当前位置:文档之家› 图解主板的供电原理(电脑维修必备)

图解主板的供电原理(电脑维修必备)

图解主板的供电原理(电脑维修必备)
图解主板的供电原理(电脑维修必备)

现在的大多数主板的供电都使用PWM(Pulse Width Modul ati on 脉冲带宽调制)方法进行,主要是由MOSFET管、PWM芯片、扼流线圈和滤波电容等部分完成。

图1.浩鑫MN31主机板的电源部分,PWM芯片位于左边输入线圈的左部(见下图)

图2.电源管理芯片RT9241,可以精确的平衡各相电流,以维持功率组件的热均衡

PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路用的是PWM IC。

那么电源控制IC是如何控制CPU工作电压的?在主板启动时,主板BIOS将CPU所提供的VID0-VID3信号送到PWM芯片的D0-D3端,如果主板BIOS具有可设定CPU 电压的功能,主板会按时设定的电压与VID的对应关系产生新的VID信号并送到PWM芯片,PWM根据VID的设定并通过DAC电压将其转换为基准电压,再经过场效应管轮流导通和关闭,将能量通过电感线圈送到CPU,最后再经过调节电路使用输出电压与设定电压值相当。

目前绝大多数主板将5V或12V电压降到1.05~1.825V或1.30/1.80~3.5V都使用PWM方法,PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路都用PWM IC,下面对组成元件作一说明:

1.MOSFET管(Metallic Oxide Semiconductor Field Effect Tran sis tor 金属-氧化物-半导体场效应晶体管,简称为MOSFET管)

目前应用的较多的是以二氧化硅为绝缘层的栅型场效应管。MOSFET有增强型和耗尽型两种,每一种又有N沟道和P沟道之分。以N沟道增强型MOSFET为例,它是以P行硅为衬底,在衬底一侧(称为衬底表面)上用杂质扩散的方法形成两个高掺杂的N+区,分别作为源极(S)和漏极(D)。再在硅衬底表面生成一层很薄(几十纳米)的二氧化硅(SiO2)绝缘层,SiO2的上面则是一层金属铝,由此因出栅极(G)。显然,栅极与其他两个电极是相互绝缘的,故称为绝缘栅极。另外,在衬底的另一侧也引出一个电极,称为衬底电极(B),衬底电极一般与源极相连。这种绝缘栅FET具有从上到下的金属(铝)-氧化物(二氧化硅)-半导体(衬底)(Metal-Oxide-Semiconductor)三层结构,所以称之为MOSFET。从MOSFET的结构可以得知:那个黑色的小方块仅仅是个跟电阻,电容,电感等同级的电子元件,绝对不是集成块

绝对不是集成块!

绝对不是集成块

图3.N沟道MOSFET结构示意图

FET是一种电压控制器件,其栅极电流极小,栅源输出电阻很大,MOSFET可达1×10e14Ω以上,特别适合作高输入阻抗放大器的输入极。FET在沟道未夹断时可以作压控可变电阻,这一特性使FET在一些控制电路——如自动增益控制电路——得到广泛应用。MOSFET的制造工艺比BJT(Bipolar Junction Transisror 双极型晶体三极管)简单,制造MOSFET只需一次杂质扩散而无须隔离技术,集成度最高,这都是MOSFET比其它诸如JFET(Junction Field Effect Transistor 结型场效应管)、BJT等元件具有的优势,所以在超大规模数字集成电路(VLSI)中应用的最广。

主板上用的MOSFET电流指标在25℃时一般可达50A以上,但那是在散热良好条件下25℃时的指标。在主板上的条件下因为没专门的散热器而靠主板PCB上面积有限的铜皮散热,持续导通电流就大打折扣,如果持续导通电流大于20A发热就很厉害,手摸有烫手的感觉,不能长时间使用,否则会有焦味!而且,由于热量引起的升温又导致MOSFET 导通电阻增加可达25℃时的两倍,将使管耗增加,再致温度增高,如此恶性循环,时间长了就易烧毁!再则,MOSFET导通电阻增加将使CPU供电电源内阻增加,使对CPU供电非常重要的电流响应指标降低,导致CPU工作不稳定。因而,在有些主板上,可以看见电源部分覆盖着散热片甚至散热风扇,它的目的就是在提供大电流时及时散发MOSFET产生的热量,使之能稳定正常工作。

图4.技嘉8KNXP Ultra主板的DPS2第二供电系统

图5.技嘉8KNXP Ultra主板的第二供电系统上面共有8个NEC K3467场效应管,风扇

为其中6个提供散热

2.电感线圈

主板上用的电感线圈一般用16AWG(AWG:美国线规)在磁环上缠绕5~20匝做成。太粗的线不太好在磁环上缠绕,不便于规模生产,成本高,所以采用的少。电感线圈(其实也是一般导体的)的导通电流能力 I=φS (φ——导体的电流密度,变压器一般取2.5~5安培每平方毫米——因线圈层层缠绕易热积累故选小些,对电感线圈一般取6~10安培每平方毫米——因线圈单层缠绕导线裸露散热一般故可选稍大些),持续超过10安培每平方毫米后发热就有点高了。S——导体的横截面积,16AWG的导线S=1.5平方毫米(线径在1.3~1.4mm)这样:I=10×1.5=15A ,即主板上所提供给CPU的持续电流是15A,按设计规范最大不超过22A(不能长时间持续),否则易发热烧毁MOSFET和电感线圈。

图6.三相和四相供电的原理模式

如何提高主板持续供电能力呢?现在流行的办法是所谓的多相(多路)供电即采用多个MOSFET及电感线圈组合并联输出技术,以增大供电能力。所谓“一相”,是由至少一个

MOSFET管(即最上面图1中在线圈和电容中黑色的小方块,三个引脚两个接入电路。浩鑫MN31主机板采用了两相供电模式,每相回路使用了3个MOSFET管)和1个扼流线

圈以及一定数量的滤波电容——这样的组合才构之为一相回路!而不是所谓的主板上有几个

线圈便是几相回路供电。主板供电是一入N出的,常见的主板供电有:单相供电——一进线圈便是几相回路供电

一出;两相供电——一进两出;三相供电——一进三出。如现在的Pentium 4及Athlon XP

主板很多采用三路并联的三相供电模式,可使提供给CPU的持续电流达45A,按设计规范

最大不超过66A(不能长时间持续),当电压是1.5V时输出功率已可达67.5~99W,可

以满足对Pentium 4及Athlon XP大功率CPU的供电要求。这也并不是说两相供电的主

板不好,在两相供电即能保证稳定运行的情况下,这更反映出厂家的主板设计能力。至于4

相,在功率足够的情况,它只会无谓的增加成本,故很少在DIY市场上见到4相供电的主

板。

图7.采用单相供电的微星BX Master主板电源部分输出线圈搭配了两个MOSFET

图8.采用两相供电的华擎K7S8X主板电源部分

每个输出线圈搭配了两个MOSFET

图9.采用三相供电的磐英EP-6VBA2主板电源部分

每个输出线圈搭配了一个MOSFET

图10.技嘉8KNXP Ultra主板的第二代Dual Power System双重供电系统

这个绿色的插槽上插的第二供电系统见图4,每个供电系统都采用了三相供电的模式,每个

输出线圈搭配了两个MOSFET

3.滤波电容

图11.华擎K7S8X主板的CPU供电电路的滤波电容

由于CPU的工作电压低而电流却很大,即使采用了数万微法的电容也不会有很好的滤波性能,起决定作用的还是主板为CPU提供的电源调整系统。此外,由于计算机的电源以及CPU电源部分的直流转换电路都采用了开关电源的方式,电源输出的杂波频率都在几十KHz至几百KHz,普通电解电容的高频内阻大,滤波效果不好,而CPU插座边排列的圆桶状的铝质电解电容其实都是并联的,多个小容量的电容并联后的容量也许会大过容量大而数量少的电容,而且多个小电容的并联有利于减少电容内部的交流阻抗,能提供更好的高频滤波功能。

图12.小电容组成的滤波电路

有的朋友对CPU供电电路上单个滤波电容的大小很敏感,根据容量的大小来排列主板的档次,认为单颗电容越大,电容数量越多就越好,其实这样的认为是片面的。除了前面所说的原因外,还有就是每款主板都有自己的电路设计,更改电容的容值和数量将会导致电路性能参数随之发生变化,因此片面追求电容的容量并不能得到想象中的预期效果。

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

主板CPU供电电路原理图

CPU供电电路原理图 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 ● CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1. 线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,

一般主板不可能用这种方法。 2. 开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

主板电源接口详解(图解)

计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。楼上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压: 在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3地 13地 4 5V 14 PS-ON 5地 15地 6 5V 16地 7地 17地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V

在电源上看 编号输出电压编号输出电压 20 5V 10 12V 19 5V 9 5V-SB 18 -5V 8 PW+OK 17地 7地 16地 6 5V 15地 5地 14 PS-ON 4 5V 13地 3地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量 另附:24 PIN ATX电源电压对照表

百度有人说CPU供电4P接口可以和20P接口一起接在24P主板接口上,本人没试过,但根据理论试不可以的,如果你相信的话可以试试,后果是很严重的…… ATX电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU 的电压降到了3.3V以下,为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板变换后用于驱动CPU、内存等电路。 +5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。 +12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。 -12V:主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A.。 -5V:在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A.。在许多新系统中已经不再使用-5V电压,

笔记本电脑供电电路故障地诊断方法

笔记本电脑供电电路故障的诊断方法 笔记本电脑的主板供电电路是笔记本电脑不可或缺的一部分,其出现问题通常会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除,首先应掌握其基本工作原理,其次要对主板供电电路出现问题后导致的常见故障现象进行了解,最后要不断总结和学习主板供电电路的检修经验和方法。 1 笔记本电脑主板供电电路基本知识 笔记本电脑主板的供电方式有两种,一种是笔记本电脑采用的专用可充电电池供电,另一种是能够将220V市电转换为十几伏或二十几伏供电的电源适配器供电。笔记本电脑的专用可充电池提供的供电电压通常要低于电源适配器的输入供电电压。 无论是笔记本电脑的专用可充电电池还是电源适配器,其输入笔记本电脑主板上的供电并不能被所有芯片、电路以及硬件设备等直接采用,这是因为笔记本电脑主板上的各部分功能模块和硬件设备对电流和电压的要求不同,其必须经过相应的供电转换后才能被采用。 文案

所以,笔记本电脑主板上的各种供电转换电路,成为了笔记本电脑不可或缺的一部分。同时,笔记本电脑的主板供电电路出现问题后,就会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除方法,必须首先掌握其工作原理和常见故障现象,这样才能够在笔记本电脑的检修过程中做到故障分析合理、故障排除迅速且准确。 1.1笔记本电脑主板供电机制 笔记本电脑主板上的供电转换电路主要采用开关稳压电源和线性稳压电源两种。 开关稳压电源是笔记本电脑主板中应用最为广泛的一种供电转换电路。笔记本电脑主板上的系统供电电路、CPU供电电路、芯片组供电电路以及存和显卡供电电路中,都广泛采用了开关稳压电源。 开关稳压电源利用现代电子技术,通过电源控制芯片发送控制信号控制电子开关器件(如场效应管)的“导通”和“截止”,对输入供电进行脉冲调制,从而实现供电转换以及自动稳压和输出可调电压的功能。 笔记本电脑主板上应用的开关稳压电源电路通常由电源控制芯片、场效应管、滤波电容器、储能电感器以及电阻器等电子元器件组成。电源控制芯片是开关稳压电源电路中的供电电压转换控制元器件,场效应管和储能电感器是电路中的电压转换执行元器件,电路中的 文案

电脑电源接口详解(图解)

电脑主板电源接口图解 计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压:在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3 地13 地 4 5V 14 PS-ON 5 地15 地 6 5V 16 地 7 地17 地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V 在电源上看: 编号输出电压编号输出电压20 5V 10 12V

19 5V 9 5V-SB 18 -5V 8 PW+OK 17 地7 地 16 地 6 5V 15 地 5 地 14 PS-ON 4 5V 13 地 3 地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量。 另附:24 PIN ATX电源电压对照表 X电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了 3.3V

(完整版)电脑主板各个电路检修方法

主板维修思路 首先主板的维修原则是先简后繁,先软后硬,先局部后具体到某元器件。 一.常用的维修方法: 1.询问法:询问用户主板在出现故障前的状况以及所工作的状态?询问是由什么原因造成的故障?询问故障主板工作在何种环境中等等。 2.目测法:接到用户的主板后,一定要用目测法观察主板上的电容是否有鼓包、漏液或严重损坏,是否有被烧焦的芯片及电子元器件,以及少电子元器件或者PCB板断线等。还有各插槽有无明显损坏。3.电阻测量法:也叫对地测量阻值法。可以用测量阴值大小的方法来大致判断芯片以及电子元器件的好坏,以及判断电路的严重短路和断路的情况。如:用二极管档测量晶体管是否有严重短路、断路情况来判断其好坏,或者对ISA插槽对地的阻值来判断南桥好坏情况等。 4.电压测量法:主要是通过测量电压,然后与正常主板的测试点比较,找出有差异的测试点,最后顺着测试点的线路(跑电路)最终找到出故障的元件,更换元件。 二.主板维修的步骤: 1.首先用电阻测量法,测量电源、接口的5V、12V、3.3V等对地电阻,如果没有对地短路,再进行下一步的工作。 2.加电(接上电源接口,然后按POWER开关)看是否能开机,若不能开机,修开机电路,若能开机再进行下一步工作。 3.测试CPU主供电、核心电压、只要CPU主供电不超过2.0V,就可以加CPU(前提是目测时主板上没有电容鼓包、漏液),同时把主板上外频和倍频跳线跳好(最好看一下CMOS),看看CPU是否能工作到C,或者D3(C1或D3为测试卡代码,表示CPU已经工作),如果不工作进行下一步。 4.暂时把CPU取下,加上假负载,严格按照资料上的测试点,测试各项供电是否正常。 如:核心电压1.5V,2.5V和PG的2.5V及SLOT1的3.3V等,如正常再进行下一小工作。 5.根据资料上的测试点测试时钟输出是否正常,时钟输出为1.1-1.9V,如正常进行下一步。 6.看测试卡上的RESET灯是否正常(正常时为开机瞬间,灯会闪一下,然后熄灭,当我们短接RESET 跳线时,灯会随着短接次数一闪一闪,如灯常亮或者常来均为无复位。),如果复位正常再进行下一步。 7.首先测BIOS的CS片选信号(为CPU第一指令选中信号),低电平有效,然后测试BIOS的CE信号(此信号表示BIOS把数据放在系统总线上)低电平有效。 8.若以上步骤后还不工作,首先目测主板是否有断线,然后进行BIOS程序的刷新,检查CPU插座接触是否良好。 9.若以上步骤依然不管用,只能用最小系统法检修。步骤为:更换I/O南桥北桥

图解主板的供电原理(电脑维修必备)

现在的大多数主板的供电都使用PWM(Pulse Width Modul ati on 脉冲带宽调制)方法进行,主要是由MOSFET管、PWM芯片、扼流线圈和滤波电容等部分完成。 图1.浩鑫MN31主机板的电源部分,PWM芯片位于左边输入线圈的左部(见下图) 图2.电源管理芯片RT9241,可以精确的平衡各相电流,以维持功率组件的热均衡 PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路用的是PWM IC。

那么电源控制IC是如何控制CPU工作电压的?在主板启动时,主板BIOS将CPU所提供的VID0-VID3信号送到PWM芯片的D0-D3端,如果主板BIOS具有可设定CPU 电压的功能,主板会按时设定的电压与VID的对应关系产生新的VID信号并送到PWM芯片,PWM根据VID的设定并通过DAC电压将其转换为基准电压,再经过场效应管轮流导通和关闭,将能量通过电感线圈送到CPU,最后再经过调节电路使用输出电压与设定电压值相当。 目前绝大多数主板将5V或12V电压降到1.05~1.825V或1.30/1.80~3.5V都使用PWM方法,PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路都用PWM IC,下面对组成元件作一说明: 1.MOSFET管(Metallic Oxide Semiconductor Field Effect Tran sis tor 金属-氧化物-半导体场效应晶体管,简称为MOSFET管) 目前应用的较多的是以二氧化硅为绝缘层的栅型场效应管。MOSFET有增强型和耗尽型两种,每一种又有N沟道和P沟道之分。以N沟道增强型MOSFET为例,它是以P行硅为衬底,在衬底一侧(称为衬底表面)上用杂质扩散的方法形成两个高掺杂的N+区,分别作为源极(S)和漏极(D)。再在硅衬底表面生成一层很薄(几十纳米)的二氧化硅(SiO2)绝缘层,SiO2的上面则是一层金属铝,由此因出栅极(G)。显然,栅极与其他两个电极是相互绝缘的,故称为绝缘栅极。另外,在衬底的另一侧也引出一个电极,称为衬底电极(B),衬底电极一般与源极相连。这种绝缘栅FET具有从上到下的金属(铝)-氧化物(二氧化硅)-半导体(衬底)(Metal-Oxide-Semiconductor)三层结构,所以称之为MOSFET。从MOSFET的结构可以得知:那个黑色的小方块仅仅是个跟电阻,电容,电感等同级的电子元件,绝对不是集成块 绝对不是集成块! 绝对不是集成块 图3.N沟道MOSFET结构示意图

主板内存供电电路维修详解

主板内存供电电路维修 详解 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

主板内存供电电路维修详解 今天写的这例故障十分普遍,修理过程也比较简单,所以拍了一些照片上来简述一下!希望大家能够看明白!今天下午盱眙高达电脑维修公司接到了一块SOLTEK 845PE 主板,故障现象是不能点亮,伴随着蜂鸣器长鸣报警!从报警声得知故障是内存部分,但客户已经更换过其它内存试过,情况还是一样,就此可以判断故障原因是北桥与内存槽的连接线路零件或内存供电问题。 从下图中测试卡显示结果也证明了是不能正确检测到内存。主板测试显示内存部分有问题。 首先检查内存的第七脚供电电压是否是标准的DDR 供电,看下图:内存供电脚,内存左面左数第七脚。 从万用表的读书可以看出,内存供电电压只有左右。离DDR的标准电压相差甚大! 知道具体原因就好办了,顺着内存插槽的第7脚跟着线路找到了内存供电MOS 管,汗一下!!居然在AGP槽尾部下面,傍边还有两个小电解电容!这样就增加了更换难度!为了避免伤及傍边的零件及AGP槽,唯有先拆下电容再用风枪底部辅助加热,上面用电烙铁拆下!(拆下的经过因为双手进行,没有第三只手拍照了) 从该主板上拆下的MOS可以看到已经烧了一个白色的圈!准备装上一个代用的3055 MOS 管! 安装过程也是双手进行,也没有第三只手拍照!下图是装好并清理干净PCB后的效果!除了焊锡比较新外可以说和原装没有任何分别! 装好MOS管后可以试机了,装上内存等必要部件,通电!看下图测量结果:

重新测量内存供电电压,已经恢复到DDR需要的电压。 再装上显卡,可以点亮了~!测试卡的走数也跑到了下一步了!屏幕也出现了自检信息! 还以为全部问题解决了!谁知道还有问题,CMOS不 能保存(电子电压正常)!再经过检查,一直通电的 情况下没问题,拔下电源立刻清零了!从现象来看肯 定是备用电子切换电路问题,很容易就查到了是一只 三极管开路了!换上立刻正常!

3主板供电电路基础知识

主板供电电路设计基础知识 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

主板各部件-零件详解(图解)

一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(GlassEpoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractivetransfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。

然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。 另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而A TX板型则像一块横置的大AT板,这样便于ATX 机箱的风扇对CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依靠连线才能输出。另外ATX还有一种MicroATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。

主板供电全解析

主板供电全解析 首先来认识一下CPU供电电路的器件,找一片技嘉X48做例子。 上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。下面我们分开来看。

(图)PWM控制器(PWM Controller IC) 在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。 MOSFET驱动芯片(MOSFET Driver) MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥 MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。

早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。 MOSFET,中文名称是场效应管,一般被叫做MOS管。这个黑色方块在供电电路里表现为受到栅极电压控制的开关。每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。每相电路都要有上桥和下桥,所以每相至少有两颗MOSFET,而上桥和下桥都可以用并联两三颗代

电脑主板CPU供电电路原理图解

电脑主板CPU供电电路原理图解 一.多相供电模块的优点 1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。 2.可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。3.利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。 二.完整的单相供电模块的相关知识 该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。 图1单相供电电路图 主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。 小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。 实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2 主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三.判断方法 1.一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

CPU供电电路详解

CPU供电电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个数字,P4处理器功率可以达到70-80瓦,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。如图2就是一个两相供电的示意图,很容易看懂,就是两个单相电路的并联,因此它可以提供双倍的电流供给,理论上可以绰绰有余地满足目前CPU的需要了。但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能,导体的电阻,都是影响Vcore的要素。实际应用中存在供

#电脑主板供电电路原理图解

电脑主板供电电路原理图解 一、多相供电模块的优点: 1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。 2.可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。 3.利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。 二、完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。 图1单相供电电路图 主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。 小知识: 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其使用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。 实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三、判断方法: 1.一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数和电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

笔记本电脑CPU供电电路原理图

CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1.线性电源供电方式 通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。 2.开关电源供电方式 我们平时用的主板基本都用这种方式,原理图如下。

其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的电压了。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

笔记本主板电源原理及架构

笔记本主板电源原理及架构 通常情况下,笔记本由适配器或电池供电。常用适配器的典型输出电压为19.5V。电池通常输出10.8V、1 4.4V等。但主板内部各部分的工作电压并没有这么高。如DDRIII内存工作电压通常为1.5V,LAN工作电压为3.3V,硬盘、MODEN等需要5V等等。除了工作电压不同以外,主板不同部分对电源的带负载能力要求也不同。例如DDRII内存通常要求1.5V电源能提供8A左右的电流。而CPU则往往需要超过30A以上且变化速率很高的电流。针对不同要求,我们需要把适配器或电池提供的电,经过精确的变换之后,再分配给不同的部分。设计笔记本主板电源部分的目的,简单的说,就是利用适配器或电池提供的电能,为主板各个部分单独制定合适的供电方案。下图为一典型电源架构图。 图1.1 典型笔记本电源总架构 由图1.1 可以看出,适配器或电源经过众多变换,最终分成很多不同的部分。本文所有章节即围绕此图展开,详细的介绍各个部分的作用、特性以及解决方案。 上图为外部电源(适配器或电池)与主板电源相连接的部分,也是一个更加简略的架构图。外部电源的电压会被分布到一个电源平面上,以某品牌商务机种架构为例,此平面称为+PWR_SRC。若适配器和电池都在,电池处在充电状

态或不工作,+PWR_SRC 电压即为适配器的电压,通常为19.5V。若只有适配器接入,情况相同。若只有电池接入,+PWR_SRC 为电池输出电压,通常为10.8V 或14.4V。主板各个部分不同的电源都直接或间接的由+PWR_SRC 转换得来。图中使用了FDC654P 来将+PWR_SRC 转换成+BL_PWR_SRC,用ISL62 870 将+PWR_SRC 转换为+GPU_CORE, +GPU_CORE 为显卡的工作电源。除了电源变换外,从上图还可以看出,电池的充电电路也是电源架构的一部分。详情将会在以后章节中具体分析。 主板维修技巧 主板维修技巧 14.318MHZ及32.768KHZ是否不良) 3-1-3. 查BATTERY之SHORT PIN(JUMPER)是否未上或上錯 位置BATTERY 之電壓是否正確,CRYSTAL 32.768KHZ 頻率及其相關線路是否正常 3-2﹒PCIRST不正確 查CHIP之PCIRST至PCI SLOT(PIN A15)之線路是否 OPEN or SHORT或零件不良 3-3 CPURST不正確 查CHIP至CPU之線路是否OPEN or SHORT或零件不良 4. 查BE0~BE7,A2~A31,D0~D63等信號及其相關之線路是否 OPEN or SHORT或零件不良 5﹒查ADS,CPURDY,PCI之REQ0~REQ3,等信號及其相關之線路 是否OPEN or SHORT或零件不良 6﹒查PCI SLOT之AD0~AD31等信號及其相關之線路是否OPEN or SHORT或零件不良 7﹒BIOS不良或無資料(可使用良品之BIOS交換測試確定之) 8﹒查SA0~SA16,SD0~SD7(XD0~XD7)等信號及其相關之線路 是否OPEN or SHORT或零件不良 1.熟悉PC主板的总线类型及I/O总线插槽中各信号排列情况,以I/O插槽中重要信号为 线索进行故障点查找是维修PC主板致命性故障的关键。 微机主板常用总线有PC/XT、PC/AT、VESA、PCI等类型,不同总线的I/O槽中信 号排列有所差别,熟悉I/O槽中重要信号是查找因总线类故障系统死机、屏幕无显示等严 重故障的前提。对死机类故障,首先区分故障原因是由I/O设备故障引起还是主板本身故 障引起。确诊故障在系统板后,可检测系统板I/O槽中地址总线或数据总线的脉冲状态初 步判断系统故障部位:若所有地址总线或数据总线均无脉冲,则可能是CPU未工作;若个 别地址总线或数据总线为恒定电平而其余位为脉冲,则是总线故障。由于CPU本身故障率 较低,因此检查CPU未工作的原因应从CPU工作的输入信号是否正常入手。CPU的基本工作 条件有三个,即系统复位信号RESET、系统时钟信号CLK、CPU就绪信号READY。以PC/AT机为例,CPU(intel286)的29脚为RESET信号,对应于I/O槽中B02槽RESET DRV信号,在开机时应有一个明显正脉冲;CPU的31脚为CLK信号,对应I/O槽中B20槽系统时钟SYSCLK信号,应为TTL电平的时钟脉冲。CPU的65脚为READY信号,在开机时应为低电平或脉冲。某P C/AT机死机,屏幕无显示故障,首先查I/O槽中B02槽RESET DRV信号恒低,说明开机复位信号错,于是查时钟处理芯片82284-12脚,在开机时有一个正脉冲,说明82284已正确发 出了系统复位信号,跟踪复位信号传输路径向下检查,说明82284已正确发出了系统复位 信号,跟踪复位信号传输路径向下检查,发现74ALS02的5、6脚输入为正脉冲,但输出4 脚却为“不高不低”浮空电平,更换该芯片后故障排除。对总线故障检修原则是:若发

电脑主板供电电路图

电脑主板供电电路图 最近一些用户在户户户户主板的户候~越越多的户户到来供户户路~原的只户心芯片户、户展功能和价格从来 最近一些用户在户户户户主板的户候~越越多的户户到供户户路~原的只户心芯片户、户展功来从来 能和价格~到户在户心到供户~可以看出用户的消户户越越理性。户户户户主板户如何能户辨户些主来哪 板的供户户路有户工料~我户户要户例出户~以富士康的一款主板户大家户一下~之所以户户没减呢从 了户款主板~一方面是因户富士康一直户INTEL等代工主板~户量上有保户~一方面是因户会另富士康一直以用的材料有保户~我户也户户一下是否情户。下面来况属945GZ7MC主板上面有vista PRE户户的LOGO~可户是支持微户最新VISTA 系户的~户在同户的板子中是户户少户的~户当外的收户。 先看一下来CPU供户户路整户~不知道能看出什户端倪,行的行家可能户了,三相供户、体您懂 密户户感。户看明白的~户系~接着看就明白了。没没您会

主板供户的三相相之由已久~在以往户理器户供户户流要求比户低的户候~户户低劣的与两争来 三相肯定不如做工户的相户路户定~但是着户理器的功耗和户流不攀升~相供户已户走扎两随断两 到了生命的户。新一代的尽AMD和Intel户理器都户供户提出了更高的要求~所以我户户在看到的三相供户基本已成户户配~而且已户出户多四相供户的主板了。如果户在户再户二相比三相户定很 之户的户~要户就有技户户户能力太低~要户是成心户工料了。减 三相供户的原理太户户了~一下也户不楚~使用者的角度~我户只要知道三相户路可清从 以提供更大的户流~户户户的要求也更高一些~户有一些可能是缺点的特点~那就是成本上三相户是大一些。 作户成供户户路重要的三大元器件~我户户是要了解一些的~户就是户容、户感和户效户管。户构 成上户户中的四方户是框个CPU上方的MOS管~四上四下~多户板子都用了上下~户很两两定性要差不少。MOS管越多越好~的作用是可以防止户流户毁它CPU。

主板内存供电电路维修详解

主板内存供电电路维修详解 今天写的这例故障十分普遍,修理过程也比较简单,所以拍了一些照片上来简述一下!希望大家能够看明白!今天下午盱眙高达电脑维修公司接到了一块SOLTEK 845PE 主板,故障现象是不能点亮,伴随着蜂鸣器长鸣报警!从报警声得知故障是内存部分,但客户已经更换过其它内存试过,情况还是一样,就此可以判断故障原因是北桥与内存槽的连接线路零件或内存供电问题。 从下图中测试卡显示结果也证明了是不能正确检测到内存。主板测试显示内存部分有问题。 首先检查内存的第七脚供电电压是否是标准的DDR 2.5V 供电,看下图:内存供电脚,内存左面左数第七脚。

从万用表的读书可以看出,内存供电电压只有1.8V 左右。离DDR的标准电压2.5V 相差甚大! 知道具体原因就好办了,顺着内存插槽的第7脚跟着线路找到了内存供电MOS 管,汗一下!!居然在AGP槽尾部下面,傍边还有两个小电解电容!这样就增加了更换难度!为了避免伤及傍边的零件及AGP槽,唯有先拆下电容再用风枪底部辅助加热,上面用电烙铁拆下!(拆下的经过因为双手进行,没有第三只手拍照了) 从该主板上拆下的MOS可以看到已经烧了一个白色的圈!准备装上一个代用的3055 MOS 管! 安装过程也是双手进行,也没有第三只手拍照!下图是装好并清理干净PCB后的效果!除了焊锡比较新外可以说和原装没有任何分别! 装好MOS管后可以试机了,装上内存等必要部件,通电!看下图测量结果:

重新测量内存供电电压,已经恢复到DDR需要的2.5V 电压。 再装上显卡,可以点亮了~!测试卡的走数也跑到了下一步了!屏幕也出现了自检信息! 还以为全部问题解决了!谁知道还有问题,CMOS不 能保存(电子电压正常)!再经过检查,一直通电的 情况下没问题,拔下电源立刻清零了!从现象来看肯 定是备用电子切换电路问题,很容易就查到了是一只 三极管开路了!换上立刻正常!

相关主题
文本预览
相关文档 最新文档