这对大容量电池尤为重要。选择热关闭性能好的隔膜,隔膜的作用是在隔离电池正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000欧姆,让内部反应停止下来。 当内部压力或温度达到预置的标准时,防爆阀将打开,开始进行卸压,以防止内部气体积累过多,发生形变,最终导致壳体爆裂。

锂电池测试方法

实用标准文案锂电池性能测试方法消费者在使用时往往不清楚电池锂电池是一个要求高品质、高安全的产品、有时甚至盲目使用的性能,导致在使用时电池的工作效率往往达不到理想目标,因此了解电池的性能也还会引起电池爆炸事件的发生,人生安全也会受到损伤,是至关重要的。锂电池性能测试主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等工具/原料测试仪硬质棒钉子步骤方法/ 方法一、自放电测试一般镍镉和镍氢电池的自放电测试为: 由于标准荷电保持测试时间太长,放电至,将电池以0.2C24采用小时自放电来快速测试其荷电保持能力C1,测其放电容量放电至以分钟搁置分钟充电1.0V.1C80,15,1C10V,精彩文档.实用标准文案100%×C2,C2/C124小时后测1C容量80再将电池以1C充电分钟,搁置15% 应小于小时自放电来快速测试其荷电保持24:锂电池的自放电测试为一般采用截止电4.2V,3.0V,恒流恒压1C充电至0.2C能力,将电池以放电至再将电池3.0V测其放电容量C1,1C:10mA,搁置15分钟后,以放电至流容量小时后测1C充电至4.2V,截止电流100mA,搁置241C恒流恒压99%.×C2,C2/C1100%应大于方法二、内阻测量一般分为电流流过电池内部所受到的阻力,电池的内阻是指电池在工作时,测直流内阻时由于电极容易,,交流内阻和直流内阻由于充电电池内阻 很小而测其交流内阻可免除极化内;,产生极化内阻,故无法测出其真实值极化. 得出真实的内值阻的影响,给电池一个利用电池等效于一个有源电阻的特点交流内阻测试方法为:,对其电压采样整流滤波等一系列处理从而精,1000HZ,50mA

电动工具用圆柱锂电池的一般安全测试方法通用版

操作规程编号:YTO-FS-PD535 电动工具用圆柱锂电池的一般安全测 试方法通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电动工具用圆柱锂电池的一般安全 测试方法通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 圆柱形高功率镉-镍蓄电池具有优异的高倍率放电性能,在市场上占据主导地位,但由于存在污染问题正逐步退出历史舞台,然而电动工具市场日益庞大,世界各国都在致力于开发电动工具用的环保型锂离子电池来代替镍镉电池。绿色环保的锂离子电池具有比能量高、比功率大、自放电小,充电效率高、工作温度宽、无环境污染等特点,性能远远优于镍镉电池。 这类电池可通过过充、短路、针刺、挤压、重物撞击等安全测试,电池不起火,不爆炸。可以再电动工具中得到使用。 锂离子电池的安全测试 锂离子电池在电动工具中使用时都采用保护板对电池进行安全保护,但在实际使用时保护板不可能达到100%的可靠性。且还有可能碰到充电器故障或其他种种意外。这就要求锂离子电池必须具有良好的滥用及意外情况的承受能力。我们在电动工具用磷酸亚铁锂锂离子电池开发过程

揭秘!锂电池制造工艺设计全解析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 揭秘!锂电池制造工艺设计全解析 WORD 格式-可编辑揭秘!锂电池制造工艺全解析锂电池结构锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。 目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。 若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。 对于电池厂家而言,需要对产线上的设备大面积进行更换。 锂电池制造工艺锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。 差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 专业知识--整理分享 1/ 7

WORD 格式-可编辑锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。 除此之外,电池组的生产还需要 Pack 自动化设备。 锂电前段生产工艺锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。 配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。 如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。 因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。 锂电中段工艺流程锂电池制造过程中,中段工艺主要是完成电池的成型,主要工艺流程包括制片、极片卷绕、模切、电芯卷绕成型和叠片成型等,是当前国内设备厂商竞争比较激烈的一个领域,占锂电池生产线价值量约 30%。 目前动力锂电池的电芯制造工艺主要有卷绕和叠片两种,对应的

锂离子电池安全性问题(最新版)

锂离子电池安全性问题(最新 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0176

锂离子电池安全性问题(最新版) 1、使用安全型锂离子电池电解质 目前锂离子电池电解液使用碳酸酯作为溶剂,其中线型碳酸酯能够提高电池的充放电容量和循环寿命,但是它们的闪点较低,在较低的温度下即会闪燃,而氟代溶剂通常具有较高的闪点甚至无闪点,因此使用氟代溶剂有利于抑制电解液的燃烧。目前研究的氟代溶剂包括氟代酯和氟代醚。 阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。阻燃电解液是目前解决锂离子电池安全性最经济有效的措施,所以尤其受到产业界的重视。 使用固体电解质,代替有机液态电解质,能够有效提高锂离子

电池的安全性。固体电解质包括聚合物固体电解质和无机固体电解质。聚合物电解质,尤其是凝胶型聚合物电解质的研究取得很大的进展,目前已经成功用于商品化锂离子电池中,但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,它对电池安全性的改善非常有限。干态聚合物电解质由于不像凝胶型聚合物电解质那样包含液态易燃的有机增塑剂,所以它在漏液、蒸气压和燃烧等方面具有更好的安全性。目前的干态聚合物电解质尚不能满足聚合物锂离子电池的应用要求,仍需要进一步的研究才有望在聚合物锂离子电池上得到广泛应用。相对于聚合物电解质,无机固体电解质具有更好的安全性,不挥发,不燃烧,更加不会存在漏液问题。此外,无机固体电解质机械强度高,耐热温度明显高于液体电解质和有机聚合物,使电池的工作温度范围扩大;将无机材料制成薄膜,更易于实现锂离子电池小型化,并且这类电池具有超长的储存寿命,能大大拓宽现有锂离子电池的应用领域。 常规的含阻燃添加剂的电解液具有阻燃效果,但是其溶剂仍是易挥发成分,依然存在较高的蒸气压,对于密封的电池体系来说,

中国锂电池产业发展

中国锂电池产业策略 ——跟踪国外先进技术,制定国内统一标准强化知识产权保护 “锂电池产业与智能电网等新能源和新能源汽车这两大战略型新兴产业关系密切,中国政府将加快出台发展规划和政策支持细则,并鼓励民间创新型高科技企业担当研发生力军。另外,将从财税和信贷等方面给予支持,尤其是向中小型企业倾斜信贷政策。”中国国家信息中心首席经济师范剑平在7月29~30日于深圳举行的“2010锂离子电池新材料国际论坛”上,从宏观政策方面阐述了中国锂电池产业的发展方向。 图1 中国国家信息中心首席经济师范剑平 范剑平还指出,政府推进锂电池产业的发展,重点将关注三个方面的问题:一、跟踪跨国公司最新动向,选择正确的、有希望成为未来主流方向的技术,组织力量进行联合攻关。二、尽快解决中国实用技术标准问题,形成联合攻关和成果共享的统一标准,为产业化应用创造基本条件。三、建立中国高标准知识产权保护体系。 专利问题困扰中国企业 上面第三点关于知识产权保护的问题引起了出席本论坛专业人士的强烈共鸣。台湾立凯电能科技的杨智伟用“专利:中国消失的一块拼图”来形容他对中国目前专利市场现状的担忧。他表示,其实,对于知识产权问题,中国电池产业长期以来一直面临国外专利的商业阻碍以及技术垄断的干扰。 例如,早在2000年,中国镍氢电池企业就曾受到美国Ovonic公司在专利侵权方面的指控。包括比亚迪、乐凯、沈阳三普、南海新力和深圳三俊等8家中国电池公司向Ovonic缴纳了大笔专利许可费。 2003年7月,索尼在北京对比亚迪提出锂电池专利诉讼。目前,比亚迪每年用于相关事件的法律开支大约在100万美元。 2008年7月,3M对索尼、索尼电子、联想、联想美国、日立、松下等11家公司进行了电池专利技术方面的起诉。 因此,中国相关管理部门和企业应该在电池专利方面给予更多重视,尤其是电池外销的企业,应尽可能多地掌握知识产权方面的法律知识,保护自身的权益,以免受到巨额专利授权费的伤害。 另一方面,截至2010年7月29日,中国关于磷酸铁锂电池的专利有201个,包括材料组成专利24个,材料工艺专利177个。从2003年到2010年,中国企业在这方面的专利申请数量一直在上升。但从2005年起,最终核准件数与实际申请件数的比率反而呈现出持续下降的趋势。 针对上述情况,杨智伟指出,企业要注意专利申请的盲目性问题,因为专利数量多少并不能完全代表一个企业

相关主题
文本预览
相关文档 最新文档