当前位置:文档之家› 薄板不锈钢焊接成本的分析与对比

薄板不锈钢焊接成本的分析与对比

薄板不锈钢焊接成本的分析与对比
薄板不锈钢焊接成本的分析与对比

薄板不锈钢焊接成本的分析与对比

目前的不锈钢压力容器生产企业,普遍采用的主要焊接方法均为成熟的焊接工艺,如钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)、药芯焊丝电弧焊(FCAW)、埋弧自动焊(SAW)等。对于4~10mm的1Cr18Ni9Ti薄板不锈钢,主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)和药芯焊丝电弧焊(FCAW);而对于4~10mm的304薄板不锈钢(相当于我国的0Cr18Ni9),则主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW),由于药芯焊丝电弧焊(FCAW)采用的保护气体为Ar+CO2,易使焊接接头产生增碳问题,导致其耐腐蚀性能下降,故对于低碳、超低碳不锈钢的焊接,一般情况下不采用药芯焊丝电弧焊。

本文以板厚8mm的低碳、304不锈钢为例,对其常用焊接方法及焊接成本进行分析和对比。

焊接方法分析

钨极氩弧焊采用的保护气体为纯Ar,焊接时它既不与金属起化学反应,也不溶解与液态金属中,故可以避免焊缝中金属元素的烧损和由此带来的其它焊接缺陷,同时因其密度较大,在保护时不易漂浮散失,保护效果好。该焊接方法由于热源和填充焊丝是分别控制的,热量调节方便,使输入焊缝的焊接线能量更容易控制,故适合于各种位置的焊接,也容易实现单面焊双面成型。钨极氩弧焊的最大缺点是熔深浅、熔敷速度慢、生产效率低,因而其焊接变形也就较大。

焊条电弧焊由于操作灵活、方便,焊接设备简单、易于移动,设备费用比其它电弧焊方法低,因而得到了广泛的应用。该焊接方法与熔化极气体保护焊(GMAW)、埋弧自动焊(SAW)等焊接方法相比,其熔敷速度慢及熔敷系数低,并且每焊接完一条焊道均需要清理熔渣,而坡口内的清渣是比较繁琐的。

熔化极惰性气体保护焊(MIG焊),由于采用Ar或在Ar中添加了少量的O2作为保护气体,因而其电弧稳定,熔滴细小且过渡稳定,飞溅很小。该焊接方法的电流密度高、母材熔深深,因而其焊丝的熔化速度和焊缝的熔敷速度高,焊接生产效率高,尤其适于中等厚度和大厚度结构的焊接。该焊接设备比较复杂,设备成本较高。

表1给出了薄板不锈钢常用焊接方法的相关数据。该表中的GTAW焊的熔敷速度为实际测量的数据。

表1 薄板不锈钢常用焊接方法数据

焊接方法 TIG SMAW MIG

热源最小加热面积(cm2) 10-3 10-2 10-4

特性最大功率密度(W/cm2) 1.5×104 104 104~105

热效率(功率有效系数) 0.77~0.99 0.77~0.87 0.66~0.69

焊接电流(A) 100~130 170~200 200~300

焊接速度焊材直径(mm) Φ2.4 Φ4.0 Φ1.2

及效率熔敷速度(g/min) 7~10 18~22 75~85

熔敷效率(%) 98~100 55~60 96~99

低碳、超低碳薄板不锈钢焊接成本对比

对于薄板不锈钢压力容器,由于其特殊性及相关标准的要求,因而对打底焊的焊缝背面的质量要求比较高。

对于打底焊而言,钨极氩弧焊(GTAW)均优于焊条电弧焊(SMAW)、熔化极惰性气体保护焊(MIG焊)等焊接方法,这主要是由于热源和填充焊丝是分别控制的,热量调节方便;同时,该种焊接方法对焊工的操作技能、接头的组对质量要求不高。因此,对于单面焊双面成型的焊接接头,其打底焊均采用钨极氩弧焊(GTAW)。对于不锈钢的焊接,焊接时必须充背面保护气(通常为纯Ar),以防止焊缝背面的氧化。

1 焊接成本对比

表2给出了板厚8mm、材质304不锈钢对接接头的焊接成本对比。表中的焊材、气体及工资的价格均是按照目前的价格进行计算的。GTAW焊的Ф2.4mm的焊丝是直条的,长度为36英寸,每根焊丝的剩余长度约80~100mm;不锈钢焊条的剩余长度约50~80mm。

表2 薄板不锈钢常用焊接方法的成本对比

焊接方法 GTAW GTAW+SMAW GTAW+MIG

施焊条件 V型坡口,对接接头,单面焊双面成型。

母材厚度为8mm,材质为304;坡口角度70°,钝边0mm,根部间隙2.0mm 焊丝直径打底焊Φ2.4 Φ2.4 Φ2.4

(mm) 填充及盖面Φ2.4 ---- Φ1.2

焊条直径打底焊 ---- ---- ----

焊 (mm) 填充及盖面 ---- Φ4.0 ----

接焊接电流打底焊 110 110 110

规 (A) 填充及盖面 130 170 140

范电弧电压打底焊 12 12 12

(V) 填充及盖面 12 24 24

焊缝厚度打底焊 2.5 2.5 2.5

(mm) 填充及盖面 5.5 5.5 5.5

气体流量(L/min) 20 20 20

需要金属量打底焊 74.4 74.4 74.4

(g/m) 填充及盖面407.9 407.9 407.9

综合熔敷效率打底焊 90 90 90

焊 (%) 填充及盖面90 48 98

材焊材消耗量焊丝 535.9 82.7 82.7+416.2=498.9

费 (g/m) 焊条 ---- 849.8 ----

用焊材单价焊丝 70.0 70.0 70.0

(元/kg) 焊条 ---- 34.0 ----

焊材费用(元/m) 37.51 5.79+28.89=34.68 34.92

熔敷速度打底焊 7 7 7

气(g/min) 填充及盖面 10 20 80

体燃弧时间打底焊 10.6 10.6 10.6

费(min/m) 填充及盖面 40.8 20.4 5.1

用气体单价(元/L) 0.003 0.003 0.003/0.012

气体费用焊接气体 3.09 0.64 1.85

(元/m) 背面保护气体 3.09 1.86 0.95

其它时间层间冷却时间3×20=60 3×20=60 1×20=20

其(min/m) 清渣时间 3×3=9 1×3+2×10=23 1×3=3

它总作业时间(min/m) 120.4 114.0 38.7

费工资单价(元/h) 11.36 11.36 11.36

用工资费用(元/m) 22.80 21.58 7.33

电力费用(元/m) 0.64 0.92 0.26

焊接成本(元/m) 67.13 59.68 45.31

当然,焊接成本还包括焊接设备的折旧、维修等费用。由于该费用很少,故本文未予考虑。

各种焊接数据的计算公式为:

焊材消耗量=需要金属量÷综合熔敷效率

焊材费用=焊材消耗量×焊材单价

燃弧时间=需要金属量÷熔敷速度

气体费用=气体流量×燃弧时间×气体单价

总作业时间=燃弧时间+其它时间

工资费用=总作业时间×工资单价

电力费用=(焊接电流×电弧电压×燃弧时间×单价)÷60000

焊接成本=焊材费用+气体费用+工资费用+电力费用

2 焊接成本分析

以往的资料所进行的焊接成本对比,均是九十年代初的相关数据,它是在不同坡口尺寸条件下进行的,且主要是对碳钢、中厚板常用的药芯焊丝电弧焊、实芯焊丝CO2电弧焊、焊条电弧焊等焊接方法进行成本对比与分析。

表2的焊接成本是对于相同的坡口尺寸、薄板不锈钢进行对比的。市场经济条件下的产品随客户要求的不同而不同,且对于生产制造企业而言,产品也会随不同板厚而采取更加经济的焊接工艺。因此,相同类别的焊接接头,如果采用不同的坡口尺寸,会给生产带来许多弊端和不便。

由表2的数据可以看出,对于70°的V型坡口、304材质、8mm板厚的对接次之,GTAW+MIG最低。GTAW+MIG的焊接成本约为GTAW的67%左右,其焊接生产效率为GTAW 的3.1倍左右。不仅如此,由于MIG焊的焊接热输入少,因而GTAW+MIG的焊接变形比GTAW 要小的多,它更有力于产品的质量保证。

结论

通过表2的焊接成本对比,可以得到如下结论:

(1)GTAW+MIG焊的焊接成本低,生产效率高,应加以推广应用。(2)对于薄板不锈钢的焊接,提供了焊接方法的选择依据。

焊接成本的估算规律

焊接成本的估算规律 广泛采用焊接结构是机械制造工艺发展的一个重要趋势。在一些工业发达国家,焊接结构已占机械坯件的40%左右。为了在制造之前即预知焊接成本,以下就工业上最常应用的CO 2保护焊和埋弧自动焊的成本估算方法进行讨论。 1.1焊接成本的影响因素分析影响 整个焊接过程最终成本的因素有: (1)钢板的准备(切割、开坡口等)、定位和矫正等辅助工时费用; (2)焊接燃弧工时费用; (3)重新起弧、清理焊缝和消除应力等辅助工时费用和管理费用; (4)焊条、焊剂及保护气体等的材料费用及电费。 其中,焊缝所需的金属填充量直接影响焊接燃弧工时与焊条等的材料消耗,对焊接成本影响较大。例如板厚6mm的对接焊,装配间隙4.5mm的焊缝截面积约为间隙0.8mm时截面积的5倍,后者的焊接速度比前者快3倍,而相同焊接时间内后者焊丝消耗量约为前者的7 1%。因此要降低焊接成本,就要很好地控制焊缝金属量。 1.2焊接工时和焊接成本的计算 焊接燃弧时间 式中Mi为焊缝金属重量,Mi=Vi·ρ,ρ为焊缝金属密度,Vi为焊缝金属体积,Vi=Li·Ai,Li 为焊缝长,Ai为焊缝截面积,可表示为焊缝特征参数的函数即Ai=f(S,α,β,b,ρ,H,R);Ei为单位时间内焊缝金属填充量;N为焊缝数。 工艺辅助时间tF由用来将物件集中、矫正和定位所花的时间t1与换焊条、重新起弧、去焊渣、清理焊缝所花的时间t2组成,可分别计算如下[3,4]: 式中C1i、C2i为特定的加工工时系数,αi为难度系数,Gi为焊接件重量,Xi为零件数,Si 为板厚,Li为焊缝长,n为需集中、定位后焊接的焊缝数,N为总焊缝数。 另外,焊缝金属材料费用及电费可计算如下:

不锈钢管道焊接工艺

不锈钢管道焊接工艺 Document number:BGCG-0857-BTDO-0089-2022

摘要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。 1 案例分析 0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG 焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。 0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。 2 焊接方法及焊前准备 焊接方法 材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。 2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。 2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。 2.2.4 管内充氩气保护。 3 TIG焊工艺 焊接参数 采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。 操作方法 3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。 3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

不锈钢焊接实用工艺..

市瑞昌电力技术 不锈钢焊接工艺规 生产部/质检部

不锈钢焊接工艺标准 一氩弧焊接 1.目的 为规焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0230-50616正接13 2 1.2240-60616正接14 3 1.6-2.4360-9081-28正接1-2.55 4 1.6-2.4380-10081-28正接1-2.06 5. 工序过程

焊接行业发展特点及趋势

焊接行业发展特点及趋势 【摘要】焊接是一种低成本、高科技连接材料的可靠工艺方法。到目前为止,还没有另外一种工艺比焊接更为广泛地应用于材料间的连接,并对所焊产品产生更大的附加值。因此无论现在和将来,焊接都是成功地将各种材料加工成可投入市场产品的首选工艺。焊接技术已发展成为融材料学、力学、热处理学、冶金学、自动控制学、电子学、检验学等学科为一体的综合性学科。要我们从业者不断去研究。 【关键词】焊接行业;发展特点;趋势 焊接作为一种现代的先进主导制造工艺技术,正逐步集成到产品的主寿命过程,焊接作为一种广泛的系统工程,其应用范围不仅应用于重型机械、电力设备、石油化工、交通运输、建筑工程、航天航空等行业,还扩大到电子器件、家用电器、医疗器械、通讯工程等领域。 1.焊接行业现状分析 1.1焊接材料 目前国产碳钢及低合金钢焊条完全能满足国内市场需求。不锈钢、堆焊焊条也能满足国内大部分用户要求,但对一些特殊性能焊条和特殊母材用焊条还要大量从国外进口。 1.2 焊接装备 焊接装备包括焊接设备、焊接辅机具和切割设备。 1.2.1传统的国有、集体企业 近四年来,由于产品技术含量低,开发资金不足,人才外流,企业包袱过重,以及体制和债务等因素,使不少企业竞争能力下降。近来一些企业经过大规模的技术改造,开发新型产品,逐步走出困境。 1.2.2具有外资背景的企业 即外商投资和合资企业。近四年来,这类企业从数量和规模上都得到了很大发展,主要由于他们的生产技术先进、管理方法规范、资金力量雄厚、市场经验丰富、体制机制灵活。近几年来。具有外资背景的企业异军突起,在国内市场占有率逐年提高,呈欣欣向荣状态,他们在焊接装备行业中起到了举足轻重的作用。 1.3焊接技术应用

史上最全的不锈钢焊接工艺

史上最全的不锈钢焊接工艺 不锈钢焊接工艺技术要点不锈钢焊管是在焊 管成型机上,由不锈钢板经若干道模具碾压成型并经焊接而成。由于不锈钢的强度较高,且其结构为面心立方晶格,易形成加工硬化,使焊管成型时:一方面模具要承受较大的摩擦力,使模具容易磨损;另一方面,不锈钢板料易与模具表面形成粘结(咬合),使焊管及模具表面形成拉伤。因此,好的不锈钢成型模具必须具备极高的耐磨和抗粘结(咬合)性能。我们对进口焊管模具的分析表明,该类模具的表面处理都是采用超硬金属碳化物或氮化物覆层处理。激光焊接、高频焊接与传统的熔化焊接相比具有焊接速度快、能量密度高、热输入小的特点,因此热影响区窄、晶粒长大程度小、焊接变形小、冷加工成形性能好,容易实现自动化焊接、厚板单道一次焊透,其中最重要的特点是Ⅰ形坡口对接焊不需要填充材料。焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后

形成连续焊缝而将两工件连接成为一体。在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影

316L不锈钢的焊接工艺

316L不锈钢的焊接工艺 1.奥氏体不锈钢的性能和焊接性分析 316L奥氏体不锈钢热导率低、线膨胀系数大,无磁性;抗拉强度≥550N/mm2,屈服强度≥480N/mm2 1.焊接裂纹 (1)316L奥氏体不锈钢的导热系数大约只有低碳钢的一半,而线膨胀系数却大得多,所以焊后在接头中会产生较大的焊接内应力。 (2)316L奥氏体不锈钢的液、固相线的区间较大,结晶时间较长,且奥氏体结晶的枝晶方向性强,所以杂质偏析现象比较严重。 综上所述,316L奥氏体不锈钢焊接时比较容易产生焊接热裂纹,包括焊缝的纵向和横向裂纹、火口裂纹、打底焊的根部裂纹和多层焊的层间裂纹等。 2. 316L奥氏体不锈钢焊接工艺 2.1焊接方法 316L不锈钢的焊接,根据不锈钢的特点,尽可能减少热输入量,故采用手工电弧焊,氩弧焊两种方法。 2.2 焊材选择 316L 奥氏体不锈钢时特殊性能用钢,为满足焊接接头具有相同的性能,应遵循“等成分”原则选择焊接材料,同时为增强接头抗焊接热裂纹和晶间腐蚀能力,使接头中出现少

量铁素体,应选用 H00Cr19Ni2Mo2 氩弧焊用焊丝。其成化学分见表 1。 2.3 焊接工艺过程 2.3.1 焊前准备 为了避免焊接时碳和杂质混入焊缝,在焊前应将焊缝两侧20 mm~30 mm范围内的油污等清理干净。 2.3.2 焊接工艺 (1)奥氏体不锈钢的突出特点是对过热敏感,故采用小电流、快速焊,焊接电流应比焊接低碳钢时低 20 %左右,防止晶间腐蚀、热裂纹及焊接变形的产生。 (2)为了保证电弧稳定燃烧,手工电弧焊焊焊机采用直流反接法;氩弧焊采用直流正接。 (3)氩弧焊打底时,焊缝厚度尽量薄,与根部熔合良好,收弧时要成缓坡型,如有收弧缩孔,应用磨光机磨掉,管道内部必须充满氩气保护,保证底部成形;手弧焊采用短弧焊,收弧要慢,填满弧坑,防止弧坑裂纹。 (4)焊后可采取强制冷却。

钣金加工工艺及成本分析

钣金加工工艺流程 1简介 按钣金件的基本加工方式,如下料、折弯、拉伸、成型、焊接、表面处理。本此讲述每一种加工方式所要注意的工艺要求。 2下料 下料根据加工方式的不同,可分为普冲、数冲、剪板、激光切割等,由于加工方法的不同,下料的加工工艺性也有所不同。钣金下料的主要方式为数冲和激光切割。 2.1数冲是用数控转塔冲床加工,板材厚度加工范围为冷扎板、热扎板小于或等于 3.0mm,铝板小于或等于 4.0mm,不锈钢小于或等于2.0mm。加工板材最大尺寸1250mm*4000mm。 2.2激光切割机在现代的生活生产中应用广泛,他可以分为三种类型,YAG固体激光切割机、CO2激光切割机、光纤激光切割机。简单地介绍一下三种激光切割机的优点:

(一)YAG固体激光切割机 YAG固体激光切割机具有价格低、稳定性好的特点,但能量效率低,目前产品的输出功率大多在600W以下,由于输出能量小,主要用于打孔、点焊及切割8mm以下的材料。 主要优点:能切割其他激光切割机都无法切割的铝板,铜板以及大多数有色金属材料。主要缺点:切割速度慢,不能切割非金属材料。 (二)CO2激光切割机 CO2激光切割机,一般功率都在2000-4000W之间,可稳定切割20mm以内的碳钢,10mm以内的不锈钢,8mm以下的铝合金,以及木材、亚克力、PP、有机玻璃等非金属材料,主要缺点:实际使用用运营成本很高,且切割时耗气量很大,很难甚至不能切割铝板,铜板等高反射材料。 (三)光纤激光切割机 光纤激光切割机由于它可以通过光纤传输,一般功率1000W-6000W之间,主要优点:耗电少,维护方便,速度快,主要缺点:配件耗材等相关维护费用极高,很难甚至不能切割铝板,铜板等高反射材料。 激光切加工板材的最大尺寸一般:1500mm*4000mm,加工最小孔径≥1T。

不锈钢罐焊接工艺

不锈钢罐焊接工艺内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不锈钢罐焊接工艺 简介: 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2.编制依据 2.1.设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3.焊接准备 3.1.焊接材料 焊丝:H... 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. ? 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. ? 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. ? 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. ? 焊接工具 3.4. ? 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 5. 工序过程 5.1. ? 焊工必须按照“考规”规定经相应试件考试合格后,方可上岗位焊接。 5.2. ? 严禁在被焊件表面随意引燃电弧、试验电流或焊接临时支撑物等。

5.3. ? 焊工所用的氩弧焊把、氩气减压流量计,应经常检查,确保在氩弧焊封底时氩气为层流状态。 5.4. ? 接口前应将坡口表面及母材内、外壁的油、漆、垢锈等清理干净,直至发出金属光泽,清理范围为每侧各为10-15mm,对口间隙为2.5~3.5mm。 5.5. ?接口间隙要匀直,禁止强力对口,错口值应小于壁厚的10%,且不大于1mm。 5.6. ? 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 5.7. ? 接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm,厚度3-4mm。 5.8. ? 打底完成后,应认真检查打底焊缝质量,确认合格后再进行氩弧焊盖面焊接。 5.9. ? 引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。 5.10. ? 点焊、氩弧焊、盖面焊,如产生缺陷,必须用电磨工具磨除后,再继续施焊,不得用重复熔化方法消除缺陷。 5.11. ? 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 5.12. ? 盖面完毕应及时清理焊缝表面熔渣、飞溅。 6. ? 质量标准: 6.1. 质量按Q/ZB74-73 焊接通用技术条件和机械结构用不锈钢焊接管 (GB/T12770—2002)标准检验。 ? 6.2. 缺陷种类、原因分析及改进方法

薄板不锈钢焊接成本的分析与对比

薄板不锈钢焊接成本的分析与对比 目前的不锈钢压力容器生产企业,普遍采用的主要焊接方法均为成熟的焊接工艺,如钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)、药芯焊丝电弧焊(FCAW)、埋弧自动焊(SAW)等。对于4~10mm的1Cr18Ni9Ti薄板不锈钢,主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)和药芯焊丝电弧焊(FCAW);而对于4~10mm的304薄板不锈钢(相当于我国的0Cr18Ni9),则主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW),由于药芯焊丝电弧焊(FCAW)采用的保护气体为Ar+CO2,易使焊接接头产生增碳问题,导致其耐腐蚀性能下降,故对于低碳、超低碳不锈钢的焊接,一般情况下不采用药芯焊丝电弧焊。 本文以板厚8mm的低碳、304不锈钢为例,对其常用焊接方法及焊接成本进行分析和对比。 焊接方法分析 钨极氩弧焊采用的保护气体为纯Ar,焊接时它既不与金属起化学反应,也不溶解与液态金属中,故可以避免焊缝中金属元素的烧损和由此带来的其它焊接缺陷,同时因其密度较大,在保护时不易漂浮散失,保护效果好。该焊接方法由于热源和填充焊丝是分别控制的,热量调节方便,使输入焊缝的焊接线能量更容易控制,故适合于各种位置的焊接,也容易实现单面焊双面成型。钨极氩弧焊的最大缺点是熔深浅、熔敷速度慢、生产效率低,因而其焊接变形也就较大。 焊条电弧焊由于操作灵活、方便,焊接设备简单、易于移动,设备费用比其它电弧焊方法低,因而得到了广泛的应用。该焊接方法与熔化极气体保护焊(GMAW)、埋弧自动焊(SAW)等焊接方法相比,其熔敷速度慢及熔敷系数低,并且每焊接完一条焊道均需要清理熔渣,而坡口内的清渣是比较繁琐的。 熔化极惰性气体保护焊(MIG焊),由于采用Ar或在Ar中添加了少量的O2作为保护气体,因而其电弧稳定,熔滴细小且过渡稳定,飞溅很小。该焊接方法的电流密度高、母材熔深深,因而其焊丝的熔化速度和焊缝的熔敷速度高,焊接生产效率高,尤其适于中等厚度和大厚度结构的焊接。该焊接设备比较复杂,设备成本较高。 表1给出了薄板不锈钢常用焊接方法的相关数据。该表中的GTAW焊的熔敷速度为实际测量的数据。 表1 薄板不锈钢常用焊接方法数据 焊接方法 TIG SMAW MIG 热源最小加热面积(cm2) 10-3 10-2 10-4 特性最大功率密度(W/cm2) 1.5×104 104 104~105 热效率(功率有效系数) 0.77~0.99 0.77~0.87 0.66~0.69 焊接电流(A) 100~130 170~200 200~300 焊接速度焊材直径(mm) Φ2.4 Φ4.0 Φ1.2 及效率熔敷速度(g/min) 7~10 18~22 75~85 熔敷效率(%) 98~100 55~60 96~99

不锈钢焊接工艺

316L不锈钢板(00Cr17Ni14Mo2) 产品说明 牌号:(00Cr17Ni14Mo2) 材质:316L/2B 不锈钢板 厚度:0.4mm-3.0mm 宽度:1219mm/1000mm 长度:2439mm/可定长 产地:国产太钢、张浦,进口 材质:316L/NO.1不锈钢板 厚度:3.0mm-60mm 宽度:1500/1800/2000mm 长度:6000/8000mm 产地:国产太钢,进口 321/2B 0.5-3.0mm*1220mm/1000m*C 太钢张浦,进口不限 321/NO.1 3.0-20mm*1500/1800mm*6000 太钢,进口比利时芬兰 牌号:0Cr18Ni9 材质:304/NO.1不锈钢板

厚度:3.0mm-50mm 宽度:1500/1800mm 长度:6000mm 产地:国产太钢、进口 材质:304/2B 不锈钢板 厚度:0.4mm-3.0mm 宽度:1219/1000mm 长度:2439/可定长 产地:国产太钢、张浦、宝新,进口 N o 中国GB 日本 JIS 美国 韩国 KS 欧盟 BS EN 印度 IS 澳大 利亚AS 中国台湾 CNS 旧牌号 新牌号(07.10) AST M UNS 奥氏体不锈钢 1 1Cr17Mn6Ni5N 12Cr17Mn6Ni5N SUS201 201 S20100 STS201 1.437 2 10Cr17Mn6Ni 4N 20 201-2 201 2 1Cr18Mn8Ni5N 12Cr18Mn9Ni5N SUS202 202 S20200 STS202 1.43 73 - 202 3 1Cr17Ni7 12Cr17Ni7 SUS301 301 S30100 STS301 1.43 19 10Cr17Ni7 301 301

不锈钢焊接工艺特点

不锈钢焊接工艺特点 奥氏体型不锈钢以18%Cr-8%Ni钢为代表。原则上不须进行焊前预热和焊后热处理。一般具有良好的焊接性能。但其中镍、钼的含量高的高合金不锈钢进行焊接时易产生高温裂纹。另外还易发生б相脆化,在铁素体生成元素的作用下生成的铁素体引起低温脆化,以及耐蚀性下降和应力腐蚀裂纹等缺陷。经焊接后,焊接接头的力学性能一般良好,但当在热影响区中的晶界上有铬的碳化物时会极易生成贫铬层,而贫铬层和出现将在使用过程中易产生晶间腐蚀。为避免问题的发生,应采用低碳(C≤0.03%)的牌号或添加钛、铌的牌号。为防止焊接金属的高温裂纹,通常认为控制奥氏体中的δ铁素体肯定是有效的。一般提倡在室温下含5%以上的δ铁素体。对于以耐蚀性为主要用途的钢,应选用低碳和稳定的钢种,并进行适当的焊后热处理;而以结构强度为主要用途的钢,不应进行焊后热处理,以防止变形和由于析出碳化物和发生δ相脆化。 双相不锈钢的焊接裂纹敏感性较低。但在热影响区内铁素体含量的增加会使晶间腐蚀敏感性提高,因此可造成耐蚀性降低及低温韧性恶化等问题。 对于沉淀硬化型不锈钢有焊接热影响区发生软化等问

题。 奥氏体不锈钢的焊条选用要点: 不锈钢主要用于耐腐蚀,但也用作耐热钢和低温钢。因此,在焊接不锈钢时,焊条的性能必须与不锈钢的用途相符。不锈钢焊条必须根据母材和工作条件(包括工作温度和接触介质等)来选用。 1、一般来说,焊条的选用可参照母材的材质,选用与母材成分相同或相近的焊条。如:A102对应0Cr19Ni9;A137对应1Cr18Ni9Ti。 2、由于碳含量对不锈钢的抗腐蚀性能有很大的影响,因此,一般选用熔敷金属含碳量不高于母材的不锈钢焊条。如316L必须选用A022焊条。 3、奥氏体不锈钢的焊缝金属应保证力学性能。可通过焊接工艺评定进行验证。 4、对于在高温工作的耐热不锈钢(奥氏体耐热钢),所选用的焊条主要应能满足焊缝金属的抗热裂性能和焊接接头的高温性能。 (1)对Cr/Ni≥1的奥氏体耐热钢,如1Cr18Ni9Ti等,一般均采用奥氏体-铁素体不锈钢焊条,以焊缝金属中含2-5%铁素体为宜。铁素体含量过低时,焊缝金属抗裂性差;若过高,则在高温长期使用或热处理时易形成σ脆化相,造成裂纹。如A002、A102、A137。

GJB质量经济性分析报告

质量经济性分析报告 一、基本情况 根据GB/T19001-2008《质量管理体系要求》和G JB9001B-2009《质量管理体系要求》质量管理体系过程“5.6.2.2 财务部门负责提供质量经济性分析报告。”和“8.4.2 d)财务部门负责质量成本统计和质量经济性数据分析(按作业指导书《质量经济性统计和分析实施细则》)”的要求,财务部编制的质量经济性分析报告作为管理评审输入之一。为此,财务部采用了“质量成本法”,根据从质管部、经营部、生产部、经核室、工艺室等部门传递过来的质量、工艺工时、材料消耗等数据,结合本部门形成的生产经营财务数据,按照预防成本、鉴定成本及内、外部故障损失等四个方面进行了质量成本的统计分析,同时结合生产经营财务数据分析了质量成本的变动状况,对质量管理体系的财务支出有效性进行了评价,并针对一些问题提出了相应的改进方向,以便综合实施质量改进,不断提高我公司质量管理体系的有效性和经济性。 为了真实地反映公司质量管理体系的财务状况,财务部根据本公司有关职能部门提供的有关质量成本数据,从财务会计账簿中收集了有关财务信息,按照质量成本核算办法,进行了统计、核算、分析、汇总、报告,并从财务角度识别质量管理体系上的薄弱环节及其无效的管理活动活动,从提出完善质量体系的方向,提高质量管理体系的经济性。 二、综合分析 现将2011.7~2012.6期间的质量经济性分析结果汇报如下:

(一)质量成本构成关系分析 2011年7月至2012年6月质量总成本约为165.13万元(详见下表)。 质量成本构成关系如下图所示。其中比例最高的是鉴定成本,为70.64%;最低的是外部损失成本,为0.31%。 各项质量成本的组成如下:

不锈钢焊接工艺

二、 1、焊前:坡口及其附近必须清理干净,对于有油污不可以用钢丝刷和砂轮清理,用丙酮和或酒精进行清理。 2、坡口加工或下料采用机械加工或炭弧气刨。 3、在搬用、坡口的制备、装配个过程,应避免损伤钢材的表面。 三、焊接工艺: 1、应采用快速焊、多道焊;焊接电流不易过大,焊接时尽量采用平焊位置,焊条最好不做摆动或稍做摆动;且焊接过程中,应严格控制层间温度,待上一层焊道冷到60度以下在焊下一道焊道。 2、焊条角度应正确,运条要稳,电弧不宜太长,与腐蚀介质接触的焊道应最后施焊。 3、在条件允许的时候,应采用强制冷却的方式冷却焊道。 四、焊后: 焊缝必须进行酸化和钝化处理。 焊接材料:不锈钢A002焊条,焊丝,焊条直径:3.2和4.0焊接电流(A) 80-110A,110-150A 焊接电压(V)焊接速度 3.5焊缝返修 3.5.1焊缝返修应由持证焊工或有相应合格焊工担任 3.5.2返修前应根据片位分析缺陷性质,缺陷长度,宽度,确认缺陷位置 3.5.3消除缺陷方法采用砂轮机机磨削,根部返修部位进行坡口修理 .3.5.4返修的焊接工艺与正式焊接相同 .3.5.5焊缝返修的管理程度执行《压力管道质量保证书手册》中的规定 .3.6颜色检查:根部焊接完毕,浅色到淡蓝色表明焊缝充氩保护不好,以被氧化,银白色表示保护良好 .4,结论:超低碳不锈钢槽体及管道焊接施工中,必须严格执行工艺要求,认真施焊,确保焊口一次合格率98.6%以上,肉眼观察无缩孔。 引用: 一、奥氏体不锈钢的焊接特点: 1、容易出现热裂纹。 防止措施: (1)尽量使焊缝金属呈双相组织,铁素体的含量控制在3-5%以下。因为铁素体能大量溶解有害的S、P杂质。 (2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 2、晶间腐蚀: 根据贫铬理论,焊缝和热影响区在加热到450-850℃敏化温度区时在晶界上析出碳化铬,造成贫铬的晶界,不足以抵抗腐蚀的程度。 防止措施:(1)采用低碳或超低碳的焊材,如A002等;采用含钛、铌等稳定化元素的焊条,如A137、A132等。(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织,(铁素体一般控制在4-12%)。 (3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度。 (4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理 3、应力腐蚀开裂: 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。

不锈钢的手工电弧焊焊接工艺

不锈钢焊接工艺标准 1 适用范围 本工艺标准适用于铬,铬--镍奥氏体不锈钢的手工电弧焊、埋弧自动焊、手工钨极氩弧焊及熔化极惰性气体保护焊的焊接施工。 2 施工准备 2.1 技术准备(施工标准、规范) 2.1.1 《工业金属管道工程施工及验收规范》GB50235 2.1.2 《现场设备、工业管道焊接工程施工及验收规范》GB50236 2.1.3 《石油化工剧毒、可燃介质管道工程施工及验收规范》SH3501 2.1.4 《石油化工铬镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH3523 2.1.5 《钢制压力容器》GB150-98 2.1.6 《压力容器安全技术监察规程》 2.1.7 《钢制压力容器焊接工艺评定》JB4708 2.1.8 《钢制压力容器焊接规程》JB/T4709 2.1.9 《压力容器无损检测》 JB4730 2.1.10 《焊条质量管理规程》JB3223 2.2 作业人员 注:焊工合格证考核按《锅炉、压力容器、压力管道焊工考试与管理规侧》或《现场设备、工业管道焊接工程施工及验收规范》GB50236进行考试。 2.3 材料检查验收 2.3.1 焊接工程所采用的不锈钢钢板、钢管、管件等。 2.3.1.1焊接工程所采用的不锈钢板、钢管、管件等应符合设计文件的规定,并具有出厂合格证和质量证明书。其检验项目及技术要求标准应符合国家标准或行业标准。 2.3.1.2不锈钢钢板、钢管、管件材料入库前应核对材料牌号和质量证明书。施工前应进行外观检查,其表面不得有裂纹、气泡、缩孔、重皮、等缺陷,否则应进行消除,消除深度不应超过材料的负偏差。 2.3.1.3材料验收合格后应做好标识,按不同材质、规格分类堆放、且于铁碳材料隔离。 2.3.1.4 国外材料应符合合同规定的材料标准,并按相应材料标准进行复验。

质量成本分析报告精编版

质量成本分析报告精编 版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

Sk(上海)公司 质量成本综合分析报告 2014年度 编制: 审核: 批准: 二0一四年一月一日 质量管理处:黄靖壹梁宇董舒尧胡浩 刘启馨王容王梦洁 总经理: 您好 2013年第四季度质量成本分析报告 一、本年度质量成本概况 根据财会处提供的“质量成本报表”,2013年全厂质量成本总额达万元,其中内部质量损失393万元,外部质量损失万元,工业总产值60234万元,质量损失损失率为%,较好地实现了工厂制定的%内控指标。2013年工厂生产成本是万元,与2012年同期相比上升个百分点,从而说明工厂产品内部损失比去年同期有所增加,质量管理体系有效性差。质量成本控制还应贯穿于工厂整个生产过程中,只有各个阶段和环节从严内部管理,采取有效措施,才能降低成本,获得最佳效益。 二、质量成本构成分析(见表1) 几项质量成本指标的完成情况见表1和表2。

损失成本占%、外部故障损失成本占%、鉴别成本占%、预防成本占%;外部质量保证成本占%。与上学期相比:内部故障损失成本升高%、外部故障损失成本降低%、鉴定成本降低%、预防成本降低%、外部质量成本保证成本升高%。 三、对质量成本的各构成项目进行剖析 1.内部故障损失成本中废品损失万元,占本科目的%;返工损失万元,占本科目的%。 其中废品损失A产品万元、B产品万元、C产品万元等。 从废品损失来看,新产品所占的比例较大。主要原因为: ①A产品等均为今年批量生产的第一年,各方面工艺处于磨合时期,故产生的费用较大。 ②B、C等产品工艺方面还存在一定问题,过程不能充分满足工艺要求,因而产生废品。 三分厂在A产品的加工中产生的废品实施较大,有关单位应组织原因分析,制定纠正和预防措施,使该产品的废品损失率降下来。 2.外部故障损失占一部分,原因是因某供方所供的原料有连续两批不合格所致。 3.鉴别成本中分析测试费用万元,占质量成本的%,比上年同期降低个百分点,但实际发生额却比上年同期升高。原因为2005年第四季度与上年同期相比,产品交验品种增多、批次增多,尤其新产品所占分析测试比重大,如A产品分析测试费用为总分析测试费用的%、B产品为%,因此致使分析测试费用增大。 4.预防成本共发生费用万元,占质量总成本的%,比上年同期降低%。其中工序控制费用万元,比上面同期升高%。主要原因是为了加强外包供方的质量控制。某公司加强工序控制发生的正常费用,其余为三分厂产品原材料价格所致。 5.外部质量保证成本万元,其中万元为2005年第三方认证机构对我公司进行监督检查时所发生的费用。 四、质量成本的趋势分析 2005年质量成本的总发展趋势见表2

不锈钢焊接成本分析

不锈钢焊接分析 目前的不锈钢压力容器生产企业,普遍采用的主要焊接方法均为成熟的焊接工艺,如钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)、药芯焊丝电弧焊(FCAW)、埋弧自动焊(SAW)等。对于4~10mm 的1Cr18Ni9Ti薄板不锈钢,主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW)和药芯焊丝电弧焊(FCAW);而对于4~10mm的304薄板不锈钢(相当于我国的0Cr18Ni9),则主要采用钨极氩弧焊(GTAW)、焊条电弧焊(SMAW),由于药芯焊丝电弧焊(FCAW)采用的保护气体为Ar+CO2,易使焊接接头产生增碳问题,导致其耐腐蚀性能下降,故对于低碳、超低碳不锈钢的焊接,一般情况下不采用药芯焊丝电弧焊。 本文以板厚8mm的低碳、304不锈钢为例,对其常用焊接方法及焊接成本进行分析和对比。 焊接方法分析 钨极氩弧焊采用的保护气体为纯Ar,焊接时它既不与金属起化学反应,也不溶解与液态金属中,故可以避免焊缝中金属元素的烧损和由此带来的其它焊接缺陷,同时因其密度较大,在保护时不易漂浮散失,保护效果好。该焊接方法由于热源和填充焊丝是分别控制的,热量调节方便,使输入焊缝的焊接线能量更容易控制,故适合于各种位置的焊接,也容易实现单面焊双面成型。钨极氩弧焊的最大缺点是熔深浅、熔敷速度慢、生产效率低,因而其焊接变形也就较大。 焊条电弧焊由于操作灵活、方便,焊接设备简单、易于移动,设备费用比其它电弧焊方法低,因而得到了广泛的应用。该焊接方法与熔化极气体保护焊(GMAW)、埋弧自动焊(SAW)等焊接方法相比,其熔敷速度慢及熔敷系数低,并且每焊接完一条焊道均需要清理熔渣,而坡口内的清渣是比较繁琐的。 熔化极惰性气体保护焊(MIG焊),由于采用Ar或在Ar中添加了少量的O2作为保护气体,因而其电弧稳定,熔滴细小且过渡稳定,飞溅很小。该焊接方法的电流密度高、母材熔深深,因而其焊丝的熔化速度和焊缝的熔敷速度高,焊接生产效率高,尤其适于中等厚度和大厚度结构的焊接。该焊接设备比较复杂,设备成本较高。

材料的焊接性对焊接质量及焊接成本的影响分析 夏润光

材料的焊接性对焊接质量及焊接成本的影响分析夏润光 摘要:新时代的工业操作过程中,焊接成为了代表性的内容,自身的工作难度 系数较高,受到的影响因素较多。为了确保焊接的质量得到良好提升,不仅要对 全局工作开展良好的把控,更加要在细节影响因素上良好的应对,从而努力提高 焊接的综合成就。与此同时,在焊接的质量控制当中,还需要对一些动态情况的 变化做出深入了解,这样就可以在最终工作成绩上良好的进步。本文针对焊接与 质量控制展开讨论,并提出合理化建议。 关键词:焊接;质量;控制 从客观的角度来分析,焊接的实施,已经得到了业界内的高度探讨,国家相 关部门对此颁布的法令和规范也不断的增加。对于质量控制而言,焊接的所有内容,都必须不断的从长远角度来出发,坚持在焊接的可靠性、可行性方面大幅度 的巩固,努力确保焊接的体系能够积极的健全。另一方面,焊接的手段和技术模式,也需要不断的革新,这样才能在新问题和新要求的应对上,努力取得更好的 成就。 1焊接的质量控制原则 我国在现代化的建设、发展过程中,焊接工作引起了业界内的高度关注,同 时对很多社会项目的综合发展,都能够产生特别大的影响。为此,想要在焊接的 质量控制上取得更好的成绩,必须坚持在相关工作原则上积极的遵守。①焊接的质量控制,一定要设定明確的技术控制指标,对于不同的数据和信息开展良好的 把控,从而在焊接的体系上不断完善,为的质量提升、性质稳定等,都做出良好 的提升。②焊接的质量控制手段,一定要按照多元化的模式来进行,单一的控制指标,或者是传统的控制手段,都没有办法创造出较高的价值,各项工作的部署 和进行,都没有办法取得良好的成绩。 2焊接现状及常见问题 其一,不连续操作引发质量缺陷问题,包括气孔、夹渣、咬边等,这些缺陷 一般是焊工加强技巧可避免的质量问题。如果上述缺陷控制在一定范围内,是可 以被允许的,但氢致开裂是不可容忍的问题。其二,烧穿、不定分解。焊接熔池 底端未融化金属低于其实际所受外力作用状况下,可能会出现烧穿、泄露状况, 壁厚增加、熔深降低会降低风险等级。其三,氢致开裂,在线焊接环节中,内部 输送物质的连续流动可能引发焊后快冷问题,容易形成氢致裂纹敏感的淬硬组织。长输管线的加工、现场环焊等处理中,易产生部分缺陷问题。当下工艺条件下, 断裂、塑性失稳状况是常见两种问题。焊接缺陷处深度和长度会降低管子的极限 承载能力,尤其是深度危害更加突出。此外,断裂状况影响深刻的部位主要是焊 接缺陷中的未融合、未焊接、错边现象。上述裂纹类的缺陷问题易演发成复合型 缺陷,增加了断裂的危害作用。从提高油气运输安全性出发,的无损检测和环焊 操作中,需要尽量降低其缺陷程度,避免发生复合型缺陷问题。 3焊接质量控制主要措施分析 3.1提高操作人员能力水平 为了有效促使焊接质量得到显著提高,对于当前焊接而言,应当促使焊接操 作人员质量意识提升,为了提高人员能力水平需要从两方面入手:一是建立一套 完整的焊接操作人员培训体系;二是根据焊接结构的不重要程度匹配相应资质的 操作人员。目前,一些对焊接质量要求高的单位,对焊接操作人员在上岗前进行 专业性的培训,使其不仅具备焊接基本的操作技能,还能根据所焊接的产品的特

不锈钢焊接工艺标准要点

焊接工艺指导书 一氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。2. 编制依据 2.1. 设计图纸 2.2.《手工钨极氩弧焊技术及其应用》 2.3.《焊工技术考核规程》 3. 焊接准备 3.1. 焊接材料 焊丝:H1Cr18Ni9Ti φ1、φ1.5、φ2.5、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.95%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。 3.3. 焊接工具 3.3.1. 采用直流电焊机,本厂用WSE-315和TIG400两种型号焊机。 3.3.2. 选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 3.3.3. 输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 3.4. 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。 4.工艺参数 不锈钢焊接工艺参数选取表 表一 壁厚mm 焊丝直 径mm 钨极 直径 mm 焊接电流 A 氩气流 量 L/min 焊接 层次 喷嘴 直径 mm 电源 极性 焊缝 余高 mm 焊缝 宽度 mm 1 1.0 2 30-50 6 1 6 正接 1 3 2 1.2 2 40-60 6 1 6 正接 1 4 3 1.6-2. 4 3 60-90 8 1-2 8 正接1-2. 5 5 4 1.6-2.4 3 80-100 8 1-2 8 正接1-2.0 6 5 1.6-2.4 3 80-130 8 2-3 8 正接1-2.5 7-8 6 1.6-2.4 3 90-140 8 2-3 8 正接1-2.0 8-9

不锈钢的焊接工艺分析

-不锈钢的焊接工艺分析 18—8型奥氏体不锈钢焊接工 摘要:从焊前准备、焊接材料选用、防变形措施、焊接规范、操作标准、前期预热及焊后热处理等方面探讨l8—8型奥氏体不锈钢的焊接工艺,具有一定的推广价值。 关键词:18—8型奥氏体不锈钢;焊接;跳焊法;热处理; 前言:当今随着石油、化工、医药及其它工业的不断发展,对耐腐蚀性的设备需求越来越多,更多的不锈钢设备在化工企业得以广应用,特别是18—8型奥氏体不锈钢以其良好的耐腐蚀性和热稳定性,在工业应用上呈逐年上升的趋势。然而在工作中,我们常遇到晶间腐蚀,应力腐蚀,过热裂纹等问题。因其膨胀系数大,导热性差,焊接过程易产生变形。为了提高18—8型奥氏体不锈钢的焊接性、蚀性,防止裂纹的产生,控制焊接变形,提高设备制作质量,延长使用寿命,探讨一下18—8型奥氏不锈钢的焊接工艺特点。 1焊前准备 1.1焊接坡口。不锈钢的焊接坡口一般与碳钢相同,但坡口间隙不能过小。因为间隙过小,容易引起未焊透。但也不宜过大,过大时容易引起裂纹夹渣等缺陷。因此应执行有关规范而开坡口。1.1.1坡口部位最好采用机械切削。用机械进行切 削,在施焊的过程中可以减少阻力,使焊工保持平稳均匀运条。这样既能保证不锈钢焊口的内在质量,又能使外在的焊口质量光洁平整。如果采用氧熔剂切割,等离子切割等方法,对加工后的坡口应仔细地用打磨机打光,去除渗炭面,露出金属光泽面,为下一步扫除不合乎施焊标准的因素。 1.2焊前清理。首先,将接头和坡口内及两侧的杂质扫净,然后用干净抹布将接头处,坡口处污渍擦去。其次,将接口和坡口处及坡口两侧用丙酮或酒精等进行除油、清洗。再次,对于焊接表面要求高的不锈钢结构,可在坡口的两侧150mm范围内涂白粟粉糊剂,可以减少焊接时的飞溅损伤不锈钢表面。 1.2.1装焊引弧板和收弧板。在焊接平板对接焊缝时,焊缝两端在焊接前应装与母材同质的引弧板和收弧板,防止在焊件上随便引弧,损伤焊件表面,影响耐腐蚀性。 2焊接材料 2.1焊条的选择。奥氏体不锈钢焊条大体分为酸性钛钙型和碱性低氢型两大类。低氢型不锈钢焊条的抗热裂性较高,但成型不如钛钙型焊条,抗腐蚀性也较差。钛钙型不锈钢焊条具有良好的工艺性能,生产中用得较多。各种不锈钢在不同使用条件下应选用不同牌号的焊条。 (见表1) 表1奥氏体不锈钢焊条的选用简表钢号工作 环境适用焊条牌号奥OC122奥102奥107奥122奥117 vl8Nl9工作温度<300~C耐腐蚀要求不高时。奥232奥237 1Cyl8Nil2MO2Ti含钛稳定剂的重要结构有机、无机酸介质,异种钢焊接。奥132奥137奥202奥207 Cyl8Nil2MO2Ti尿素、合成纤维等化工设备,一般耐热、耐腐。奥212奥22奥32奥237

相关主题
文本预览
相关文档 最新文档