当前位置:文档之家› 关于净水厂排泥水处理设计中几个问题的思考

关于净水厂排泥水处理设计中几个问题的思考

关于净水厂排泥水处理设计中几个问题的思考
关于净水厂排泥水处理设计中几个问题的思考

关于净水厂排泥水处理设计中几个问题的思考

摘要:近年来,我国的城市化进程有了很大进展,在城市中,净水厂发挥着重

要的作用。但是我国目前城市净水厂在排泥水处理方面还存在很多的不足,像构

筑物太多、污泥的负荷比较低、运营管理工作繁杂以及泥水停留时间过于长等等。因此,净水厂只有不断对传统的泥水处理工艺进行完善,并引进国外一些先进的

处理技术,从而更好地实现对净水厂污泥水的处理效果,进一步不断提升对我国

环境的保护工作。鉴于此,本文先分析了城市净水厂排泥水构筑物的设计,然后

论述了城市净水厂工艺设计的发展方向。

关键词:排泥水;污泥量;排水排泥池;叠螺式污泥浓缩机

引言

城市净水厂排泥水主要由沉淀池、澄清池排泥水和滤池反冲洗废水组成,占

水厂总产水量的4%~7%。水厂排泥水总固体含量一般在0.1%~2%之间,以无

机颗粒和泥沙为主,不乏部分有机物,主要来源于原水中色度、浮游生物等。排

泥水若直接排入江河、湖泊等水域,会对环境造成一定程度的污染。水厂排泥水

处理在国内起步较晚,1990年前几乎一片空白。随着城市建设和环境保护事业的不断发展,水厂排放的生产废水对环境的污染越来越引起社会的关注。

1排泥水污泥量确定

水厂排泥水中污泥总量的估算涉及工程土建规模、脱水机械和机泵设备的容

量配置,是确定工程规模和投资成本的重要依据。污泥总量的估算包括排泥水量

和干污泥产量,排泥水量决定排泥水处理工程中调节池和浓缩池的规模,干污泥

量则决定脱水设备的选择。因此,必须确切掌握水厂沉淀池排泥水日产量、滤池

反冲洗废水日产量等数据,以确定排泥水量。干污泥量的计算方法较多,日本、

英国、德国各有不同的计算公式,但大同小异。在实际运行中还需做好污泥量的

实测工作,特别是SS与浊度的对应关系。因此,在排泥水处理项目建设时应根据水源情况、实际运行负荷和水厂运行经验,综合考虑地域、水质差异,修正干泥

量计算方法,以期缩小设计和运行干泥量的差距,指导新建水厂。

2净水厂排泥水处理设计中几个问题

2.1关于原水浊度的保证率问题

净水厂排泥水处理起步较早的日本,全量完全处理的保证率按95%及以上设计,原水浊度设计取值按多年平均浊度的4倍取值。按4倍取值适合于浊度变化

幅度较大的河流,但对于浊度变化幅度较小水库而言,有较大的安全余地,它实

际上可能是3倍、2倍多、甚至是1倍多,也就是说按4倍取值可以涵盖95%保

证率的各种情况。另外水库水质中除浊度外,还有色度、藻类、铁、锰等可溶性

固体,经过混凝、沉淀、过滤后都要转化为水厂的泥量,因此,对于水库而言,

在计算干泥量时不计及色度、铁、锰等可溶性固体所产生的干泥量,抵消了一部

分安全度,但按多年平均浊度的4倍取值,其安全余度仍能涵盖住色度、铁、锰

等溶解性固体等对干泥量的贡献。浊度(悬浮物SS)、水位、流量的测定复杂,色度和可溶性固体的测定则需要更多的仪器、药品和人工投入,势必增加更多的

成本。可借鉴日本的经验,不分河流水源和水库水源,95%的保证率的浊度一律

按多年平均浊度的4倍取值。对于水库水源而言,如果其保证率取95%,原水浊度设计取值按多年平均浊度的4倍取值,当实际上发生的浊度超过95%保证率所对应的浊度值时,如果再采用临时存储措施,其保证率有可能达到100%,达到

环保部门要求的零排放。

城市给水厂排泥水处理工艺设计

城市给水厂排泥水处理工艺设计 摘要:通过设计干泥量的计算方法,确定排泥水处理规模。根据排泥水处理系统工艺流程对排泥水收集、调节、浓缩和脱水工艺进行分析,并对其中排水池、排泥池、浓缩池、平衡池和脱水工艺的设计要点进行总结。 关键词:给水厂;排泥;设计 给水厂在生产过程中会产生废水(含泥),若直接排放入江河湖泊之中,将会成为水体污染的重要污染源,且其中含有的泥沙等还会将河床抬高,严重影响江河的航运能力及泄洪能力。但是只要将给水厂的废水进行合理处理,不但可以改善水环境,与此同时还可以回收占水厂供水量2%~4%的水量,既可以起到保护水源的作用,还可以节约水资源。本文将对给水厂排泥水处理设计进行研究讨论与总结。 一、设计干泥量计算 排泥水处理系统设计首先必须对给水厂日产干泥量进行合理取值,日产干泥量取值的大小决定污泥脱水机械选型的配备和设计、工程总投资和工程的正常运行。 一般条件下,设计干泥量应按照《室外给水设计规范》(GB 50013-2006)中的公式计算:S=(K1C0+K2D)×Q×10-6(1)式中C0—原水浊度设计取值,NTU;K1—原水浊度单位NTU与悬浮物SS单位mg/L的换算系数,应经过实测确定,据国外有关资料介绍,K1=0.7~2.2;D—药剂投加量(mg/L);K2——药剂转化成泥量的系数;Q——原水流量(m3/d)S—干泥量(t/d)设计中需要注意的是,实际工程中投加的铝盐或铁盐投加量D应换算成AL2O3 或Fe 量,两种药剂对应的转化成泥量系数K2 为 1.53 和 1.9[1]。而K1 应进行试验分析,在条件不足的情况下,可通过对采用相同水源或水系的给水厂泥系统分析确定K1 取值。 二、排泥水处理规模 根据我国实际情况,《室外给水设计规范》(GB50013-2006)提出排泥水处理系统规模应按能完全处理全年日数的75%~95%确定,在高浊度较频繁和超量排泥水可排入大江大河的地区可采用下限。因此在确定排泥水处理系统规模时应对原水浊度进行频率分析,选取一定保证率作为设计依据,从而确定公式(1)中的原水浊度设计取值C0,进而计算出设计干泥量。 三、排泥水处理工艺 沉淀池排泥水和滤池冲洗废水合并处理,给水厂排泥水的两种处理系统:沉淀池排泥水和滤池冲洗废水。沉淀池排泥水的含固率高于滤池冲洗废水的20-30 倍以上,其悬浮杂质含固率通常均高于0.3%,滤池反冲洗废水水量往往比沉淀池

净水厂排泥水污泥量计算

原水浊度计算取值为40NTU,色度计算取值为15,加药量计算取值为12mg/L,原水悬浮固体与浊度的相关关系式为1:1.35,净水厂的设计规模按72.6万m3/d考虑,则计算干泥量如下: 二、设计排泥水干泥量 根据英国水研究中心《污泥处理指南》提供的给水厂排泥水干泥量计算公式为: .1 2.0+ + = 53 + DS9.1 A F SS C 其中,DS——设计干固体含量,mg/L; SS——所去除的原水中的悬浮固体,mg/L,一般SS/NTU 的比值变化范围为0.5~2.0左右; C——所去除的色度(度); A——铝盐投加率(以Al2O3计,mg/L); F——铁盐投加率(以Fe2+计,mg/L)。 由于出厂水的浊度、色度一般控制在出厂水水质标准以下,为此,在计算干泥量中出厂水的浊度(GB5749-2006规定值为1,原水与净水技术条件限制时为3)、色度(GB5749-2006中规定15度,铂钴色度单位)予以忽略。 DS=40/1.35+0.2×15+1.53×12 =51(mg/L) 平均日产干泥污泥量: 51×10-6 t/m3×72.6×104 m3/d≈37(t/d)

沉淀池排泥水的平均含固率约为5%,则复核排泥水总量约为7400m3/d。 三、污泥调节池容积计算 污泥调节池的作用是混合、均质排泥水,使之有利于后续污泥浓缩。 污泥调节池容积按停留时间7小时计算,则污泥调节池容积V=367.5m3/h×6h=2205(m3),取2200m3。 选用3台(2用1备)潜污泵,型号为,参数 四、污泥浓缩池容积 污泥浓缩时间按照24h进行设计,则污泥浓缩池容积:V=367.5m3/h×24h=8808(m3) 排泥水平均含固率0.6%,经浓缩后平均含固率达到3%,则上清液排放量为:Q清=367.5×(1-0.03)=356(m3/h)浓缩后的污泥采用泵输送到污泥平衡池,污泥量为:Q泥=8808×0.03=264(m3),污泥泵每天运行20小时,则泵的型号为13.2m3/h 五、污泥脱水机 污泥脱水机设计运行12h,总处理泥量为225m3。

净水厂排泥水处理系统工艺设计

净水厂排泥水处理系统工艺设计 发表时间:2017-11-03T10:27:50.397Z 来源:《基层建设》2017年第21期作者:鲍栋东[导读] 摘要:随着水源污染的严重、居民环保意识的增强、健康条件的日益改善,饮用水水质标准要求的提高,常规的絮凝、沉淀、过滤、消毒净水工艺不能满足水质不断提高的要求。 杭州高新(滨江)水务有限公司浙江省杭州市 310051 摘要:随着水源污染的严重、居民环保意识的增强、健康条件的日益改善,饮用水水质标准要求的提高,常规的絮凝、沉淀、过滤、消毒净水工艺不能满足水质不断提高的要求。因此国内外研究学者积极研究开发各种饮用水深度处理技术达到更好的净化水质的效果。深度处理通常是设计在常规处理工艺之后,采用合适的处理方法,将常规处理工艺不能有效去除的污染物或消毒副产物的前体物有效去除。饮用水深度处理技术研究和应用在我国已呈现出蓬勃发展的形势。 关键词:净水厂;排泥水;处理系统;工艺设计 1净水厂生产排泥水的特性 天然水体中含有多种有机与无机物质,通过净水厂净水工艺处理,大部分作为净水工艺的生产副产物排出工艺流程,其中除通过滤网等物理截留的大颗粒固体物质外,均以生产排泥水的形式存在,前者可直接作为固体废弃物处理,而后者由于体积大,数量多,需经过减量化处理,以便于运输与后期处置,并尽量实现资源化。 2净水厂排泥水处理技术设计要点 2.1排泥水污泥量确定 在从自来水厂排出的污泥总污泥量的估计是有关工程和土木工程的规模、脱水机械和泵设备的容量配置,并确定项目的规模和投资成本的重要依据。污泥总量的估计包括污泥排放量和干污泥量,污泥排放量确定污泥处理工程的调节池、浓缩池的大小,和干污泥量决定了脱水设备的选择。因此,必须掌握水泥浆出水量、输出滤池反冲洗水沉淀池等数据,确定泥浆含量。干污泥量的计算方法较多,日本、英国、德国各有不同的计算公式,但大同小异。在实际运行中还需做好污泥量的实测工作,特别是SS与浊度的对应关系。因此,在排泥水处理项目建设时应根据水源情况、实际运行负荷和水厂运行经验,综合考虑地域、水质差异,修正干泥量计算方法,以期缩小设计和运行干泥量的差距,指导新建水厂。 2.2调节池(排水排泥池)类型选择 分建式排水排泥池一般在下列情况下使用:(1)沉淀池排泥水和滤池反冲洗废水的污泥浓度相差较大,且滤池排放初滤水时,宜采用分建式,有利于滤池反冲洗废水的回收。(2)净水厂先期建成投产,而排泥水处理系统后建,但回收滤池反冲洗废水的回流水池(即排水池)与净水厂构筑物同步建成。(3)净水厂沉淀池排泥水送往厂外集中处理,而滤池反冲洗废水经排水池调节后,回流到净水工艺中重复利用,或因水质不宜回收而排放,一般应采用分建式调节构筑物。但在下列情况下宜采用合建式排水排泥池:(1)当净水厂污泥全部送往厂外集中处理,不考虑厂内回收生产废水时,一般宜采用合建式综合排泥池,接纳和调节沉淀池排泥水和反冲洗废水,均质均量输出。(2)当排泥水处理系统规模较小时,也可采用合建式调节构筑物。(3)生产废水不回收利用,需经沉淀处理后排放,也可采用合建式综合排泥池。 2.3脱水机械的选型 脱水机械的选择,需考虑泥饼含固率、污泥回收率、调质药剂用量、电耗、设备投资、运行管理条件、对进泥及场地等因素,并结合水厂规模、场地条件、管理条件等实际情况。水厂的污泥性质与规模对工艺的选择有很大影响。 3某水厂工程设计实例 3.1设计干污泥量的计算 一般条件下,设计干泥量应按照《室外给水设计规范》(GB50013—2006)中的公式。渭南市某水厂设计规模一期为10×104m3/d,二期规模为20×104m3/d,采用平流沉淀池、V型滤池作为主要净水工艺。根据业主方提供的原水水质检测数据,原水浊度按30NTU设计。经计算,该工程一期工程设计干污泥量为6.81t/d,二期设计干污泥量为13.62t/d。 2.2污泥处理工艺流程 排泥水处理系统通常包括调节、浓缩、平衡、脱水等工序,该工程污泥处理工艺流程见图1。 3.2主要建、构筑物工艺设计 3.2.1排水排泥池 排水排泥池为地下钢筋混凝土结构,分为4格,其中2格排水池用于收集和调节滤池反冲洗排水以及初滤水(V型滤池和活性炭滤池),上清液经提升泵回流至厂区配水井内回用。另外2格排泥池用于接纳和调节絮凝沉淀池排泥以及排水。排水池及排泥池排入泥水量如表1所示。排水池调节容积按二期最大一次反冲洗水量及初滤水水量之和计算。排水池有效容积为1180m3,分为2格,并联运行。每格设排水泵2台,单台流量Q=217~372m3/h,扬程H=16~11m,功率N=22.0kW。排泥泵2台,单台流量Q=110~220m3/h,扬程H=8.3~5.5m,功率N=5.5kW。每格内排水池设液位计1台,自动控制排水泵运行。排泥池有效容积为1220m3,分为2格,并联运行。单格池内设污泥提升泵2台,流量Q=112~192m3/h,扬程H=18~12.6m,功率N=15kW。每格内排泥池设液位计1台,自动控制排泥泵运行。排泥池 设潜水搅拌机4台,防止污泥沉积。排泥池和排水池均利用池内潜污泵进行放空。

净水厂设计计算说明书

市西区水厂一期扩建工程设计说明书 1自然条件 1.1地形、地质 市地处闽江下游盆地,盆地总面积约200Km2,四周有鼓山、旗山、五虎山莲花峰等群山环抱。地貌类型以平原为主,地势由西北向东南倾斜,市中心散落有乌山、于山和屏山等小山,南台岛上有仓山、盖山和城门山。市区高程一般为5~15m(黄海高程系),闽江横贯市区,由于地势较低,易受洪涝灾害,需沿江、河筑堤。市区主要有两类地质:一是靠山的丘陵地区,主要在于于山、乌山、屏山一带以及市区四周群山余脉高地和仓山区丘陵地带,容许承载力约0.25Mpa;二是淤积、冲积地区为高压缩性土,围较广,淤泥埋藏浅,容积承载力为0.05~ 0.08MPa,地下水位高,一般在地面下0.5~2.0m。 1.2气象条件 市属于亚热带海洋性季风气候,夏季炎热多雨,冬季温暖少雨。 (1)气温 年平均:19.6摄氏度 极端最高:41.1摄氏度(1950年7月19日) 极端最低:-2.5摄氏度(1940年1月25日) (2)水量 年平均:1355.8mm 年平均降水天数:151.2天 24小时最大降水量:167.4mm 暴雨主要出现月份:5~9月 (3)霜冻 年无霜期326天 (4)风 常年主导风向为西北风和东南风,冬季多西北风,夏季盛行东南风。 平均风速:2.8m/s 极大风速:40.7m/s

基本风压:0.6KN/m2 台风影响本市始于5月,结束于11月中旬,以7月中旬至9月中旬次数最多。 (5)湿度 年平均相对湿度77% 最大相对湿度84% 最小相对湿度5% (6)蒸发量 年平均蒸发量 1451.1mm 1.3水文条件 闽江是省最大河流,水量充沛。闽江在以下分为两支,北支为北港,穿越市区至马尾,将中心城区分为江北平原和南台岛两部分,长为30.5km,平均水面坡降0.15‰,枯水季水面宽150~200m。南支为南港,又名乌龙江,经洪塘、湾边、纳入大漳溪河以后,出峡兜于马尾、长乐营前与北港又合二为一,南港长34.4km,进入河口段经亭江、倌口、琅歧流入东海。闽江流域面积60992Km2,水系全长2959Km,流经36个县、市。根据竹歧水文站1936年至1980年统计资料:闽江下游年平均径流总量为552.7亿m3,1992年7月7日最大洪峰流量30300m3/s,1971年8月30日最枯流量196m3/s,水口电站建成后,水库对洪峰调节作用不显著,最大下泄流量(坝下保证流量)为308m3/s。市区西端洪山桥最高水位8.441m、最低水位1.181m。 1.4地震发生情况 市区位于沿海长乐——诏安深大断裂带北段,为中等地震潜在震源区(M=6级),在未来100年具有发生大于M=5.5级以上地震的危险性。在活动断裂带附近地段可能会局部放震效应,故在断裂带附近的建筑物除7度地震烈度抗震设防外,还应因地制宜采用有效的构造加强措施。

某给水厂设计计算课程设计_ 仅供参考

目录 1 总论 . ...................................................................................................................................... 4 1.1设计任务及要求 ............................................................................................................. 4 1.2基本资料 ......................................................................................................................... 4 1.2.1水厂规模 .................................................................................................................. 4 1.2.3厂区地形 .................................................................................................................. 5 1.2.4工程地质资料 .......................................................................................................... 5 1.2.6气象资料 .................................................................................................................. 5 2总体设计 ................................................................................................................................ 6 2.1净水工艺流程的确定 ..................................................................................................... 6 2.2处理构筑物及设备型式选择 ......................................................................................... 6 2.2.1药剂溶解池 .............................................................................................................. 6 2.2.2混合设备 .................................................................................................................. 6 2.2.3反应池 ...................................................................................................................... 6 2.2.4沉淀池 ...................................................................................................................... 6 2.2.5滤池 .......................................................................................................................... 7 2.2.6消毒方法 .................................................................................................................. 7 3混凝沉淀 ................................................................................................................................ 7 3.1 混凝剂投配设备的设计 ................................................................................................ 7 3.1.1溶液池 ...................................................................................................................... 8 3.1.2溶解池 ...................................................................................................................... 8 3.1.3投药管 ...................................................................................................................... 9 3.2 混合设备的设计 ............................................................................................................ 9 3.2.1设计流量 .................................................................................................................. 9 3.2.2设计流速 .................................................................................................................. 9 3.2.3混合单元数 .............................................................................................................. 9 3.2.4混合时间 .................................................................................................................. 9 3.2.5水头损失 .................................................................................................................. 9 3.2.6校核GT 值 . (9)

净水厂排泥水处理工艺简析

净水厂排泥水处理工艺简析 发表时间:2019-06-24T16:03:37.863Z 来源:《基层建设》2019年第7期作者:梁证杰[导读] 摘要:文章主要从排泥水处理及其污泥处置必要性出发,分别阐述了净水厂排泥水处理技术设计要点,以及净水厂排泥水处理,以期相关行业提供参考与借鉴。 身份证号码:44190019910502XXXX 摘要:文章主要从排泥水处理及其污泥处置必要性出发,分别阐述了净水厂排泥水处理技术设计要点,以及净水厂排泥水处理,以期相关行业提供参考与借鉴。 关键词:净水厂;排泥水;处理工艺 一、排泥水处理及其污泥处置必要性 随着我国城市化进程的加快加深,越来越多的自来水厂建立,公众环保意识也在不断加强,政府对环境污染治理程度也逐渐加大,开始把对净水厂污泥的处理、处置方法和技术的研究提上日程。净水厂污泥对环境危害性相对较小,其处理处置也容易被忽略,大多数净水厂污泥被直接排入水体,其危害性主要表现在以下方面: (1)排泥水中大量泥沙、悬浮物会在河道产生泥沙淤积,影响其正常功能。室外给水设计规范也严格规定净水厂排泥水排放水质需要符合《污水综合排放标准》GB8978。 (2)排泥水中的大量悬浮物、有机物等污染物会造成水体污染。数据显示,2012年全国污水排放总量达到了684.6亿吨,对环境的冲击十分明显。 (3)净水厂产生的大量铝污泥,排入水体后会危害水中生物,破坏水体生态平衡。妥善处置水厂排泥水,也有助于缓解水资源短缺和创建节水型社会。近年来,随着人们用水量的增加,挖掘现有水处理构筑物的产水能力已成为一个热点方向,通过斜管(板)沉淀池的优化来提高澄清池产水能力。将排泥水处理回用也是一种利用现有构筑物产水的方式。我国新建和改造的净水厂均考虑了排泥水处理系统。如广州市南洲水厂、内蒙古某经济开发区净水厂均对排泥水进行了妥善的处置。 二、净水厂排泥水处理技术设计要点 1.调节池(排水排泥池)类型选择 分建式排水排泥池一般在下列情况下使用: (1)沉淀池排泥水和滤池反冲洗废水的污泥浓度相差较大,且滤池排放初滤水时,宜采用分建式,有利于滤池反冲洗废水的回收。 (2)净水厂先期建成投产,而排泥水处理系统后建,但回收滤池反冲洗废水的回流水池(即排水池)与净水厂构筑物同步建成。 (3)净水厂沉淀池排泥水送往厂外集中处理,而滤池反冲洗废水经排水池调节后,回流到净水工艺中重复利用,或因水质不宜回收而排放,一般应采用分建式调节构筑物。 但在下列情况下宜采用合建式排水排泥池 ①当净水厂污泥全部送往厂外集中处理,不考虑厂内回收生产废水时,一般宜采用合建式综合排泥池,接纳和调节沉淀池排泥水和反冲洗废水,均质均量输出。②当排泥水处理系统规模较小时,也可采用合建式调节构筑物。③生产废水不回收利用,需经沉淀处理后排放,也可采用合建式综合排泥池。 2.排泥水污泥量确定 在从自来水厂排出的污泥总污泥量的估计是有关工程和土木工程的规模、脱水机械和泵设备的容量配置,并确定项目的规模和投资成本的重要依据。污泥总量的估计包括污泥排放量和干污泥量,污泥排放量确定污泥处理工程的调节池、浓缩池的大小,和干污泥量决定了脱水设备的选择。因此,必须掌握水泥浆出水量、输出滤池反冲洗水沉淀池等数据,确定泥浆含量。干污泥量的计算方法较多,日本、英国、德国各有不同的计算公式,但大同小异。在实际运行中还需做好污泥量的实测工作,特别是SS与浊度的对应关系。因此,在排泥水处理项目建设时应根据水源情况、实际运行负荷和水厂运行经验,综合考虑地域、水质差异,修正干泥量计算方法,以期缩小设计和运行干泥量的差距,指导新建水厂。 3.脱水机械的选型 脱水机械的选择,需考虑泥饼含固率、污泥回收率、调质药剂用量、电耗、设备投资、运行管理条件、对进泥及场地等因素,并结合水厂规模、场地条件、管理条件等实际情况。水厂的污泥性质与规模对工艺的选择有很大影响。 三、净水厂排泥水处理 水厂排泥水处理工艺流程应根据水厂的具体情况来确定,一般来说处理工艺由调节、浓缩、脱水和泥饼处置4道工序或者其中某些组成。有研究者调查后列出了国内南北有代表性的排泥水处理工艺见表1,综合分析了各种工艺流程。 表1 国内典型排泥水处理工艺技术路线 2.调节工艺 根据滤池反冲洗水与沉淀池排泥水不同的水质情况特点,排泥水常规处理方式大致可分为下面几种:(1)共同处理滤池反冲洗水与沉淀池排泥水后再回用,适用于滤池反冲洗水不能满足回用要求或单独浓缩无法满足脱水机械的要求以及沉淀池排泥水沉降性能较差的水厂。虽然两者混合后能省却排水池,在一定程度上减少投资,但是由于滤池反冲洗水对沉淀池排泥水起了一个稀释的作用,反而不利于后面的污泥浓缩,后期处理费用会增加。

津滨水厂排泥水处理工程介绍

天津市津滨水厂排泥水处理工程介绍 李洪清.天津市华淼给排水研究设计院有限公司 摘要:介绍了津滨水厂排泥水处理工程的工艺流程以及构筑物设计。该工程采用重力浓缩和离心脱水处理技术,处理干泥量为34.24 t/d,同时回收利用上清液,节约了水资源。工程自动化程度高,运行管理方便,回用水紫外消毒处理工艺有效保证了水质安全。关键词:排泥水;处理;重力浓缩;离心脱水 天津市津滨水厂的生产排泥水主要来源于沉淀池排泥及滤池反冲洗排水,排泥水中的污泥主要由原水中的泥沙、腐殖质、藻类等悬浮杂质和水厂投加的絮凝剂、助凝剂组成¨J。津滨水厂排泥水处理工程采用浓缩与脱水结合的方法,力求做到工艺自动化程度高、流程简单、管理方便,占地少、节省投资和运行费用,同时回收利用上清液,节约水资源。该工程处理干泥量为34.24 t/d,浓缩后污泥的含固率为3%,脱水后泥饼的干固率在22%以上。 1 工艺流程该排泥水处理工程工艺流程如图1所示。 图1 工艺流程 2 构筑物设计2.1 排水池及回流泵房排水池起到既初步沉淀反冲洗水,又调节水量 的作用。排水池共1座,分为2格。平面尺寸为40 m×12 m,有效水深为 3 m,有效容积为1 440 m。,水力停留时间为1.15 h。排水池设泵吸泥机2台,单台跨度为11.15 m,N=0.75 kW。吸泥泵1台,泵性能参数:9=70 m /h,H=15 m,N=7.5 kW。回流泵房选用潜水排泥泵4台(2用2备),单泵性能参数:p=800 m /h,H=10 m,N=37 kW,通过潜水泵将排水池内经紫外线消毒后的上清液输送 至调节池回用。紫外线消毒可防止回流到原水调节池中的上清液出现病毒、原生虫的富集,以确保再利用水的水质安全。 2.2 排泥池及排泥泵房排泥池间歇接纳高密度沉淀池的排泥及排水池的底泥,起到调节排泥量和排泥浓度的作用。排泥池共2组,单组平面尺寸为24 m ×12 m,有效容积为720 m ,有效水深为2.5 m,总排泥量为475.6 m /h,水力停留时间为3 h。为保证后续污泥浓缩池进泥均匀,排泥池设潜水搅拌器调蓄搅拌。选用潜水搅拌器4台,单台性能参数:=400 mm,n=980 r/min,N=4.0 kW。排泥泵房选用潜水排泥泵6台(4用2备),单泵性能参数:Q=140 In /h,H=15 In,N=15 kW。 ·45 · 第4卷第3期供水技术2010年6月 通过潜水排泥泵将污泥输送至污泥浓缩池。2.3 污泥浓缩池浓缩池是污泥处理工艺的核心部分,对来自排泥池的排泥水进一步浓缩处理,以提高机械脱水效率,其底泥浓度将直接影响污泥脱水的效果。辐流式浓缩池共2座,单池面积为706.5 Ill ,直径为30 m,有效水深为4.5 Ill,有效容积为 3 180

净水厂排泥水处理工程的过程自动控制

龙源期刊网 https://www.doczj.com/doc/4314407336.html, 净水厂排泥水处理工程的过程自动控制 作者:鲍栋东 来源:《装饰装修天地》2020年第13期 摘 ; ;要:水是生命之源,是万物生长之根本,一直以来,我国大力发展,改革创新,取得了非常不错的成就。现阶段的地方市政基础设施建设过程中,城市自来水厂项目建设引起了很多人的高度关注,特别是关于水厂排泥水(沉淀池排泥及滤池反冲洗水)的处置及回用问题。 关键词:净水厂排泥水处理工程;过程自动控制 1 ;引言 我国经济建设的快速发展带动我国各行业发展迅速,为我国基础建设贡献力量。净水厂作为重要的基础设施,其安全稳定的运行对整个社会具有重要意义,提高给水厂自动控制水平具有重要的现实意义。由于净水处理的处理技术不够完善,导致很多净水处理工艺产生的生产污水直接排放到河道里,增加了水资源的污染,容易对水循环的利用产生较大的浪费。 2 ;工程背景 某市某自来水厂取用青草沙水库作为水源,处理水量为12.7×104m3/d,水厂采用混凝—沉淀—过滤—消毒的传统制水工艺,排泥水经排泥池收集后,间歇排入某江内。 3 ;净水厂水处理过程 净水厂的水处理过程,粗略地分为3个过程,这3个过程分别是水源地取水、厂区净水、向用户供水。而净水处理的过程主要为4个步骤:混凝、沉淀、过滤和消毒,这4个步骤主要为净水厂的水处理步骤。在厂区里,这4个步骤都需要有相对应的设备来处理。在城市当中,这些过程都需要通过管道和一系列的设备以及投放处理水质的药品,来保证让水质处理的过程更加的有效,能够以合格的水质产品产出来。而在进行水质处理的这个过程当中,产生残渣水,主要来源于絮凝池、沉淀池和过滤反冲洗过程,被叫做“排泥水”。排泥水中包括有机和无机的化合物残渣,如泥沙、悬浮物、混凝剂及其产生的胶体颗粒等,以无机成分为主。污泥被压缩和脱水后,大部分作为废弃物被填埋,这造成填埋场地附近水体中铝离子含量升高,形成不可预见的危害。 4 ;净水厂排泥水处理工程的过程自动控制 4.1 ;外力对悬浮颗粒的疏松结构破碎作用

20万吨净水厂设计计算说明书 王帅

目录 一、总论 (2) 1.设计任务及要求 (2) 2.设计原始资料 (2) 二、总体设计概况 (3) 1、水厂规模 (3) 2、总体设计 (3) 2.1确定给水处理厂工艺流程 (3) 2.2水厂工艺方案确定及技术比较 (3) 三、给水单体构筑物设计计算 (5) (一)、混凝剂配制和投加 (5) (1)、设计参数 (5) (2)、溶液池设计及计算 (5) (二)、混合设备的设计 (6) (三)、反应设备的设计 (6) 1、回转式隔板絮凝池 (6) 2、平流沉淀池 (9) 3、滤池 (12) 4、进出水系统 (20) 四、消毒 (21) 五、其他设计 (21) 1、清水池 (21) 2、吸水井的设计 (24) 3、二级泵房的设计 (24) 4、辅助建筑物面积设计 (24) 5、水厂管线 (24) 6、道路及其它 (24) 六、水厂总体布置 (25) 参考文献 (25)

一、总论 1.设计任务及要求 给水处理课程设计的目的,一方面在于培养学生的工程思想,另一方面在于学习给水处理工艺设计的基本方法。具体表现为巩固与运用所学的理论知识,熟悉设计步骤与内容,培养分析问题和解决问题的能力。 2.设计的原始资料 该城镇地处北京东部,是北京的一座重要的卫星城市,现有一座地下水源水厂和相应配套的供水系统。近年来,由于人口的增多及工业发展,城镇规模不断扩大,现有的城市基础设施,特别是城市供水系统难以满足供水要求。目前生活供水严重不足,大部分地区采用定时供水措施勉强维持,楼房二层无水,一些平房在高峰用水时也常发生停水现象,严重影响了市民的正常生活和工业生产发展,急需开发新水源以解决供水不足的问题。 (1)地理条件:地形平坦,稍向西倾斜,地势平均标高为22米(河岸边建有防洪大堤)(2)厂位置占地面积:水厂位置距河岸200米,占地面积充分。 (3)水文资料:河流年径流量3.76――14.82亿立方米,河流主流量靠近西岸。 取水点附近水位:五十年一遇洪水位:21.84米; 百年一遇洪水位:23.50米; 河流平常水位:15.80米; 河低标高:10米。 (4)气象资料及厂区地质条件:全年盛行风向:西北;全年雨量:平均63毫米;冰冻最大深度:1米。厂区地基:上层为中、轻砂质粘土,其下为粉细砂,再下为中砂。地基允许承载力:10~12t/m2。厂区地下水位埋深:3~4米。地震烈度位8度。

净水厂处理工艺详解(业内人士的良心科普)

净水厂处理工艺详解(业人士的良心科普) 水是生命之源,水占人体组成的 70%,科学研究表明,成年人平均每天需水量 2500ml 以上,可以说水质是身体健康的基础保障。 拧开水龙头,自来水缓缓流出,我们在享受现代生活带来的便利的同时,有没有想过这些随开随用的自来水究竟经过了哪些工艺流程才由江河湖海中流入千家万户,有时候流出的水像牛奶一样白,而且里面有大量的气泡,散发出消毒水的味道,要静置几分钟才恢复清澈,这些现象究竟是如何形成的,作为普通消费者的我们又如何去辨别水质的好坏。农村来的朋友可能知道,以前没有自来水,家里都有一口大水缸,父亲斜着身子,扁担吱呀呀,从池塘挑着水回家,倒进水缸后打上明矾静止一段时间缸底开始出现沉淀,这是农村最原始的水处理工艺。 后来,大家发现将水缸集中在一起,由专人统一打明矾,效率更高,于是水缸越做越大就成了水厂,更为高效的药品也逐步取代了明矾。 目前多数水厂采用的方法是从水源地抽水进水厂统一消毒、沉淀、过滤,最后泵送至用户家中,其中主要用到以下 6 种药品: 1.HCLO 次氯酸,由氯库中的氯气加入到水中生成,具有很

强的杀菌消毒能力,根据投加位置的不同可分为前加氯、后加氯。 图 1.氯库 2.PAC 聚合氯化铝,溶液储存在加药间,泵送至混合池与水充分搅拌,作用是使水中细微悬浮粒子和胶体离子脱稳,聚集、絮凝、混凝、沉淀,达到净化处理效果。 3.O3 臭氧,由 O2 氧气放电生成,强氧化剂,作用是杀菌消毒,溶裂藻类细胞,降低其含量。按投加位置可分为预(前)臭氧、后臭氧投加点。 使用臭氧进行水处理的优点很多,比如杀菌效果佳,稳定性差易分解,不存在有毒残留物,但大量的使用带来了问题,比如腐蚀金属管道,更重要的是产生了一定量的溴酸盐,你也知道的,这是潜在致癌物,水厂目前应对方法是使用一定量的 H2O2 来处理,后面会提到。 图 2.氧气罐汽化器即使在夏天也是结满冰霜 图 3.臭氧发生器(氧气通电产生臭氧) 图 4.池臭氧投加点 4.H2O2 双氧水,强氧化剂,有杀菌消毒的能力,但主要用于应对溴酸盐,加入水中后与O3 形成竞争关系,避免形成溴酸盐,常在水质较差的月份添加使用。 溴酸盐是潜在致癌物,但受热易分解,不仅是自来水,市面上大多数瓶装水也存在,脱离剂量谈毒性毫无意义,为安心

净水厂设计计算说明书

水质工程学课程设计 专业给水排水2班 姓名张宁 学号 090070238

11 COD Mg/L 11 12 氯仿Mg/L 0.08 二、设计计算 2.1水厂规模: 根据资料,水厂日处理水量8.8万m3/d,考虑到水厂自用水量,要乘以安全系数K=1.05。则净水处理构筑物总设计流量: Q=1.05 8.8=9.24万m3/d=8750m3/h=2.43 m3/s 2.2总体设计 2.2.1确定给水处理厂工艺流程 根据水源水质和《生活饮用水卫生标准》(GB5749-2006)及《生活饮用水卫生规范》,根据设计的相关原始资料如水厂所在地区的气候情况、设计水量规模、原水水质和水文条件等因素,通过调查研究,参考相似水厂的设计运行经验,经技术经济比较确定采用地表水净化工艺: 2.2.2处理构筑物及设备型式选择 2.2.2.1取水构筑物 1.取水构筑物位置选择 取水构筑物位置的选择,应符合城市总体规划要求,从水源水质考虑,水质应该良好,取水构筑物应选择在水质良好的河段,一般设在河流的上游,从河床考虑,取水构筑物应设在凹岸,位置可选在顶冲点的上游或稍下游15~20m主流深槽且不影响航运处。故本水厂取水构筑物设在A点。 2.取水构筑物的形式与构造 根据资料所提供的条件,应选择岸边式取水构筑物采用合建式,水泵采用离心泵。构造为钢混结构,采用筑岛沉井方法施工。 3.外形 岸边取水构筑物平面形状采用矩形。 4.平面构造与计算 进水间由隔墙分成进水室和吸水室,两室之间设平板格网。在进水室外壁上设进水孔,进水孔上装闸板和格栅。进水孔也采用矩形。 (1)进水孔(格栅)面积计算

0120 Q F k k v = 1b k b S = + 式中0F ——进水孔或格栅的面积,2m ; Q ——进水孔设计流量,3m s /; 0v ——进水孔设计流速,m /s ,当江河有冰絮时,采用0.2~0.6m /s ;无冰 絮时采用0.4~1.0m /s 。当取水量较小、江河水流速度较小,泥砂和漂浮物较多时,可取较小值。反之,可取较大值; 1k ——栅条引起的面积减小系数; b ——为栅条净距,mm ,一般采用30~120mm ,常用30~50; S ——为栅条厚度或直径,mm ,一般采用10mm ; 2k ——格栅阻塞系数,一般采用0.75。 由于最高洪水位与枯水位高差为4米,进水孔分上、下两层,设计时,按河流最枯水位计算下层进水孔面积,上层面积与下层相同。 该水厂处于长春地区,江河冬季有冰絮,而取水量为8.8万吨每天,江河的最大流速为2.1m /s ,取水量大、江河水流速度较大,漂浮物较少,故设计中取进水孔设计流速0v 为0.4m /s ;栅条采用圆钢,其直径10mm S =;取栅条净距b=50mm ,取格栅阻塞系数2=0.75k 150 0.8335010 k ==+ 2 217.94 .0*75.0*833.0*8640088000 *05.1m v k k Q F o o === 进水孔设4个,进水孔与泵房水泵配合工作,进水孔也需三用一备,每个进 水孔面积 209.7= 3.20m 33 F f == 进水孔尺寸采用 112000mm 1500mm B H ?=? 格栅尺寸选用 2130mm 1630mm B H ?=?(标准尺寸) 实际进水孔面积 '2 0 2.0 1.539.0m F =??=

净水厂排泥水污泥量计算

净水厂排泥水污泥量计算 Prepared on 24 November 2020

原水浊度计算取值为40NTU,色度计算取值为15,加药量计算取值为12mg/L,原水悬浮固体与浊度的相关关系式为1:,净水厂的设计规模按万m3/d考虑,则计算干泥量如下: 二、设计排泥水干泥量 根据英国水研究中心《污泥处理指南》提供的给水厂排泥水干泥量计算公式为: 其中,DS——设计干固体含量,mg/L; SS——所去除的原水中的悬浮固体,mg/L,一般SS/NTU 的比值变化范围为~左右; C——所去除的色度(度); A——铝盐投加率(以Al2O3计,mg/L); F——铁盐投加率(以Fe2+计,mg/L)。 由于出厂水的浊度、色度一般控制在出厂水水质标准以下,为此,在计算干泥量中出厂水的浊度(GB5749-2006规定值为1,原水与净水技术条件限制时为3)、色度(GB5749-2006中规定15度,铂钴色度单位)予以忽略。 DS=40/+×15+×12 =51(mg/L) 平均日产干泥污泥量: 51×10-6 t/m3××104 m3/d≈37(t/d) 沉淀池排泥水的平均含固率约为5%,则复核排泥水总量约为7400m3/d。

三、污泥调节池容积计算 污泥调节池的作用是混合、均质排泥水,使之有利于后续污泥浓缩。 污泥调节池容积按停留时间7小时计算,则污泥调节池容积V=h×6h=2205(m3),取2200m3。 选用3台(2用1备)潜污泵,型号为,参数 四、污泥浓缩池容积 污泥浓缩时间按照24h进行设计,则污泥浓缩池容积:V=h×24h=8808(m3) 排泥水平均含固率%,经浓缩后平均含固率达到3%,则上清液排放量为:Q清=×()=356(m3/h) 浓缩后的污泥采用泵输送到污泥平衡池,污泥量为:Q泥=8808×=264(m3),污泥泵每天运行20小时,则泵的型号为h 五、污泥脱水机 污泥脱水机设计运行12h,总处理泥量为225m3。

净水厂工艺说明

净水厂设计说明书 1.工程概况 (1)水厂近期净产水量为2.5万m3/d. (2)水源为河水,原水水质如下所示: 编号项目单位分析结果备注 1 水温℃最高30,最低5 2 色度<15度 3 臭和味无异常臭和味 4 浑浊度NTU 最大300,最小20,月平均最大130 5 PH 7 6 总硬度 mg/L(以CaCO3计) 125 7 碳酸盐硬度 mg/L(以CaCO3计) 95 8 非碳酸盐硬度 mg/L(以CaCO3计) 30 9 总固体 mg/L 200 10 细菌总数个/mg ﹥1100 11 大肠菌群个/L 800 12 其它化学和毒理指标符合生活饮用水标准 (3)河水洪水位标73.20米,枯水位65.70米,常年平均水位标高68.20米。 (4)气象资料:年平均气温22℃,最冷月平均温度4℃,最热月平均温度34℃,最高温度39℃,最低温度1℃.常年风向东南。 (5)地质资料:净水厂地区高程以下0~3米为粘质砂土,3~6米为砂石堆积层,再下层为 红砂岩。地基允许承载力为2.50~公斤/厘米。 (6)厂区地形平坦,平均高程为70.00米,水源取水口位于水厂西北50米,水厂位于城市北面1km。 (7)二级泵站扬程(至水塔)为40米。 2.设计依据及原则 2.1设计依据 (1)《给水排水工程快速设计手册-给水工程》 (2)《给水排水设计手册.城镇给水》(第3册) (3)《给水排水工程师常用规范选》(上册) (4)《室外给水设计规范》 (5)《给排水简明设计手册》 (6)《给水工程》 (7)《给水排水标准图集》 (8)《给水排水设计手册-常用资料》(第1册) (9)《给水排水设计手册》(第9,10册) 2.2 设计原则 (1)水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以原水水质最不利情况进行校核。城镇水厂自用水量一般采用供水量的5%---10%,必要时通过计算确定。 (2)水厂应该按近期设计,考虑远期发展。 (3)水厂中应考虑各构筑物或设备进行检修,清洗及部分停止工作时,仍能满足用水要求。 (4)水厂自动化程度,应着提高供水水质和供水可靠性。

国内外污泥处理概述

国内外污泥处理概述 一、国内污泥处理现状及趋势 污水在处理的过程中将大部分污染物均转化到了污泥里,因此污泥中含有覆盖面极广的各类污染物,包括各种重金属、微量高毒性有机物(PCBs、AOX等)、大量细菌、病毒体和寄生虫卵等致病微生物,,如不妥善处理,将会引发环境卫生和污染问题,易造成二次污染。 1、国内污泥处理总体情况(不足) 2010年底,城镇污水处理厂已建2500多座,污水处理能力已达到1.22亿立方米。我国城市每年污泥产生量预计近3000万吨(已含水率80%计)。 在我国,一些中小城市基本上没有建造污水处理设施,即使有污水处理厂的大中城市,其污泥处理设施90%以上不配套。已经建成的污水处理厂中,污泥未经任何处理就直接农用的占70%以上。即使在设有消化池的污水处理厂,消化后的污泥也只是稍加脱水后就直接农用,很难符合污泥农用卫生标准。污泥处置技术比发达国家较落后,大多未经预处理或仅经简单处理后,就直接农用、填埋或送垃圾场处理,甚至有的随意堆放。 (1)“重水轻泥”严重。80%污水处理厂建有污泥的浓缩脱水设施;80%污泥没有得到稳定化处理处置。 (2)土地填埋、露天堆放和外运的污泥绝大部分属于随意处置,真正实现安全处置的比例不超过15-25%。 2、污泥处理工艺 从国内已运行的城市污水处理厂来看,污泥处理工艺包括污泥浓缩、稳定、脱水、最终处置四个主要过程。 (1)污泥浓缩 污泥浓缩主要包括重力浓缩法、气浮浓缩法、离心浓缩法等。

适用性: ①重力浓缩:适用于初沉污泥,化学污泥,生物膜污泥; ②气浮浓缩:适用于剩余污泥产量不大的活性污泥法处理系统,尤其是生 物除磷系统; ③离心浓缩:适用于大中型污水处理厂; ④机械浓缩:适用于各种生物污泥。 它们的处理性能如表1所示: 表1 几种浓缩方法的比能耗和含固浓度 从表1可以看出,初沉污泥用重力浓缩法处理最为经济,对于剩余污泥来说,由于剩余污泥有机物含量高,浓缩困难,采用重力浓缩法效果不好,而采用气浮浓缩、离心浓缩则设备复杂、费用高,不适合中国国情。所以,目前国内推行将剩余活性污泥送回初沉池与初沉污泥共同沉淀的重力浓缩工艺,试验研究表明这种工艺的初沉池出水水质好于传统工艺[7]。我国污泥重力浓缩方法

相关主题
文本预览
相关文档 最新文档