当前位置:文档之家› 隧道贯通测量

隧道贯通测量

隧道贯通测量
隧道贯通测量

10.3.1 概述

线路勘测、管线测量及隧道贯通测量是铁路、交通、输电、通讯等工程建设中重要的工作。以往大多采用传统的控制测量、工程测量方法进行控制网建立及施测,由于该类测量控制网大多以狭长形式布设,并且很多工程穿越山林,周围已知控制点很少,使得传统测量方法在网形式布设、误差控制等多方面带来很大问题。同时传统方法作业时间也比较长,直接影响了工程建设的正常进展。自从将GPS 技术引入该领域以来,使其测量效率及测量精度得到可喜的提高,本节将以西安——南京线GPS控制网、秦岭某隧道贯通GPS网及北京地铁精密导线GPS复测为例,介绍GPS技术在线路勘测及隧道贯通等测量中的应用。

10.3.2 线路GPS控制网的建立

传统的线路测量一般采用导线法,在初测阶段沿设计线路布设初测导线。该导线既是各专业开展勘测的控制基础,也是进行地形测量的首级控制,所以要求相邻导线点通视。在该线路测量中应用GPS技术的形式是沿设计线路建立狭带状控制网。目前主要有两种情况,一种是应用GPS定位技术替代导线测量;一种是应用GPS定位技术加密国家控制点或建立首级控制网。在实际生产中较多的用了后者。

下面以西安——南阳段GPS控制网为例,说明GPS线路控制网的布设和应用情况。

1.布网形式

铁道部《铁路测量技术规程》规定,1:2000比例尺地形图测绘起、闭于高级控制点的导线全长不得大于30km(公路线路一般规定≤10km)。据此,铁路GPS 线路控制网布设应满足以下几条:作为导线起闭点的GPS应成对出现;每对点必须通视,间隔以1km为宜(不宜短于200m);每对点与相邻一对点的间隔不得大于30km。具体间隔视作业条件和整个控制测量工作计划而定,一般5~15km布设一对点。这些点均沿设计线路布设,其图形类似线形锁。

图10-4显示了西安——南京线西安至南阳段GPS控制网的布设网形。

西安——南京线中西安至南阳线路长度450km,线路通过秦岭山脉东段和豫西山区。GPS定位测量是为初测导线提供起闭点。GPS网由13个大地四边形和2个三角形组成。待定点(GPS控制点)24点为12个点对,相邻点对间平均距离18km。联测了六个国家控制点,选用其中五个点作已知点参与平差。

为了提高勘测精度和便于日后勘测工作的开展,在构建GPS控制网时在以下地段布设GPS点对:

①线路勘测起迄处;

②线路重大方案起迄处;

③线路重大工程,如隧道、特大桥、枢纽等地段;

④航摄测段重叠处。

2.观测及处理

GPS控制网观测选用单频机或

双频GPS接收机,采用静态观测模式,时段长度一般为30~90min。数据预处理采用随机软件。

线路测量采用国家统一的平面坐标系统——1954年北京坐标系。WGS-84与1954北京坐标系统的转换采用国家控制点重合转换,在西安——南京线中西安至南阳段约束平差计算时,剔除了有明显问题的炮校三角点,选用其余五个点进行约束平差。

经平差计算,起闭点的GPS点精度达到国家四等点的精度,满足线路测量需要。

10.3.3 长隧道GPS施工控制网

隧道施工控制网是为隧道施工提供方向控制和高程控制的,一般由洞口点群和两洞口之间联系网组成。

图10-5、图10-6分别为秦岭与云台山隧道的GPS控制网(平面)。

秦岭隧道设计长度10km,是我国最长的铁路隧道。秦岭隧道GPS施工控制网共观测30条独立基线,平均边长4.1km,最长边长18.6km。

去年台山隧道GPS网在进出洞口及斜井各布设3个GPS点。

采用静态方式观测,观测2个时段,时段长度为60min。但秦岭隧道GPS网的联系网边每时段观测90min。

用GPS水准解决高程问题,为此建立一个高程转换试验网,有10个网点,用II 等精密水准将黄海高程传递到洞口附近,联测8个点,对联测几何水准的点,采用快速静态测量方式测定其点位。高程拟合采用非参数回归模型,拟合的高程,满足隧道贯通对高程的精度要求。

各项质量检核结果表明,秦岭隧道GPS施工控制网达到测绘行业标准《全球定位系统(GPS)测量规范》C级网的技术指标,也满足铁路测量精度要求达到国家三等控制点精度。

10.3.4 地铁精密导线GPS测量

地铁精密导线GPS测量与普通控制网GPS测量有两个显著区别:

1.地铁精密导线GPS测量呈线状;

2.地铁精密导线有大量短边,边长为100m~500m。

所以,GPS测量必须针对精密导线测量的特点进行。下面就以北京市地下铁道复八线热八区间精密导线GPS测量为例说明地铁精密导线的测量。

用户提出精度指标为:

1.相邻点位中误差不得大于8mm;

2.GPS测定坐标值与既有坐标值(指原有控制点)之差不得大于20mm。

作业方案的制定

制定时作如下考虑:①待定点的分布虽然是线状(导线形式),为了提高精度和剔除错误,仍采用网状观测及平差处理;②静态定位测量.同步环中每条基线测定的时段长度为2小时(只测1个时段),PDOP小于6,同步观测星数不小于4个;③已知控制点有3个点,待定精密导线点为8点,检查2个点(原有精密导线点)。

图10-7为GPS网布设示意图。

图中O为原有精密导线点,Δ为已知控制点,·为待定精密导线点。经平差计

算,FB

30和FB

32

两点GPS测定的坐标与原有坐标差值(见表10-7)

Δx≤15mm,Δy≤8mm;相邻点位中误差小于8mm。

表10-7 GPS测定坐标与原有坐标较差

北京地下铁道复八线热八段精密导线GPS测量表明,应用GPS定位技术测定地铁精密导线平面位置是成功的,具有很好的经济、社会效益。地铁精密导线与区域控制网有一定区别,完全套用目前行业标准《全球定位系统(GPS)测量规范》不一定是最科学合理的。具体还要根据工程具体情况进行灵活掌握。

隧道贯通测量报告

炮台山隧道贯通测量报告 1、前言 由于测量过程中不可避免地带有误差,因此贯通实际上总是存在偏差的。隧道贯通接合处的偏差可能发生在空间的三个方向中,即沿隧道中心线的长度偏差,为纵向贯通误差;垂直于隧道中心线的左右偏差,为横向贯通误差;和上下的偏差,为高程贯通误差。纵向贯通误差只对贯通在距离上有影响,对隧道的质量没有影响,而后两种方向上的偏差对隧道质量有着直接影响。 2、工程概述 新建铁路原州区至王洼线第三合同段的炮台山隧道地处黄土梁峁区,隧道进口位于山前陡坎上,出口位于清石河右岸台地上。隧道长度1548m,隧道起止里程DK19+634-DK21+185。隧道进出口段埋深较小,多在6.6-47m之间,其余段落隧道埋深较大,最大埋深可达120m。隧道位于线路纵坡 6.0‰和 4.3‰的单面下坡上,除DK19+704-DK20+013位于R-600m的曲线上和 DK20+641-DK21+151位于R-800m的曲线上,其余段落位于直线上。隧道进、出口道路均被深沟所阻,只有乡村道路可以绕行到达,交通困难。 3、贯通误差测量 3.1贯通测量方案 炮台山隧道施工采用进出口双向掘进。隧道贯通后,在隧道贯通面上钉一临时桩,用隧道进口洞内的控制点,和隧道出洞洞内的控制点,各自向临时桩进行测量,分别测取临时桩点的平面坐标,将两组

坐标的差值分别投影到贯通面上和隧道中线上,则贯通面上的投影即为横向贯通误差,在中线上的投影即为纵向贯通误差。高程贯通测量是测定实际的竖向贯通误差,通常采用水准测量方法,从隧道进口和出口附近的水准点开始,各自向洞内进行,分别测出贯通面上同一点的高程,即获此点的两个高程之差。依据【铁路工程测量规范】(TB10101-2009)中表6.1.4关于隧道贯通误差规定: 2 相向开挖长度大于20km的隧道应作特殊设计 炮台山隧道全长1548m,故横向贯通误差限差为100mm,高程贯通误差限差为50mm。 3.2贯通误差的测定 纵横贯通误差的测定。采用GPT7501全站仪,采用由炮台山隧道进口两个控制点ZD14和ZD16引入的控制点ZD14-23和ZD14-21,测量贯通面的临时桩L1坐标为X(3997968.145),Y(496282.256),H(1658)。隧道出口两个控制点GPS12-2、GPS12-1引入的控制点ZD8-8和ZD8-7,测量贯通面的临时桩L1坐标为X(3997968.107), Y(496282.273), H(1658.004)。得到△X=0.038,△Y=0.017,△H=0.004。将两组坐标分别投影到贯通面上、隧道中线上和高程上,临时桩L1进口测的里程为20+685.981,距中

地铁隧道贯通测量

毕业设计(论文)题目地铁隧道贯通测量 英文题目Through Measurement of Subway Tunnel 摘要 为了使两个或多个掘进工作面按其设计要求在预定地点正确接通而进行的工作 叫做贯通测量,这是一项重要的地下隧道施工技术。贯通测量的基本任务是保证各 项掘进工作面均沿着设计的位置和方向掘进,使贯通后结合处不超过规定的限度。 贯通测量工作直接影响到地下工程的质量,因此有必要对其方法做系统的学习研究。 关键字:地下工程测量沈阳地铁贯通测量 Abstract

The main target of through measurement is to make sure two or more heading face according to the design requirements connected at the correct point. Through measurement,one of the underground measurement methods, is an important technology of underground tunnel construction.Through measurement direct impact the quality of underground works. It is therefore necessary to make its way to study systems. Key word:underground measurement, Shenyang metro, through measurement

隧道贯通测量报告(新)

贯通测量报告 西安铁一院咨询监理公司重庆轨道交通三号线一期工程监理总部:我项目部承建的重庆市轨道交通三号线一期童家院子车场出入线隧道工程于2010年5月20日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请铁一院驻地监理及测量监理组进行复测,现报告如下: 一、测量依据、技术标准 1、国标GB50026-93《工程测量规范》; 2、GB50308-2008《城市轨道交通工程测量规范》; 3、CJJ8-99《城市测量规范》; 4、重庆市轨道交通总公司编制的《重庆轻轨较新线一期工程施工测量技术管理规定》(试行稿)。 二、测量用仪器设备 外业观测分为一组进行,平面复核测量采用徕卡TCR402、仪器标称精度2”2+2ppm;搞成采用徕卡DNA03型电子水准仪,配条形码铟钢尺,仪器精度为0.3mm/Km. 三、测量 洞外控制测量采用GPS导线控制,在隧道施工前已布设,施工中洞内采用精密双导线控制施工测量。童家院子车场出入线隧道左右线分别在YK0+358.871和ZK0+358.911处与车场出入线隧道下一标段贯通。本次贯通测量童家院子车场隧道中线出口段采用已知控制点GC1为起始边,在贯通面设一点LD1,入口段采用已知控制点GC5为起始边测量贯通点LD1,其贯通测量线路示意图如下:

贯通面 已知点已知点 已知点 测点 进口端 出口端 已知点贯通测量示意图 测量操作过程中各项指标均符合规范性标准要求。贯通测量成果如下表所示: 表1 贯通测量成果表 四、结论 贯通误差符合《工程测量规范》GB50026-2007、《城市轻轨交通工程测量规范》GB50308-2008的精度要求,所以隧道内的加密导线点能够满足隧道整体施工及验收规范要求。 中铁七局武汉分公司重庆轻轨项目部 2010年5月20日

隧道贯通测量设计书

目录 1 编制依据 (2) 2 工程概况 (2) 3 平面控制 (2) 4 高程控制 (4) 5 施工放样 (4) 6 横向贯通中误差估算与分析和控制点观测措施 (4) 7 洞内、外水准高程测量对竖向贯通中误差的估算和分析 (8) 8 洞内、外控制全部贯通测量中误差计算 (8) 9 全部贯通测量中误差估算总结 (9) 10 附隧道洞内外控制网点平面布置示意图及控制点概算坐标 (9) 桃江核电厂进厂道路Ⅰ标段洞冲里隧道

贯通测量技术设计书 1编制依据 1.1《工程测量规范》(GB50026-2007); 1.2《公路勘测规范》(JTG C10-2007); 1.4 《公路隧道施工技术规范》(JTJ042—94); 1.5 桃江核电厂进厂道路Ⅰ标段洞冲里隧道施工设计图纸(主要是隧道轴线平面控制点及曲线要素表、纵断面设计高程数据和施工设计图); 1.6 隧道洞口地形及洞外已知控制点点位实际情况等。 2 工程概况 桃花江核电厂进厂道路工程是桃花江核电前期工程的组成部分,道路全长7.331Km,其中Ⅰ标段1.6km,包括785m道路和815m隧道。 本标段洞冲里隧道位于线路交点JD1与JD2间连线的直线上,里程桩号为K0+650~K1+465,全长815m,属于中型隧道,单向纵坡i=-1.98%,设计开挖断面为四心圆拱形,上半圆R=7.026m/7.096m,左右边墙R=12.526m/12.596m,仰拱R=15.300m。隧道进口坐标:X=3157775.546,Y=599165.727,H=107.933;出口坐标:X=3158177.782, Y=598456.904,H=91.773。 3 平面控制 3.1 平面控制点布设 在隧道口附近,工程勘测设计时已布测并移交平面GPS四等控制点4个,其点名和坐标见表1,两点间能相互通视。根据现有地面控制点及《公路勘测规范》(JTG C10-2007)等施工测量规范和设计、业主等的规定和要求,并结合本工程的线形特点及施工工艺的实际情况、到场使用的测量设备等级等,拟沿隧道轴线方向布设控制支导线(见隧道洞内外控制网点布置示意图中的附图1),所布设的控制导线网点概算坐标见附表13。 3.2 选点埋石 根据规范要求,洞内控制导线在布设时,其平均边长控制在300m且相邻边长、短边长之比不大于3:1,以减小短边对测角精度的影响。洞内控制点埋设在隧道底板稳固的洞冲里隧道GPS四等控制点坐标及高程一览表表1

XX隧道贯通误差报告

X X高速X标 XX隧道贯通误差报告 编制: 复核: 技术负责人: 监理工程师: 中铁X局XX高速X标项目部 2013年11月5日

目录 1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;由进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,由进出口端导线控制点分别测得贯通面同一点的坐标为横向贯通误差,其中纵向及工程贯通误差对隧道正确贯通一般影响不大。目前隧道贯通误差主要分析横向贯通误差。 2、编制依据 (1)《工程测量规范》(GB50026-2007) (2)《国家三、四等水准测量规范》(GB/T12897-2006) (3)《公路隧道施工技术规范》(JTGF60-2009) 3、工程概况

XX隧道为双洞四车道,左、右线隧道分离式布设,左线隧道全长759m,右线隧道全长882m,围岩以Ⅲ、Ⅳ、Ⅴ级为主,本隧道左线LK6+211~LK6+970位于半径4200m的圆曲线上,右线RK6+306~RK7+188位于半径4550m的圆曲线上。 4、贯通误差测量 4.1贯通测量实际观测值的确立 根据影响隧道贯通测量误差的因素分析,XX隧道贯通测量误差预估分别从洞内、外横向、纵向及竖向因素考虑,预估其相应误差值,作为实际贯通误差的参考值。其中纵向贯通误差主要影响隧道线路坡度,线路坡度i=h/S*1000‰,(h为两点间高差,S为水平距离)对上式进行微分后得:di=dh/S*1000‰-hdS/S2*1000‰,当只考虑纵向贯通误差dS时,假设可以忽略的坡度影响为0.001‰,即100m的水平距离允许的高差为±0.1m,可认为:0.001‰=h*dS/S2*1000‰,dS=S2/1000000h,XX隧道左线单向纵坡为-9.13‰,即h/S=9.13/1000,代入上式可得左洞:dS=759/1000000*1000/9.13=0.083m,表明XX隧道左线允许纵向贯通误差为0.083m;右线单向纵坡为-10.87‰,即h/S=10.87/1000,代入上式可得右洞: dS=882/1000000*1000/10.87=0.081m,表明XX隧道左线允许纵向贯通误差为0.081m。从实际情况统计,隧道一般纵向贯通误差均小于按上式计算的结果,因此,纵向贯通误差一般情况下不会给设计坡度和工程建筑结构造成不利影响,考虑其上分析所得,XX隧道纵向贯

××隧道贯通误差测量报告

XX高速公路XX至XX段建设项目 XX合同段 里程桩号:K78+005?K82+632 XX隧道贯通误差测量报告 XX建设(集团)有限公司 XX高速公路集安至XX段XX标 项目经理部

二零一七年七月三日 1、前言 (1) 2、编制依据 (1) 3、工程概况 (1) 4、贯通误差测量实测方案及误差规定 (2) 5、贯通误差测量实测数据 (3) 6贯通测量实测数据分析 (4)

1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。? 2、编制依据 (1)《工程测量规范》(GB50026-2007 (2)《国家三、四等水准测量规范》(GB/T12897-2006) (3)《公路隧道施工技术规范》(JTG?F60-2009 ? 3、工程概况 标段内隧道共1座,为XX隧道,该隧道设计为分离式隧道。隧道桩号范围为左线LK79+874 LK80+515路线总长为639m右线RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V 级,洞身段为V级、W级、皿级,设置人行横洞1处。双向四车道高速公路,隧道设计速度:80km/h。

4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 XX隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据XX隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即 点GD0061; 右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即 点GD0062; 如图 X) / DL/

隧道贯通测量方案设计 郭政超

隧道贯通测量方案设计郭政超 摘要:随着隧道贯通测量方法的多样化,以及测量经验的积累,地下隧道贯通 误差愈加可靠。随着GPS空间定位技术、高精度陀螺经纬仪的普及和自动跟踪技术、全站仪空间交会解析技术等测绘科学新技术的大力发展与应用,为隧道建设 提供了安全与精度的保障。文章重点就隧道贯通测量方案及误差控制分析要点进 行研究,以供参考。 关键词:隧道工程;贯通测量;方案设计;误差分析 引言 隧道项目为了加快施工速度,缩短施工工期,改善通风状况及劳动条件,隧 道施工通常都会采用进、出口两个工作面相向掘进。为了保证各掘进工作面沿着 设计的方向掘进,使贯通后接合处的偏差不超过《工程测量规范》允许的限差要求,满足隧道贯通的精度,所以贯通测量的方案选择及误差预计都是必要的。贯 通测量方案和测量方法选用的是否合理,一方面要看它们在实地施测时是否切实 可行,另一方面还要看贯通测量的精度是否能满足隧道贯通的设计容许偏差要求,进行误差预计目的就是帮助我们选择合理的测量方案和测量方法,做到隧道贯通 心中有数,既不应由于精度不够而造成工程损失,也不盲目追求高精度,而增加 测量工作量,尤其对长大隧道的贯通有着十分重要的意义。 1隧道贯通测量方案设计目的和意义 隧道控制测量目的在于控制隧道的贯通误差在允许的贯通误差范围内,保证 隧道相向开挖的工作面沿着隧道线路前进,在贯通面处将隧道贯通;隧道贯通面 结合处的偏差可以分解为空间的三个方向,即沿隧道中心线的长度偏差,为纵向 贯通误差;与隧道中心线垂直的方向出现的左右偏差,为横向贯通误差;高程贯 通误差就是掘进过程中出现的高程误差。纵向贯通误差只影响贯通长度,不影响 隧道的质量,只要在定测中线的误差范围内,满足隧道铺轨要求即可。高程误差 太大会改变设计隧道的坡度,而横向误差过大会改变隧道中线的几何形状,给工 作带来重大影响。 2隧道施工控制网布设方案分析与比较 2.1短隧道测量方案 对于长度较短且呈直线状态的隧道,可不进行控制测量而直接测量,如采用 现场标定法。现场标定法的优点在于可以不建立地面与地下的控制网,测量和计 算工作比较简单,但其缺点也很严重,因此这种方法只适用于比较短的直隧道。 2.2长隧道控制网布设及测量 对于隧道较长、地形复杂的山岭地区,地面平面控制网也可以布置成三角网 形式,测定三角网的全部角度和若干条边长,或全部边长,使之成为边角网。三 角网的点位精度比导线高,有利于控制隧道贯通的横向误差。对于洞内平面控制 测量,洞内平面控制均按支导线估算测量误差对横向贯通精度的影响值,洞内平 面控制测量设计就是根据所配备的测量仪器设备能达到的精度选择符合《测量技 术规则》要求的测角和测距中误差,详细如下: 上述公式中,其中右边第一项为测角误差引起的横向贯通误差,S为导线边长;第二项为量距误差引起的横向贯通误差, =206265;分别为洞内支导线点和 边到贯通面的垂直距离和在贯通面上的投影长;分别为支导线设计测角、测距中 误差,选择水平角观测必须采用测回法。

贯通测量报告

贯通测量报告 中铁二院(成都)咨询监理有限责任公司监理总部:我项目部承建贵阳轨道交通1号线第六工作段展览馆竖井隧道工程右线于2015年4月15日整体贯通,贯通后项目部立即组织测量人员进行了贯通测量,并报请中铁二院驻地监理及测量监理组织进行复测,现报告如下: 一、测量依据、技术标准 1.国标GB50026—2007《工程测量规范》; 2.国标GB50308—2008《城市轨道交通工程测量规范》; 3.CJJ8—99《城市测量规范》。 二、测量用仪器设备 全站仪莱卡TS09PLU1”R500 、三脚架、对中杆棱镜、仪器经鉴定精度为0.22mm/Km。 三、测量 洞外控制测量采用GPS导线测量,在隧道施工前已布设,施工洞内采用精密双导线控制施工测量。展览馆竖井隧道右线分别在YDK25+451.456处与展览馆大里程隧道下一标段贯通。本次贯通测量展览馆竖井隧道右线小里程采用已知控制点L1和L2为起始边,在贯通面附近设一临时桩RH1,大里程段采用已知控制点SJ1和SJ2为起始边测量贯通点RH1,其贯通测量线路示意图如下:

已知点 已知点 测点 贯通面 已知点已知点 小里程 大里程 贯通测量示意图 测量操作过程中各项指标均符合规范性标准要求。贯通测量成果如下表所示: 点号X坐标Y坐标Z高程 坐标差 (mm) 贯通误差(mm)△X △Y 横向纵向高程 展览馆竖井隧道小 里 程 L1 L2 RH1 2940067.609 470382.190 1034.596 -2 -7 5 6 3 大 里 程 RH1 2940067.611 470382.197 1034.593 SJ1 SJ2 四、结论 贯通误差符合GB50026—2007《工程测量规范》、GB50308—2008《城市轨道交通工程测量规范》、CJJ8—99《城市测量规范》的精度要求,所以隧道内的加密导线能够满足隧道整体施工及验收规范要求。 中铁十九局团贵阳轨道交通1号线第六工作段项目部 2015年4月18日

隧道贯通测量误差预计方案设计

隧道贯通测量误差预计方案隧道进出口、斜井间贯通时,除进行洞外导线和洞外高程测量之外,还必须进行隧道洞内和进出口、斜井间的联系测量。所以在进行贯通测量误差预计时,要考虑隧道进出口、斜井间的联系测量误差及隧道洞内测量误差的综合影响。 (一)测量方案简述 工程要求水平重要方向x’上的容许偏差为0.3m,竖直方向上的容许偏差为0.05m. (1) 隧道洞外进口、斜井按B级GPS网进行测量,测量时采用美国产天宝5800GPS观测2个时段,每个时段测量1.5小时。 (2)定向测量 尤溪隧道进口、斜井各采用几何定向。 1、对中误差 当定向边边长d=400m时,仪器及棱镜的对中误差为:E C=E T=±1”。 2、测线前后两测回的平均值误差M平=±1/√2=±0.71”. 则M定=±√M EC2+M ET2+M平=±√12+12+0.712=±1.58” 3、洞内导线测量 进口从洞口起始边GCPI140-GCPI119边开始,沿大里程方向闭合到秀村斜井的CPI140-3~CPI140-4边。测角、测边采用日本产SOKKIA SET230R全站仪,角度测9个测回:每边往、返各测3个测回,一测回内读数误差不大于5mm,单程测回间较差不大于

10mm,往测及返测边长化算到隧道平均高程面上水平距离(经气象和倾斜改正)后的互差,不得大于边长1/6000。所有闭(附)合导线和支导线均有不同观测者独立测量两次,取两次测量的角度及边长平均值,并进行严密平差计算。 4、隧道洞外水准测量 进口与秀村之间的水准测量按照洞外二等水准要求实测,自进口洞外水准点GCPI140到秀村斜井洞口水准点BM60进行往返观测单程路线长度27KM,同时采用美国Trimble电子水准仪和日本产Sokkia电子水准仪实测。 5、洞内水准测量 采用苏-光自动安平水准仪往返观测,往返高差的较差不大于±4√L(L 为水准点间的长度,以km 为单位)。水准路线长度6.186km. 以上高程均独立进行两次。 (二)误差预计所需基本误差参数的确定 误差参数根据《新建铁路工程测量规范》(TB10101-99);《国家一、二等水准测量规范》(GB12897-91);《客运专线无砟轨道铁路工程测量暂行规定》(铁建设【2006】189号);《时速 200~250公里有砟轨道工程测量指南(试行)》(铁建设函【2007】)76号)中限差规定反算求得。 (1)隧道洞内导线的测角误差:按日本产SET230R全站仪标称精度mβ=2″。

隧道贯通误差测量报告

××高速公路××至××段建设项目 ××合同段 里程桩号:K78+005~K82+632 ××隧道贯通误差测量报告 ××建设(集团)有限公司 ××高速公路集安至××段××标 项目经理部

二零一七年七月三日 目录 1、前言 (1) 2、编制依据 (1) 3、工程概况 (1) 4、贯通误差测量实测方案及误差规定 (2) 5、贯通误差测量实测数据 (4) 6、贯通测量实测数据分析 (5)

1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。 2、编制依据 1) 《工程测量规范》( GB50026-2007) 2) 《国家三、四等水准测量规范》( GB/T12897-2006) 3) 《公路隧道施工技术规范》( JTG F60-2009) 3、工程概况 标段内隧道共1 座,为××隧道,该隧道设计为分离式隧道。隧道桩号范围为左线LK79+876~LK80+515,路线总长为639m;右线RK79+880~RK80+490,路线总长为610m。隧道洞口段围岩级别为Ⅴ 级,洞身段为Ⅴ级、Ⅳ级、Ⅲ级,设置人行横洞1 处。双向四车道高速公路,隧道设计速度:80km/h。

4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 ××隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根 据××隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1 定向,测量GPS 控制点GD006,即点GD006 1; 右洞出口于Y4设站,以Y3-1 定向,测量GPS 控制点GD006,即点GD006 2; 如图

隧道贯通误差测量报告

隧道贯通误差测量报告 1、前言 由于隧道施工测量过程中不可避免的误差,在实际隧道开挖贯通面处存在偏差。隧道贯通面误差主要有三个方面:即沿隧道中线方向的长度偏差为纵向贯通误差;垂直于隧道中线的左右偏差为横向贯通误差;有两进出口端高程控制点分别测得贯通面同一点的高差为高程贯通误差,其中纵向及高程贯通误差对隧道正确贯通影响不大,目前隧道贯通误差主要为横向贯通误差。 2、编制依据 (1) 《工程测量规范》(GB50026-2007 (2) 《国家三、四等水准测量规范》(GB/T12897-2006) (3) 《公路隧道施工技术规范》(JTG F60-2009) 3、工程概况 标段内隧道共1座,为隧道,该隧道设计为分离式隧道。隧道桩 号范围为左线LK79+874 LK80+515路线总长为639m 右线 RK79+880- RK80+490路线总长为610m隧道洞口段围岩级别为V

级,洞身段为V级、W级、皿级,设置人行横洞1处。双向四车道高 速公路,隧道设计速度:80km/h。 4、贯通误差测量实测方案及误差规定 (1)贯通误差测量实测方案 隧道采用双洞单向开挖,由隧道左右洞出口向进口开挖,根据隧道左右洞进出口导线布设情况: 左洞出口于Z4设站,以Z3-1定向,测量GPS控制点GD006即 点GD006 1; 右洞出口于Y4设站,以Y3-1定向,测量GPS控制点GD006即 点GD006 2 分别将GD006 1和GD006 GD006 2和GD006勺坐标、高程投影 至线路中线及其垂直方向上,所得差值即为隧道纵向和横向误差,测得两组高程之差即为竖向贯通误差。 (2)误差规定 隧道贯通误差根据《工程测量规范》(GB50026-2007规定

太平山隧道贯通测量方案

新建沈阳至丹东铁路客运专线工程TJ-3标段 太平山隧道 贯通测量方案 编制: 复核: 审定: 中国建筑股份有限公司沈丹客专TJ-3标三工区 二○XX年十一月

目录 一、工程概况 (4) 二、编制依据 (4) 三、人员安排及拟投入的仪器设备、软件 (4) 四、隧道贯通方案内容及技术要求 (5) (一)洞外控制测量 (5) 1、平面控制网技术要求 (5) 2、外业要求 (7) 3、洞外(GPS测量)横向贯通误差估算 (7) (二)洞内控制测量 (8) 1、洞内导线布设要求 (9) 2、平面控制网技术要求 (9) 3、贯通中误差估算 (9) (三)高程控制测量 (10) 1、二等水准技术要求 (10) 2、洞外二等水准复测 (10) 3、洞外高程贯通误差估算 (12) 4、洞内高程控制网布设及要求 (12) 5、贯通中误差估算 (13) (四)隧道贯通误差测量及调整 (13) 1、贯通误差的测量 (13) (1)平面贯通误差测量 (13)

(2)高程贯通误差的测量 (14) 2、贯通误差的调整 (14) (1)平面贯通误差的调整 (14) (2)高程贯通误差的调整 (14)

一、工程概况 太平山隧道位于辽宁省凤城市境内穿越辽东低山区。隧道为单洞双线隧道,隧道最大埋深为213m。隧道进口里程为DK179+395,出口里程为DK181+435,隧道全长2040m。隧道进口至DK180+486.5436段位于半径为7000的右偏曲线上,DK180+486.5436至出口段位于直线上,隧道内线间距4.6m,隧道内纵坡为3‰的单面下坡。DK179+395~DK179+430 、DK181+255~DK181+435为Ⅴ级围岩,DK179+430~DK179+570、DK181+175~DK181+255为Ⅳ级围岩,DK179+570~DK180+730、DK180+840~DK181+175为Ⅱ级围岩,DK180+730~DK180+840为Ⅳ级围岩。 为确保线路平纵曲线线型顺畅,管段内不出现断差现象。本工区将完成CPI、CPII点的复测,并在CPI、CPII点的基础上布设加密点并进行测量,对隧道横向、高程贯通精度的要求测设相应等级独立的平面网和高程控制网,进行贯通测量。 二、编制依据 《高速铁路工程测量规范》(TB10601-2009) 《国家一、二等水准测量规范》(GB/T12897-2006) 《工程测量规范》(GB50026-2007) 《全球定位系统(GPS)铁路测量规程》(BT10054-97) 《中铁第三勘察设计院精密工程控制测量第一次复测报告》(2011)三、人员安排及拟投入的仪器设备、软件

特长隧道贯通测量方案

清塘铺特长隧道贯通测量方案 二连浩特至广州国家高速公路 湖南省安化——邵阳公路 编制: 复核: 中铁五局集团安邵高速公路项目部 二0一0年三月五日

目录 1、工程概况 1 2、作业依据 1 3、贯通测量方案 2~5 4、贯通误差调整 6~7 5、测量质量保证措施 7

1 概述 二广国家高速公路湖南省安化(梅城)至邵阳公路第TJ1标段起点桩号K94+112.169,终点桩号K127+660,全长33.54783公里;位于益阳市的安化县和涟源市境内,重点隧道清塘铺隧道左洞全长4800m,右洞全长4775m。 1、1 坐标系统 1、1、1.平面坐标系统:清塘铺隧道进口至出口投影高为400 m。 1、1、2.高程采用1985国家高程基准。 2、作业依据,按照《公路隧道施工技术细则》(JTG/T F60—2009)和《工程测量规范》(GB50026-2007)规定的测量方法及技术指标进行作业。 2、1洞内导线测量主要技术要求 表4.2.2-3 导线测量技术要求 表4.2.3-2水准测量观测的主要技术要求 表4.2.3-3水准测量观测的主要技术要求

3、隧道测量控制方案 3、1隧道工程相向施工中线在贯通面上的贯通误差,不应大于表8.6.2的规定。 表8.6.2 隧道工程的贯通限差 3、2清塘铺隧道洞外进洞平面控制点G003、G004,I024。出口进洞平面控制点GPS029、GPS030、G005,为设计院交底三等平面控制点。进出洞口高程点I02 4、GBM3为设计院交底四等平面控制点。 3洞内控制测量设计 洞内导线的主要作用是保证隧道在平面位置上按规定的精度贯通和便于施工放样,确定一个经济、合理的施测精度,既可保证隧道准确贯通,又能节省大量的人力、物力、时间和金钱,有效提高工作效率。 进出口控制点,以相向施工进洞,贯通里程K112+008,导线长度为2700m左右。为了保证隧道顺利贯通,根据《规范》表8.6.2“横向和高程贯通精度要求”规定4~8km 隧道洞内贯通误差的限差为150 mm 的要求,以此作为测量设计的依据,不占用洞外控制网贯通精度的余额,使得设计的洞内测角、量距精度更为安全,同时,也符合《规范》规定。 根据以往洞内测量的经验,结合该隧道平面形状、洞内运输方式、通风条件等的具体情况,假设洞内直线段导线平均边长不短于200m,曲线段不短于70m,导线边距离洞内设施不小于0.2m,测距相对精度1/80000,来进行测量设计。 3.1.1洞内∑Rx2、∑dy2 的计算:(见表 1) 式中:∑Rx2—各导线点至贯通面的垂距的平方和; ∑dy2—各导线点投影至隧道中线的距离的平方和;

隧道贯通测量

三江至柳州高速公路第12合同段 上榕隧道贯通测量 专 项 施 工 技 术 方 案 编制人:张新华 审核人: 湖南省湘西公路桥梁建设有限公司 广西柳州 二零一二年七月

目录 一、编制说明 (4) 1.1编制依据 (4) 1.2编制原则 (4) 1.3采用主要标准 (4) 二、工程概况 (5) 三、隧道贯通测量技术方案 (6) 1、隧道长度 (6) 2、组织机构与岗位职责 (6) 3、岗位职责 (7) 4、职能划分 (9) 5、测量作业的任务划分 (11) 6、测量管理制度 (12) 四、其主要工作任务与内容 (13) 1、施工(贯通)测量 (13) 2、执行标准 (13) 3、隧道施工测量方案 (14)

4、控制测量 (14) 5、隧道施工测量的具体内容及要求 (16) 6、贯通误差的测定方法 (22) 7、贯通误差的调整 (24) 五、质量标准及技术要求 (31)

·一、编制说明 ·1.1编制依据 (1)三江至柳州高速公路项目土建工程施工招标文件及投标文件。 (2)三江至柳州公路工程两阶段设计施工图。 (3)三江至柳州高速公路岩土工程勘察报告。 (4)现行有效的国家及省、市有关工程设计、施工规范和规程等。 (5)我公司从事类似工程施工经验和成熟的施工工艺。 (6)我公司现有施工机械设备、施工技术及管理水平。 1.2编制原则 在深刻理解本隧道工程特点重点与难点的基础上,本着“技术领先、措施到位、资源合理、设备可靠、组织科学、风险可控”的原则。以满足业主要求为目标进行施工组织设计的编写。 编制的施工专项方案满足和响应业主的各项强制要求和技术标准。 编写的施工专项方案有针对性,技术上先进适应性强的特点。 编写的施工专项方案安全可靠,方案经济合理,工期适应。 采用IS09001质量标准全方位控制施工过程。 采用监控系统和信息反馈系统指导施工。 各种技术难题超前进行研究,以预防为主。 严格执行广西省交通建设行政管理部门对项目施工的安全,文明环保、卫生健康等有关要求,最大限度减少对周边的环境,村民生活的影响,相对良好的工程形象和社会形象。 ·1.3技术标准 (1)隧道设计行车速度100公路/小时;路基宽度26m; (2)隧道设计为高速公路双洞单向交通行车两车道分离式隧道; (3)隧道长度超过100米,设置照明;若L.N≥2×106设置机械通风,否则自然通风;

隧道贯通测量

10.3.1 概述 线路勘测、管线测量及隧道贯通测量是铁路、交通、输电、通讯等工程建设中重要的工作。以往大多采用传统的控制测量、工程测量方法进行控制网建立及施测,由于该类测量控制网大多以狭长形式布设,并且很多工程穿越山林,周围已知控制点很少,使得传统测量方法在网形式布设、误差控制等多方面带来很大问题。同时传统方法作业时间也比较长,直接影响了工程建设的正常进展。自从将GPS 技术引入该领域以来,使其测量效率及测量精度得到可喜的提高,本节将以西安——南京线GPS控制网、秦岭某隧道贯通GPS网及北京地铁精密导线GPS复测为例,介绍GPS技术在线路勘测及隧道贯通等测量中的应用。 10.3.2 线路GPS控制网的建立 传统的线路测量一般采用导线法,在初测阶段沿设计线路布设初测导线。该导线既是各专业开展勘测的控制基础,也是进行地形测量的首级控制,所以要求相邻导线点通视。在该线路测量中应用GPS技术的形式是沿设计线路建立狭带状控制网。目前主要有两种情况,一种是应用GPS定位技术替代导线测量;一种是应用GPS定位技术加密国家控制点或建立首级控制网。在实际生产中较多的用了后者。 下面以西安——南阳段GPS控制网为例,说明GPS线路控制网的布设和应用情况。 1.布网形式 铁道部《铁路测量技术规程》规定,1:2000比例尺地形图测绘起、闭于高级控制点的导线全长不得大于30km(公路线路一般规定≤10km)。据此,铁路GPS 线路控制网布设应满足以下几条:作为导线起闭点的GPS应成对出现;每对点必须通视,间隔以1km为宜(不宜短于200m);每对点与相邻一对点的间隔不得大于30km。具体间隔视作业条件和整个控制测量工作计划而定,一般5~15km布设一对点。这些点均沿设计线路布设,其图形类似线形锁。 图10-4显示了西安——南京线西安至南阳段GPS控制网的布设网形。 西安——南京线中西安至南阳线路长度450km,线路通过秦岭山脉东段和豫西山区。GPS定位测量是为初测导线提供起闭点。GPS网由13个大地四边形和2个三角形组成。待定点(GPS控制点)24点为12个点对,相邻点对间平均距离18km。联测了六个国家控制点,选用其中五个点作已知点参与平差。

工程测量报告-隧道贯通测量

工程测量学课程设计报告 -隧道贯通测量技术设计 院系:建筑工程学院 专业:测绘工程 地点:测绘专业课程设计教室 班级:测绘B091 姓名: 学号: 教师: 成绩: 评语:

2012 年 7月 9 日至 2012 年 7月15 日 目录 一、工程概况 ----------------------------------------4 1-1、测区地质和测区概况--------------------------------------------4 1-2、工程任务------------------------------------------------------5 1-3、测区已有成果及资料收集----------------------------------------5 1-4、测量作业依据--------------------------------------------------6 二、控制网的布设-------------------------------------6 2-1、坐标系统的选择------------------------------------------------6 2-2、地面平面控制网------------------------------------------------6 2-3、外业测量------------------------------------------------------11 2-4、地面高程控制网------------------------------------------------12 2-5、地下隧道平面控制网--------------------------------------------13 2-6、隧道内高程控制网----------------------------------------------17 三、贯通测量方案的实施-------------------------------18 四、贯通误差预计-------------------------------------20 4-1、第一种方案----------------------------------------------------20 4-2、第二种方案----------------------------------------------------23 4-3、方案的精度评定------------------------------------------------25 五、组织安排------------------------------------------24

隧道测量方案

? 吉怀三标隧道测量方案 1 工程概况 我标段拟建隧道为冲口隧道,该隧道位于凤凰县杆子坪乡东侧,设计为小间距隧道,最小间距位于怀化端,宽度为米。洞轴线走向约184°,最大埋深约107m.。冲口隧道左线起讫桩号ZK10+630~ZK11+055,全长425m;平面线型为直线;纵坡为%和-2%的人字坡。隧道右线起讫桩号YK10+660~YK11+,全长;平面线型为直线;纵坡为%和-2%的人字坡。隧道净宽,隧道净高 m。本隧道选择采用拱部单心半圆,侧墙为大半径圆弧的单曲墙式内轮廓断面。其中岩性的V、Ⅲ类围岩占全线隧道的大部分。 2 控制点的布设及施测 控制点的布设 首先对设计院交付的GPS点位进行复测,依据复测点位在隧道口设置精密三角网,并对其基准点和水准点进行校核。洞外水准点、中线点根据隧道平纵面、隧道长度等定期进行复核,洞内控制点根据施工进度设定。洞内施工隧道测量,桩点必须稳定、可靠,且通视良好。水准点应设在不易破坏处,并加以妥善保护。洞内导线点采用地下挖坑,然后浇筑混凝土并埋入铁制标心的方法。这与一般导线点的埋设方法基本相同。但由于洞内狭窄,施工及运输繁忙,且照明差,桩志露出地面极易破坏,故标石顶面应埋在坑道底面以下10~20cm处,上面盖上铁板或厚木板。并在边墙上用红油漆注明点号,并以箭头指示桩位。导线点兼作高程点使用时,标心顶面应高出桩面5mm。

控制点的施测 控制点施测主要为洞内施工测量,洞内导线根据洞口投点向洞内作引伸测量,洞口控制点纳入控制网内,由洞口投点传递进洞方向的联接角测角中误差,不应超过测量等级的要求,后视方向的长度不宜小于300m。导线点尽量沿路线中线布设,导线边长在直线地段不宜短于200m;无闭合条件的单导线,应进行二组独立观测,相互校核。导线点按一级导线测量要求施测,水准点按四等水准点测量要求施测。 3 中线及高程点放样程序 工艺流程 洞外平面控制测量洞外高程控制测量洞内导线测量洞内高程控制测量隧道中线的测设隧道施工放样隧道贯通误差的测量与调整竣工测量 洞外导线测量 洞外导线测量的主要任务是对设计院提供的隧道控制网进行复测,以保证隧道控制网的精度, 洞外水准测量,按四等水准测量施测 洞内导线测量 洞内导线测量的目的是以必要的精度,按照洞外控制测量的坐标系统,建立洞内的平面控制系统。根据洞内导线的坐标,测设隧道中线,放样隧道衬砌位置及其他附属设施,定出隧道开挖的方向,保证相向开挖的隧道在规定的精度范围内贯通。 洞内导线的布设形式 洞内导线必须随隧道的掘进向前延伸,而且是在隧道贯通之前,就得依据导线测量路线中线,进行隧道施工放样,因此,洞内导线必须满足以下条件:(1)应尽可能有利于提高导线临时端点(开挖面前的导线点)的点位精度。

工程测量报告--隧道贯通误差计算

《工程测量学》实习报告隧道贯通误差计算 2011 年 4 月24 日

1 基本要求------------------------------------------------------------------------------------- 3 2 实习目的------------------------------------------------------------------------------------- 3 3平面网的模拟计算与分析(COSA)---------------------------------------- 3 4 控制网的优化设计-------------------------------------------------------------- 4 5 总结--------------------------------------------------------------------------------- 5

1实习任务 分别采用COSA系列软件和自研发软件进行平面网平差和贯通误差计算,熟悉COSA软件的使用并与自研发软件对比。 2 实习目标 1) 对比进出口点与不同定向组合的横、纵向贯通误差,分析导致贯通误差最小的组合及其意义 2) 分别用两个软件进行平差和贯通误差计算,对比所得结果,分别分析其相对中误差,最弱点及最 弱边精度,隧道贯通误差估算结果的差异。 3 平面网平差与隧道贯通误差计算(COSA) 3.1观测方案文件: 人工生成简化的观测方案文件“网名.FA2”(只含一组精度),单击“生成初始观测方案文件”菜单项。 平面网观测方案文件结构: 第1行(观测精度指标部分): 方向中误差,边长固定误差(mm),比例误差(ppm) 第2行到第K行(控制点坐标部分): 点名,点类型(0-已知点,1-未知点),X坐标,Y坐标 …,……,……,…… 第K+1行(已知方位角部分,有已知方位角值时才有此行): 测站点,照准点,A,方位角值 从第K+2行起(观测方案部分): 测站点点号 L(代表方向):照准点点号1,....., 照准点点号n(按顺时针方向排序) S(代表边长): 照准点点号1,....., 照准点点号n(按顺时针方向排序) 观测值方案文件示例(网名.FA2) 0.7,1,1 J,0,398.9779,377.7966 J1,1,410.7532,490.5660 J2,1,287.2544,386.3646 J3,1,343.9037,290.1835 C,1,1507.0854,400.0228 C1,1,1490.7444,490.5660 C2,1,1559.4496,376.2656 C3,1,1464.0045,296.1208 J,J1,A,84.0388 J L:J1,J3,C,C3 S:J1,J3,C,C3 J1 L:J,J2,J3,C1

相关主题
文本预览
相关文档 最新文档