当前位置:文档之家› 可靠性增长与可靠性增长试验

可靠性增长与可靠性增长试验

可靠性增长与可靠性增长试验
可靠性增长与可靠性增长试验

众所周知,产品的可靠性是由设计决定的。但是,由于受到各种原因的影响,设计缺陷总是难免的,产品在研制阶段往往达不到用户的可靠性要求,因此必须开展可靠性增长活动。

必须指出,可靠性增长活动不是针对设计低劣的产品的,而是针对经过认真设计仍然由于某些技术原因达不到要求的产品,而且可靠性增长活动比可靠性设计活动所需的资源和时间都多。

1、概述可靠性增长可从多个不同的角度来看,早期有关可靠性增长的一些工作主要集中在管理方面。1970年Selby和Miller研制的可靠性计划与管理(RPM)模型是联系可靠性要求和实施计划的管理工具,可帮助确定所需样品数和设计方案通过增长过程的成熟时间,并可监测进展情况,评价对原计划进行调整的必要性。但大多数情况下提及可靠性增长这一话题时,讨论的重点都是可靠性增长试验。一般而言,为了证明设计的正确性以及设计中使用的模型和分析工具的有效性,试验是开发的标准、必要部分。对于可靠性增长试验,大量的工作被用于研制各种统计模型,以便计划和跟踪通过试验所取得的可靠性增长。由于试验费用很高,因此自然会把很多精力放在研制好的模型和注重可靠性增长过程上。我们知道最常用的模型是Duane模型。Duane的观点是把整个重点放在试验中发现失效,然后通过重新设计予以排除。在笔者参加的某次“可靠性与风险分析先进课题”系列专题会议会议上,分组讨论中有一组的主题是“可靠性增长的范围和目的”。会上讨论了把试验作为实现可靠性增长首选方法的状况。其中一位成员提出,象卫星这样的产品,由于成本高,供试验的物品有限,因而极少可能进行那种和可靠性增长有关的试验。对这种系统如何实现可靠性增长呢?

2、可靠性增长更广泛的

概念为解决不用试验能否实现可靠性增长的问题,讨论小组对设计经过演变最终形成样品的过程进行了评审。一般来说,这是一个反复的过程。由于不同性能要求常相互矛盾,因而需要反复的设计过程;设计优化时满足了一个要求但可能另一个要求就得不到满足。要求间的平衡是艰苦的工作。不能同时进行所有的分析是需要进行反复的另一个原因。因此一次分析所带来的设计变更在下一次分析后有可能又要改变。随着这些反复过程,设计得到了完善。在设计过程中进行的某些分析直接涉及到设计的可靠性,因此设计的可靠性随着每次以分析评价为基础的设计变化而得到了提高。讨论小组用上述的推理过程确定了一个范围更广的可靠性增长定义:即最初设计的可靠性提高的过程。这种设计反复所带来的提高既可以以分析评价和评估为基础,也可以以试验结果(失效数)为基础。在理想情况下,当产品进入试验时,所有的缺陷都已经通过分析后的设计更改而予以消除。而实际则很少做得到,对在开发试验中发现的设计缺陷(即失效)仍需要进行一些设计变更。常用于可靠性增长过程的一种开发试验就是可靠性增长试验。设计反复许多初步设计都是由过去的设计外推而得;而有些则是全新的。两者在制作样品或实验模型进行试验之前以及在关键设计评审之前都要进行认真的研究推敲,即通过分析对设计进行评价和评估。有许多种可靠性分析可用于评价和评估产品的可靠性,包括失效模式和效应分析、故障树分析、潜通电路分析、最差情况分析和有限元分析。分析中发现初步设计中的弱点后,对设计进行更改,然后进行分析。我们将此设计—分析—再设计过程称为纯设计。这种反复的纯设计过程一般进行到设计者对设计达到某种满意程度为止,即设计者不经过样品试验,而是仅凭分析后认为再反复设计已没有多少价值时为止。显然,我们不想把有限的资源花在潜在回报很小的设计反复中,但如果过早停止纯设计过程,又会过分依赖开发试验过程来发现设计缺陷。对于象卫星这样的产品,要制作整个产品的样品和试验物品是非常昂贵的。可以制作分系统和关键元器件的试验物品,但

很少对整个产品进行程度很高的试验。在极端情况下甚至产品的首次“全面”(full-up)试验要在发射时才进行。在这种情况下显然需要“全面”的纯设计过程。即使在制作试验物品和试验资金不成问题的时候,在完成设计过程之前就制作和试验硬件也是不明智的。开发试验如定义所述,理想的情况是有完美的纯设计过程,不需要试验来提高可靠性以满足要求。但分析工具、模型和工程判断并不完美,因而其结果也不会完美。因此在某种程度上,要填补知识和了解上的空白,开发试验总是需要的。在发现性能缺陷和失效时,要采取两种不同的措施。第一,工程师要检查其使用的模型和工具,对其进行修改、完善或改进。这样可从试验中获取经验,用改进后的工具和模型来改进下一个纯设计过程。第二,根据对试验数据分析获得的信息改进设计。对每个失效都进行全面分析。对下列有关失效的信息必须要记录:失效发生的条件(环境、操作等)失效是如何发现的(现象)失效的效应实际使用中失效的可能后果。分析本身必须回答下述问题:潜在的失效机理是什么?在实际使用中再发生的概率是多少?应采取什么修改措施来防止再发生或最大程度降低失效的效应?如果确认需要对设计进行修改,那么在实行了修改和修改是有效的前提下可实现可靠性增长。这两个前提是很关键的。以计划变化为依据来作判断是有风险的;必须把变化真正结合到系统或设备中,并验证这些变化在改正问题上的有效性。前面的讨论都是把纯设计过程和设计—试验过程当作依次发生的独立过程,但实际上两个过程往往有部分重叠,不过纯设计阶段确实要在所有的试验之前就开始进行。专门的可靠性增长试验可靠性增长试验仅仅是开发试验中的一种。传统上是用一特殊的试验或系列试验作为专门的可靠性增长试验,对试验中出现的失效要进行分析,并找出修改措施防止或减缓失效再次发生的影响。进行这类试验的时间和资源是有限的。一个开发项目还要进行许多其他的开发试验,包括功能、环境和验证试验。实际上可靠性增长过程的基本原则并不排斥对这些开发试验中出现的失效进行分析。增

长过程要取决于失效源的发现和及时修正。如果可以合理收集数据,对失效进行全面分析,那么各种类型的试验都是失效信息的潜在来源。能对各种开发试验的失效进行分析,以验证设计和设计中使用的工具和模型,这是非常重要的。利用各种开发试验的失效数据来估计可靠性水平会有一定困难。结合非类似试验的数据在统计上是复杂的问题还没有得到解决。要避免这一问题,方法之一就是利用为工程目的(即验证设计和设计中使用的工具和模型)而进行的所有试验的失效,可靠性估计则只以专门增长试验的数据为基础。可靠性增长试验结果的使用增长试验的主要目的是验证设计和设计中使用的工具和模型。各公司经理主要是根据可靠性增长试验来确定是否符合合同规范的。这一在增长跟踪目的上的变化,部分原因在于取消了大部分的鉴定或验证试验。

而这一变化也改变了试验的方式。原先,失效并非一件“坏事”,因为它可向设计者提供有关设计充分程度的有价值的信息。通过设计—试验过程,设计者可对使用的工程和设计工具及模型进行改善,并改进设计。当可靠性增长试验被用于确定是否满足合同时,它就成了合格—不合格(pass-fail)试验,失效是不受欢迎的。有关某个失效是否“相关”或者某个事件是否真是失效的争论往往成为失效分析过程的常见部分。试验用于发现问题的初衷大打折扣,失去了试验的真正价值。

要保证不完全失掉试验的原目的,必须在试验开始之前确定好试验的基本原则。

可靠性增长试验的计划和评价

专门的可靠性增长试验需要认真计划,以避免评价数据时出问题。下面主要讨论较为流行的Duane模型。但要注意的是已研制出了许多模型,有些在评价和跟踪上更优越(如AMSAA模型)。Duane模型由于假设MTBF和试验时间之间的关系在对数纸上是一条直线,因此在评价和跟踪上并不特别好。这种假设可简化计算,但也要求在失效后和

试验继续之前马上进行设计修改(修正)。而在实际中,设计修改常常拖延至较方便和合理的时候,一次进行几个修改。尽管如此,Duane模型仍然是很有用的计划工具。

三种可靠性试验比较

下文是对常见的三种可靠性试验进行分析和比较,可从试验目的、试验条件、试验方案或项目、试验合格性和受试产品的失效判据五个方面进行 (一)试验目的 A.可靠性增长试验 在研制过程中模拟实际的或加速的使用条件进行试验,使产品存在的设计(包括电路设计、结构设计和工艺设计)缺陷变为硬故障而充分暴露,对故障进行分析、采取纠正措施,根除故障产生的原因或降低故障率到可以接受的值,使产品的固有可靠性得到增长。 B.可靠性鉴定试验 验证产品的设计能否在规定的环境条件下满足规定的性能及可靠性要求。试验结果作为判断设备能否定型的依据。适用于设计定型的鉴定。 C.ORT 试验 对产品各项指标进行全面检验,以评定产品质量和可靠性是否全部符合标准和达到设计要求。对于批量生产的产品检验其质量稳定性和一致性。适用于生产定型、批量生产后的一定周期和在产品设计、工艺、材料有较大变动后的检验。 (二)试验条件①电应力 A.可靠性增长试验 根据输入交流电源电压和输入直流电源电压的允许变化范围,部分时间在设计的标称输入电压下工作,部分时间在最高输入电压下工作,部分时间在最低输入电压下工作。例如:程控用户交换机应在AC220V,DC-48V、DC-40V~-57V范围内正常完成接续。 B.可靠性鉴定试验 同可靠性增长试验 C.ORT 试验 除电源电压拉偏试验外,在标称输入电压下工作。电源拉偏试验根据不同的产品参考有关标准在最高、最低电压下工作。 (二)试验条件②热应力 A.可靠性增长试验 所施加的应力强度可略高于使用时的应力强度,以不引起新的故障机理为限。如温度循环一般可以将略高于产品高温温度、略低于产品低温温度作为温度循环的上、下限温度,温度变化率可取5℃/min或10℃/min。循环周期时间根据温度变化率而定。 B.可靠性鉴定试验 将产品工作高温温度作为试验温度。 C.ORT 试验 按产品标准的工作高、低温温度进行各种功能和指标的检验。 按产品标准的储运高、低温温度进行储运试验。 (二)试验条件③潮湿应力 A.可靠性增长试验 预计受试产品在现场使用环境中会有明显的冷凝和结霜时,则在高温下应施加潮湿应力。B.可靠性鉴定试验 同可靠性增长试验 C.ORT 试验 应进行恒定湿热试验,湿度一般为90%~95%,高温温度一般为产品标准的工作高温温度。

产品可靠性试验标准

内部机密 产品可靠性测试标准 文件版本:V1.0 江苏中讯数码电子有限公司 企业标准 文档编号 撰写人 审核人 批准人 创建时间 2010.01.01发布 2010.01.01 实施

文件修改履历

目录 一.目的 (4) 二.编制依据 (4) 三.适用范围 (4) 四.定义 (4) 五.主要职责 (4) 六.试验场所 (5) 七.可靠性测试内容 (5) 1.加速寿命测试 (5) 1.1跌落试验 (5) 1.2振动试验 (5) 1.3湿热试验 (6) 1.4静电试验 (6) 2.气候试应性测试 (7) 2.1低温试验 (7) 2.2高温试验 (7) 2.3盐雾试验 (7) 3.结构耐久测试 (8) 3.1按键/叉簧测试 (8) 3.2跌落测试 (8) 4.表面装饰测试 (8) 4.1丝印、喷油测试 (8) 5.特殊条件测试 (9) 5.1低温加电试验 (9) 5.1恒温湿热加电试验 (9) 八.最终检验 (9) 九.判断标准 (9) 十.试验程序 (10)

一 .目的 1.对产品硬件设计、制造进行验证确认符合相应国家标准; 2.在特定的可接受的环境下评估产品的质量和可靠性; 3.在特定的可接受的环境下评估产品的安全性; 4.统一并规范企业内产品硬件测试检验方法。 二.编制依据 1.GB/T2421-1999 电工电子产品环境试验第一部分:总则 2.GB/T2422-1995 电工电子产品环境试验术语 3.GB/T4796-2001 电工电子产品环境参数分类及其严酷程度分级 4.GB/T2423.1-2001 电工电子产品环境试验第1部分:试验方法试验A:低温 5.GB/T2423.1-2001 电工电子产品环境试验第2部分:试验方法试验B:高温 6.GB/T2423.1-2001 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落7.GB/T2423.10-1995 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动8.GB/T2423.3-1993 电工电子产品基本环境试验试验Ca:恒定湿热试验方法 9.GB/T2423.17-2001 电工电子产品环境试验第2部分:试验Ka盐雾试验方法 10.GB/T17626.2-1998 电磁兼容试验和测量技术静电放电抗扰度试验 三.适用范围 1.本文件使用于中讯数码有限公司所生产的所有产品。 2.根据技术中心的要求,本标准适用于提供相应的测试环境对一些部件进行可靠性测试四.定义 为了了解、考核、评价、分析和提高产品可靠性而进行的试验。 五.主要职责 1.技术中心 1.1定义项目/产品可靠性测试计划 1.2完成、跟踪项目/产品可靠性测试结果 1.3参与产品可靠性测试问题的分析及改进 1.4提供制定/修改可靠性测试程序及标准建议 1.5参与测试设备/仪器的日常管理、维护 1.6参与可靠性测试设备/仪器的开发 2.质管部

可靠性增长试验

可靠性增长试验 1 概述 1.1基本概念 众所周知,装备的可靠性是由设计决定的。但是,由于受到各种原因的影响,设计缺陷总是难免的,产品在研制阶段往往达不到用户的可靠性要求,因此必须开展可靠性增长活动。 必须指出,可靠性增长活动不是针对设计低劣的产品的,而是针对经过认真设计仍然由于某些技术原因达不到要求的产品,而且可靠性增长活动比可靠性设计活动所需的资源和时间都多,因此,管理者往往只对通过可靠性设计评审的产品才安排可靠性增长计划。那种把可靠性水平寄托在增长活动上的态度是错误的。 可靠性增长的核心是消除影响产品可靠性水平的设计缺陷。可靠性增长的关键是发现影响产品可靠性水平的设计缺陷。为此,必须通过试验或运行的途径来实现产品故障机理的检测。常见的可靠性增长有,一般性的可靠性增长和可靠性增长管理。 一般性的可靠性增长,是指事前未给出明确的可靠性增长目标,对产品在试验或运行中发生的故障,根据可用于可靠性增长资源的多少,选择其中的一部分或全部实施纠正措施,以使产品可靠性得到确实提高的过程;它通常不制定计划增长曲线,也不跟踪增长过程,而是采用一两次集中纠正故障的方式,使产品可靠性得到提高。由于增长过程通常不能满足增长模型的限度条件,增长后的产品可靠性水平需要通过可靠性验证试验才能进行定量评估。 可靠性增长管理,是指有计划有目标的可靠性增长工作项目,并非可靠性增长过程中的管理工作。它是产品寿命期内的一项全局性的、为达到预期的可靠性指标、对时间和资源进行系统安排、在估计值和计划值比较的基础上依靠新分配资源、对实际增长率进行控制的可靠性增长项目。可靠性增长管理有两个特点: a)有一个逐步提高的可靠性增长目标: 可靠性增长管理主要针对大型军事装备,把可靠性增长工作从工程研制阶段延伸到生产阶段或使用阶段,在阶段的转接处和阶段内部划分的小阶段的进出口处设定可靠性增长目标,形成逐步提高的系列目标。这就促使有关部门实施严格管理和为降低风险提供手段。b) 充分利用产品寿命期内的各项试验和运行记录: 除了可靠性试验之外,在产品寿命期内还有其它各种试验以及运行过程都可能产生故障信息,可以用于可靠性增长的故障机理检测,经过风险权衡后把其中的一部分纳入可靠性增长管理的范围,形成可靠性增长的整体,使产品可靠性逐步增长到预期目标。 可靠性增长活动是一个连续完整的闭环控制过程。在此环中,首要任务是发现产品的设计缺陷——这主要是从试验、使用中发生的故障中发现;然后是对故障进行分析——重点研究重复性故障和关键故障发生的原因,当认定为设计缺陷后提出纠正这些设计缺陷的措施;接着是实施纠正措施——将修改设计的措施在少数产品(试验样品)上实施,并通过试验验证纠正措施的有效性;最后是修改技术文件和把纠正措施推广到同型号产品中去——这是落实可靠性增长活动的重要工作,是发挥可靠性增长试验效益的关键步骤。可靠性增长活动可以在工程研制阶段、生产阶段进行,甚至在使用阶段进行。按照有关标准的规定只在装备研制阶段才进行可靠性增长试验和增长工作,但从我国的实际情况出发,有不少已经装备部队多年的产品仍然对其进行可靠性增长试验和“可靠性补课工作”,并取得了显著成绩。这就是说,要根据产品的技术状况和可靠性水平去决定何时以何种形式开展可靠性增长活动。 可靠性增长试验是可靠性增长活动的主要内容,是产品工程研制阶段单独安排的可靠性工作项目,成为工程研制阶段的组成部分。可靠性增长试验通常安排在工程研制基本完成之后和可靠性鉴定试验之前进行。此时,产品的性能与功能已经基本达到设计要求,产品结构与布局已经接近批生产的要求,故障信息的确实性已经较高,且此时故障纠正措施的实施所需资源和时间较少。使用阶段的可靠性增长活动可以利用产品的现场故障信息和现场使用状况记录来取代可靠性增长试验工作。 1.2可靠性增长试验的目的 可靠性增长试验的目的是,在装备研制或生产阶段通过试验获得设计缺陷的信息,以便对其

软件工程测试复习资料 by 北京理工大学

1.软件测试必要性:测试是所有工程学科基本组成单元,也是软件开发重要组成部分。 2.软件测试的定义:正面、反面 IEEE定义:在特定条件下运行系统或构件、观察或记录结果,对系统某个方面做出评价。分析某个软件项以发现现存和要求的条件之差别并评价此软件项的特性。 软件测试是由验证和有效性确认活动构成的整体。 3.软件质量 IEEE定义:系统、部件或过程满足规定需求的程度。满足顾客或用户需求或期望的程度。 功能、可靠、易用、效率、可维护、可移植 4.软件缺陷 缺陷是对软件产品预期属性的偏离现象。与产品说明书不符。 缺陷产生:技术问题、团队工作、软件本身 缺陷构成:规格说明书、设计、代码、其他 缺陷修复成本:发布》测试》编程》设计》需求分析 5.验证、确认 验证:是否正确构造了软件 确认:是否构造了正式用户所需要的软件 6.测试分类 测试阶段层次:单元测试、集成测试、系统测试、验收测试 测试目的:功能测试、性能测试、可靠性测试、安全性测试、兼容性测试 是否执行:静态测试、动态测试。 是否针对内部:白盒测试、黑盒测试 7.测试阶段 A 需求和设计审查 B 单元测试(白盒代码,代码评审可以发现50%-70%错误) C 集成测试(组成测试,一次性集成、增殖式集成) D 功能测试(确认功能是否正常使用) E 系统测试(放在计算机环境下测试,硬件平台、软件支持) F 验收测试(向用户表名系统可以正常工作,符合期待) G 安装测试(按照安装手册,模拟用户环境,进行安装操作测试) 8.工作范畴 测试实施:制定测试策略、测试计划、确定测试方法规范,控制测试进度,管理测试资源。 组织管理:编写文档、搭建测试环境,开发测试脚本,开展测试活动 9.第三方测试 介于开发方和用户方之间的测试组织的测试,也称独立测试

产品可靠性测试操作步骤

产品可靠性测试操作规范 为保证产品在各种使用过程、在不同的使用环境、受到不同的环境影响而确保其能正常工作,保证其在较长时间内无故障工作,同时也满足客户的要求。现要求按以下步骤进行可靠性测试,并将测试结果以《可靠性测试报表》的形式体现。 本试验由品质部进行,产品部协助。 一、来料阶段须进行的可靠性测试项目: 1.附着力测试 目的:提供产品表面涂层(喷油、丝印、移印、电镀)粘附强度及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:界刀、3M810胶纸 试验程序:A.用界刀在表面涂层划相距1/16英寸11条平行直线,再划11条与其垂直的平行线(每一条应深至油漆的底层) B.用胶带贴于上面,并用手指压平,保证充分接触90+-30秒,然后以45度角往反方向均匀 迅速拉起 C.同一位置执行上述操作10次 D.测试完毕后检查,涂层脱落面积应小于规定范围 E.将测试结果记录于《可靠性测试报表》 2.耐磨性测试 目的:提供产品表面涂层的耐磨擦性能及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:专用橡皮、负载 试验程序:A.用专用的日本砂质橡皮(橡皮型号:LER902K),施加500g的载荷,以40至60次每分钟的速度,以20mm左右的行程,在样品表面来回磨擦100个循环 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 3.耐醇性测试

目的:提供产品表面涂层的耐磨性及抵抗酒精性能及试验标准 适用范围;所有含表面涂层的产品 样品数量:3PCS 试验条件:纯棉布、酒精浓度>99%的酒精、砝码 试验程序:A.用纯棉布蘸满无水酒精,包在专用的500g砝码头上(包上棉布后的砝码测试头面积约为1CM 平方),以40至60次每分钟的速度,20mm左右的行程,在样品表面来回擦试100次 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 4.硬度测试 目的:提供产品表面涂层在正常使用、贮存或运输过程中抵抗外界物品刮伤的试验标准 适用范围:适用于含表面涂层的产品 样品数量:3PCS 试验条件:专用三菱牌2H铅笔、硬度测试仪 试验程序:A. 用2H铅笔(三菱牌),将笔芯削成圆柱形并在400目砂纸上磨平后,装在专用的铅笔硬度测试仪上( 施加在笔尖上的载荷为1Kg,铅笔与水平面的夹角为45°),推动铅笔向 前滑动约5mm长,共划5条,再用橡皮擦将铅笔痕擦拭干净。 B.测试完毕后检查,应无划痕 C.将测试结果记录于《可靠性测试报表》 二、半成品阶段须进行的可靠性测试项目: 老化寿命测试: 目的:提供产品在正常使用过程中的稳定性能及试验标准 适用范围:半成品 样品数量:20PCS以上 试验条件:常温常湿条件下,连续工作48小时 试验程序:A.于测试前先对产品的外观、功能进行检查并记录 B-1.音乐播放测试: B-1-1. 选取5台进行音乐播放:将样品在开机正常工作状态下,且音量调最大带负载情况下 连续工作48小时

可靠性、有效性、可维护性和安全性(RAMS)

1 目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2 适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3 定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员 的人身安全。 FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4 职责 4.1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3 工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

电子产品的可靠性试验研究及方法

电子产品的可靠性试验研究及方法 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。 1、引言 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。产品的可靠性不高将会给生产带来 很大损失,随着控制系统的大型化,一个系统所用的电子元件越来越多,只要其中一 个元件发生故障,一般都会导致整个系统发生故障,由此产生的经济损失将远远超过 一个元件本身的价值,所以元件的可靠性越来越重要。电子产品是否适应预定的环境 和满足可靠性指标,必须通过可靠性试验进行鉴定或考核;有时还需通过试验来暴露 产品在设计和工艺中存在的问题,通过故障分析确定主要的故障模式和发生的原因, 进而采取改进措施。所以可靠性试验不仅是可靠性活动的重要环节,也是进一步提高 产品可靠性的有效措施。 2、电子产品可靠性特点 电子产品的可靠性变化一般都有一定的规律,其特征曲线如图1所示,由于其形状象浴盆,通常称之为“浴盆曲线”。从图1可以看出,在产品试验和设计初期,由 于设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高, 通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失 效期;使用一段时间后,由于器件耗损、整机老化以及维护等原因,产品进入了耗损 失效期。这就是可靠性特征曲线呈“浴盆曲线”型的原因。 通常我们定义,在多次实验中,某随机事件出现的次数叫做该事件的频数。如在M次试验中,事件A出现的频数是M,则事件A出现的相对频数是M / N。在状态不变的条件下,在多实践中,事件A出现的相对频数就反映了该事件A出现的可能性。它 是事件A出现的一个大概的百分率,称为事件A概率,记为P(A)。 P(A)=M / N (N很大)(1)

可靠性试验设计与分析1

第四章 (46)可靠性试验设计与分析 §4.6 加速寿命试验(Accelerated Life Testing) 随着科学技术的发展,高可靠性、长寿命的产品愈来愈多,前面讲的截尾寿命试验也 不能适应这种要求,如,不少电子元器件寿命很长,在正常工作温度0 40C 下,寿命可达数 百万小时以上,若取1000个这种元件可能只有1~2个失效,甚至没失效的情况。假如我们把温度提高到0 60C ,甚至0 80C ,只要失效机理不变,仅环境更恶劣一些,则失效数会增加,这种超过正常应力下的寿命试验称为加速寿命试验。 加速寿命试验的目的:用加强应力的办法,加快产品故障,缩短试验时间,以便在较短的时间内预测出产品在正常应力作用下的寿命特征。其基本原则是失效机理不变。 一. 加速寿命试验的类型 (1).恒定应力加速寿命试验(简称恒加试验) 试验之前,先选一组加速应力水平,如12,,......,k s s s ,它们都是高于正常应力水平0s ,一般取012k s s s s <<<鬃鬃鬃<。然后将一定数量的样品分成k 组,每组在一个加速应力下进行寿命试验,直到各组均有一定数量的样品失效为止(如定数截尾0r r )。从图4.32可以看出,恒加试验是由若干个寿命试验组成,为了缩短寿命试验,特别是低应力水平下的寿命试验采用截尾试验,这样才能更好地发挥加速寿命试验缩短试验时间地优点。 (2).步进应力加速寿命试验(简称步加试验) 它也选定一组加速应力水平0s 12k s s s <<<鬃鬃鬃<, (0s 为正常应力水平) 试验时把一定数量的样品都置于应力水平1s 进行寿命,经过一段时间,如1t 小时后,把应力提高到2s ,将未失效的样品在2s 应力下继续进行寿命试验,一直到有一定数量的样品发生失效为止。如图4.33所示。 在本试验中,一个样品先在加速应力1s 下试验一段时间,若失效,则退出试验,若没有失效,将进入2s 应力下的试验,如此下去,一个样品可能会遭遇若干个加速应力水平的考

电子产品可靠性试验国家实用标准应用清单

电子产品可靠性试验国家标准清单 GB/T 15120.1-1994 识别卡记录技术第1部分: 凸印 GB/T 14598.2-1993 电气继电器有或无电气继电器 GB/T 3482-1983 电子设备雷击试验方法 GB/T 3483-1983 电子设备雷击试验导则 GB/T 5839-1986 电子管和半导体器件额定值制 GB/T 7347-1987 汉语标准频谱 GB/T 7348-1987 耳语标准频谱 GB/T 9259-1988 发射光谱分析名词术语 GB/T 11279-1989 电子元器件环境试验使用导则 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 2689.1-1981 恒定应力寿命试验和加速寿命试验方法总则 GB/T 2689.2-1981 寿命试验和加速寿命试验的图估计法(用于威布尔分布) GB/T 2689.3-1981 寿命试验和加速寿命试验的简单线性无偏估计法(用于威布尔分布) GB/T 2689.4-1981 寿命试验和加速寿命试验的最好线性无偏估计法(用于威布尔分布) GB/T 5080.1-1986 设备可靠性试验总要求 GB/T 5080.2-1986 设备可靠性试验试验周期设计导则 GB/T 5080.4-1985 设备可靠性试验可靠性测定试验的点估计和区间估计方法(指数分布)

GB/T 5080.5-1985 设备可靠性试验成功率的验证试验方案 GB/T 5080.6-1985 设备可靠性试验恒定失效率假设的有效性检验 GB/T 5080.7-1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 5081-1985 电子产品现场工作可靠性有效性和维修性数据收集指南 GB/T 6990-1986 电子设备用元器件(或部件)规中可靠性条款的编写指南 GB/T 6991-1986 电子元器件可靠性数据表示方法 GB/T 6993-1986 系统和设备研制生产中的可靠性程序 GB/T 7288.1-1987 设备可靠性试验推荐的试验条件室便携设备粗模拟 GB/T 7288.2-1987 设备可靠性试验推荐的试验条件固定使用在有气候防护场所设备精模拟 GB/T 7289-1987 可靠性维修性与有效性预计报告编写指南 GB/T 9414.1-1988 设备维修性导则第一部分: 维修性导言 GB/T 9414.2-1988 设备维修性导则第二部分: 规与合同中的维修性要求 GB/T 9414.3-1988 设备维修性导则第三部分: 维修性大纲 GB/T 9414.4-1988 设备维修性导则第五部分: 设计阶段的维修性研究 GB/T 9414.5-1988 设备维修性导则第六部分: 维修性检验 GB/T 9414.6-1988 设备维修性导则第七部分: 维修性数据的收集分析与表示 GB/T 12992-1991 电子设备强迫风冷热特性测试方法 GB/T 12993-1991 电子设备热性能评定

机械产品可靠性设计综述

机械产品可靠性设计综述 一、可靠性设计的基本概念 可靠性设计的定义: 定义1:对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。 定义2:为了满足产品的可靠性要求而进行的设计。 可靠性设计即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计是产品的一个重要的性能特征,产品质量的主要指标之一,是随产品所使用时间的延续而在不断变化的。可靠性设计的任务就是确定产品质量指标的变化规律,并在其基础上确定如何以最少的费用以保证产品应有的工作寿命和可靠度,建立最优的设计方案,实现所要求的产品可靠性水平。 可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。 可靠性设计的一个重要内容是可靠性预测,即利用所得的资料预报一个零件、部件或系统实际可能达到的可性,预报这些零部件或系统在规定的条件下和在规定时间内完成规定功能的概率。在产品设计的初期阶段,及时完成可靠性预测工作,可以了解产品各零部件之间可靠性的相互关系,找出提高产品可靠性的有效途径。 二、可靠性设计的基本原理 (1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。 (2)结构简化,零件数削减。如日本横河记录仪表10年中无件数削减30%,大大提高了可靠性。 (3)考虑功能零件的可接近性,采用模块结构等以利于可维修性。 (4)设置故障监测和诊断装置,保证零件部设计裕度(安全系数/降额)。 (5)必要时采用功能并联、冗余技术。如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。 (6)失效安全设计(Failure Safe),系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。 (7)安全寿命设计(Safe Life),保证使用中不发生破坏而充分安全的设计。例如对一些重要的安全性零件如汽车刹车,转向机构等要保证在极限条件下不能发生变形、破坏。 (8)加强连接部分的设计分析,例如选定合理的连接、止推方式。考虑防振,防冲击,对连接条件的确认。 (9)可靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。尤其机械零部件的可靠性预测精度还很低。主要通过试验确认。 三、可靠性设计的基本方法 为了使设计时能充分地预测和预防故障,把更多的失效经验设计到产品中,因而必须邦助设计人员掌握充分的故障情报资料和设计依据。采取以下措施:

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性增长与可靠性增长试验

众所周知,产品的可靠性是由设计决定的。但是,由于受到各种原因的影响,设计缺陷总是难免的,产品在研制阶段往往达不到用户的可靠性要求,因此必须开展可靠性增长活动。 必须指出,可靠性增长活动不是针对设计低劣的产品的,而是针对经过认真设计仍然由于某些技术原因达不到要求的产品,而且可靠性增长活动比可靠性设计活动所需的资源和时间都多。 1、概述可靠性增长可从多个不同的角度来看,早期有关可靠性增长的一些工作主要集中在管理方面。1970年Selby和Miller研制的可靠性计划与管理(RPM)模型是联系可靠性要求和实施计划的管理工具,可帮助确定所需样品数和设计方案通过增长过程的成熟时间,并可监测进展情况,评价对原计划进行调整的必要性。但大多数情况下提及可靠性增长这一话题时,讨论的重点都是可靠性增长试验。一般而言,为了证明设计的正确性以及设计中使用的模型和分析工具的有效性,试验是开发的标准、必要部分。对于可靠性增长试验,大量的工作被用于研制各种统计模型,以便计划和跟踪通过试验所取得的可靠性增长。由于试验费用很高,因此自然会把很多精力放在研制好的模型和注重可靠性增长过程上。我们知道最常用的模型是Duane模型。Duane的观点是把整个重点放在试验中发现失效,然后通过重新设计予以排除。在笔者参加的某次“可靠性与风险分析先进课题”系列专题会议会议上,分组讨论中有一组的主题是“可靠性增长的范围和目的”。会上讨论了把试验作为实现可靠性增长首选方法的状况。其中一位成员提出,象卫星这样的产品,由于成本高,供试验的物品有限,因而极少可能进行那种和可靠性增长有关的试验。对这种系统如何实现可靠性增长呢? 2、可靠性增长更广泛的

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

产品可靠性测试规范

产品可靠性测试规范 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性测试要求。 2. 范围 本文件适用于此CPIT有限公司所生产的所有产品。 3. 定义 N/A 4. 职责 品控部QC/QA人员负责本文件所规定的通讯产品的可靠性测试内 容要求在检查过程中的实施. 品控部经理或其授权人负责本文件所规定的内容与实际情况相符并正确,并监督品控部QC/QA人员对本文件的实施. 5.内容 实验顺序 除非特殊要求,试验样品进行试验时,一般按下表的顺序进行: 实验条件及容差: 5.2.1 实验条件:

5.2.2 试验条件容差: a.温度容差:试验样品除必要的支承点外,应完全被空气包围。试 验区测量系统的温度和包围试验样品空气各处的温度容差:高温为 +/-2℃,低温为+/-3℃. b.湿度容差:+/-5%. c.振动振幅容差:+/-15%. d.振动频率容差:+/-1Hz. 5.2.3落地实验标准 5.2.3.1 落地实验应以箱体一角三棱六面按规定高度自由落下的方式进行。

重量高度 0~10kg以内 75cm 10~20kg以内 60 cm 20kg以上 53 cm 5.2.3.2 注意事项: 5.2.3. 体内机台及包材在每个步骤后应该检验。 5.2.3. 任一步骤发现部件有损坏的应立即更换。 5.2.3. 详细记录。 5. 3 样品数量: 测试时机: 6.4.1 产品处于PP时. 6.4.2 第一次量产. 6.4.3 当产品的材质,设计等变更时. 6.4.5 生产出现异常时. 6.4.6 新客户需重新进行产品评估时. 6.4.7 客户投诉与之相关时. 6.程序 从QA PASS的成品机中随机抽取20台,重新检查其外观及功能,确保其为合格产品方可进行以下步骤. 按试验顺序分别完成各项测试.对于每个测试中所出现的不合格品交测试组或相关技术部门分析其原因. 对于不合格品必须有相应的备份成品机进行补充或进行修理使其重新达到合格要求.

可靠性增长试验

可靠性增长试验 1 概述 基本概念 众所周知,装备的可靠性是由设计决定的。但是,由于受到各种原因的影响,设计缺陷总是难免的,产品在研制阶段往往达不到用户的可靠性要求,因此必须开展可靠性增长活动。 必须指出,可靠性增长活动不是针对设计低劣的产品的,而是针对经过认真设计仍然由于某些技术原因达不到要求的产品,而且可靠性增长活动比可靠性设计活动所需的资源和时间都多,因此,管理者往往只对通过可靠性设计评审的产品才安排可靠性增长计划。那种把可靠性水平寄托在增长活动上的态度是错误的。 可靠性增长的核心是消除影响产品可靠性水平的设计缺陷。可靠性增长的关键是发现影响产品可靠性水平的设计缺陷。为此,必须通过试验或运行的途径来实现产品故障机理的检测。常见的可靠性增长有,一般性的可靠性增长和可靠性增长管理。 一般性的可靠性增长,是指事前未给出明确的可靠性增长目标,对产品在试验或运行中发生的故障,根据可用于可靠性增长资源的多少,选择其中的一部分或全部实施纠正措施,以使产品可靠性得到确实提高的过程;它通常不制定计划增长曲线,也不跟踪增长过程,而是采用一两次集中纠正故障的方式,使产品可靠性得到提高。由于增长过程通常不能满足增长模型的限度条件,增长后的产品可靠性水平需要通过可靠性验证试验才能进行定量评估。 可靠性增长管理,是指有计划有目标的可靠性增长工作项目,并非可靠性增长过程中的管理工作。它是产品寿命期内的一项全局性的、为达到预期的可靠性指标、对时间和资源进行系统安排、在估计值和计划值比较的基础上依靠新分配资源、对实际增长率进行控制的可靠性增长项目。可靠性增长管理有两个特点: a) 有一个逐步提高的可靠性增长目标: 可靠性增长管理主要针对大型军事装备,把可靠性增长工作从工程研制阶段延伸到生产阶段或使用阶段,在阶段的转接处和阶段内部划分的小阶段的进出口处设定可靠性增长目标,形成逐步提高的系列目标。这就促使有关部门实施严格管理和为降低风险提供手段。 b) 充分利用产品寿命期内的各项试验和运行记录: 除了可靠性试验之外,在产品寿命期内还有其它各种试验以及运行过程都可能产生故障信息,可以用于可靠性增长的故障机理检测,经过风险权衡后把其中的一部分纳入可靠性增长管理的范围,形成可靠性增长的整体,使产品可靠性逐步增长到预期目标。 可靠性增长活动是一个连续完整的闭环控制过程。在此环中,首要任务是发现产品的设计缺陷——这主要是从试验、使用中发生的故障中发现;然后是对故障进行分析——重点研究重复性故障和关键故障发生的原因,当认定为设计缺陷后提出纠正这些设计缺陷的措施;接着是实施纠正措施——将修改设计的措施在少数产品(试验样品)上实施,并通过试验验证纠正措施的有效性;最后是修改技术文件和把纠正措施推广到同型号产品中去——这是落实可靠性增长活动的重要工作,是发挥可靠性增长试验效益的关键步骤。可靠性增长活动可以在工程研制阶段、生产阶段进行,甚至在使用阶段进行。按照有关标准的规定只在装备研制阶段才进行可靠性增长试验和增长工作,但从我国的实际情况出发,有不少已经装备部队多年的产品仍然对其进行可靠性增长试验和“可靠性补课工作”,并取得了显著成绩。这就是说,要根据产品的技术状况和可靠性水平去决定何时以何种形式开展可靠性增长活动。 可靠性增长试验是可靠性增长活动的主要内容,是产品工程研制阶段单独安排的可靠性工作项目,成为工程研制阶段的组成部分。可靠性增长试验通常安排在工程研制基本完成之后和可靠性鉴定试验之前进行。此时,产品的性能与功能已经基本达到设计要求,产品结构与布局已经接近批生产的要求,故障信息的确实性已经较高,且此时故障纠正措施的实施所需资源和时间较少。使用阶段的可靠性增长活动可以利用产品的现场故障信息和现场使用状况记录来取代可靠性增长试验工作。 可靠性增长试验的目的

可靠性试验分析及设计

ji 第四章(44) 可靠性试验与设计 四、最小二乘法 用图估法在概率纸上描出[],()i i t F t 点后,凭目视作分布检验判别所作的回归直线往往因人而异,因此最好再通过数值计算求出精确的分布检验结论和求出数学拟合的回归直线。通常用相关系数作分布检验,用最小二乘法求回归直线。 相关系数由下式求得: ()() n i i X X Y Y γ--= ∑ 其中X,Y 是回归直线的横坐标和纵坐标,它随分布的不同而不同。下表是不同分布的 坐标转换 只有相关系数γ 大于临界值0γ时,才能判定所假设的分布成立。0γ临界系数可查相应的临界相关系数表,如给定显著水平0.05α=,n=10,可查表得00.576γ=。若计算的0γγ,则假设的分布成 立。 如果回归的线性方程为 Y mX B =- 则由最小二乘法得到系数为

1 1 111 221 1??1?1 ()n n i i i i n n n i i i i i i i n n i i i i Y m X B N X Y X Y N m X X N =======-+=-=-∑∑∑∑∑∑∑ 代入上表中的不同的分布,就可以得到相应分布的参数估计值。 五、最好线性无偏估计与简单线性无偏估计 1、无偏估计 不同子样有不同的参数估计值?q ,希望?q 在真值q 附近徘徊。若?()E q q =,则?q 为q 的无偏估计。如平均寿命的估计为?i t n q =? ,是否为无偏估计? Q 1 [] ?()[]n i i i i t E t E E n n n q q q === = =? 邋 \ ?q 为q 的无偏估计 2、最好无偏估计定义 若?k q 的方差比其它无偏估计量的方差都小,即?()min ()k k D D q q =,则?k q 为最好无偏估计。 3、线性估计定义 若估计量?q 是子样的一个线性函数,即1 ?n i i i a q ==C ? ,则称?q 为线性估计。 4、最好线性无偏估计 当子样数25n £时,通过变换具有()F m s C -形式的寿命分布函数,其,m s 的最好线性无偏估计为: 1 ?(,,)r j i D n r j X m ==? ?(,,)j C n r j X s =? 其中(,,),(,,)D n r j C n r j 分别为,m s 的无偏估计,有了,,n r j 后,可有专门表格查无偏系数(,,),(,,)D n r j C n r j 。

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

维修性设计与分析

可靠性设计准则 可靠性设计准则是设计人员在长期的设计实践中积累起来的、能提高产品可靠性的行之有效的经验和方法,并归纳、总结形成 具有普遍适用价值的设计原则。它是设计人员进行产品设计时必须遵 循的准则,以避免重复发生过去已发生过的故障或设计缺陷。 可靠性设计准则一般是针对某个具体产品制定的。但也可以将产品的可靠性设计准则的共性部分上升为某类产品的可靠性设计 准则。如:HB7251-95《直升机可靠性设计准则》、HB7232-95《军用 飞机可靠性设计准则》、GJB2635-96《军用飞机腐蚀防护设计和控制 要求》等。 维修性设计与分析 1.维修性模型的建立 维修性模型用来表达系统与各单元维修性的关系,维修性参数与各种设计及保障要素参数之间的关系,供维修性分配、预计及评定用。 建立维修性模型的一般程序可如图1所示。首先明确分析的目的和要求,对分析对象进行描述,找出对欲分析参数有影响的因素,并确定其参数。然后建立数学模型,通过收集数据和参数估计,不断对模型进行修改完善。 图1 建立维修性模型的一般程序 2.维修性分配 维修性分配是为了把产品的维修性定量要求按给定准则分配给各组成单元而进行的工作。 (1)维修性分配的一般程序 1)进行系统维修职能分析,确定每一个维修级别需要行使的维修保障的职能和流程。 2)进行系统功能层次分析,确定系统各组成部分的维修措施和要素。

3)确定系统各组成部分的维修频率。 4)将系统维修性指标分配到各单元,研究分配方案的可行性,进行综合权衡。 (2)维修性分配方法常用方法见表1。 表1 维修性分配的常用方法 3.维修性预计 维修性预计是为了估计产品在给定工作条件下的维修性而进行的工作。它的目的是预先估计产品的维修性参数,了解其是否满足规定的维修性指标,以便对维修性工作实施监控。 (1)维修性预计的一般程序 1)收集资料。首先要收集并熟悉所预计产品设计资料和可靠性数据。还要收集有关维修与保障方案及其尽可能细化的资料。 2)系统的职能与功能层次分析。 3)确定产品设计特征与维修性参数的关系。 4)预计维修性参数值。利用各种预计模型,估算各单元和系统的维修性参数值。 (2)维修性预计方法维修性预计的方法有多种,常用的维修性预计方法要点见表2。 表2 常用的维修性预计方法 (3)工程应用中注意事项 1)预计的组织实施。低层次产品的维修性估计与产品设计过程结合紧密,通常由设计人员进行。系统、设备的正式维修性预计,涉及面宽且专业性强,应由维修性专业人员进行。 2)预计的方法和模型的选用。要根据产品的类型、所要预计的参数、研制阶段等因素,选择适用的方法。同时,对各种方法提供的模型进行考察,分析其适用性,可作局部修正。

相关主题
文本预览
相关文档 最新文档