当前位置:文档之家› 精馏塔效率的测定

精馏塔效率的测定

精馏塔效率的测定
精馏塔效率的测定

精馏塔效率的测定

1. 实验目的

①熟悉板式精馏塔和填料精馏塔的结构、性能与操作。

②掌握板式塔全塔效率及填料塔等板高度的测定方法。

③了解精馏操作中各项操作因素之间的关系与相互影响。

2. 实验原理

板式精馏塔连续稳态操作时涉及的基本参数有:F 、D 、W 、F x 、D x 、W x 、α、R 、q 、E 、p N 共计11个,操作中必然满足的基本关系有以下几方面:

①物料平衡:包括总物料与各组分的平衡,基本衡算式为:

W D F += (3-25)

W D F

Wx Dx Fx += (3-26) 式中:F 、D 、W — 进料,塔顶、塔底产品的摩尔流率,s m ol

F x 、D x 、W x — 进料,塔顶、塔底产品中轻组分的摩尔分率,无因次

上述参量中,只有4个独立变量,通常F 、F x 、D 、W 确定,则D x 、W x 唯一确定。

②相平衡:采用相对挥发度,则平衡方程为:

()x x

y 11-+=αα (3-27)

式中:α— 平均相对挥发度,无因次 ③在分离效率E ,分离程度D x 、W x 确定的前提下,操作回流比R 与实际塔板数p

N 的对应;若人为改变操作参数从而引起回流比的改变,在分离效率与塔板数固定的前提下,必然引起塔两端产品浓度的改变。

④进料参数的固定,进料参数包括进料量F 与进料浓度F x ,进料的热状态参数q 以及引入进料的位置进N ,人为改变上述参数,必然破坏精馏塔已有的平衡,引起相应操作参数的改变,最终使塔建立新的平衡,从而改变分离效果。

除上述平衡外,精馏操作中还要满足热量的平衡,即塔底加热量与塔顶冷凝量的对应以及冷、热物料热量交换的平衡,在恒摩尔流假定的前提下,热量平衡与物料平衡是相互关联、相互制约的,在数学描述中可以不再单独考虑。

常用的精馏塔效率分为单板效率和全塔效率。

单板效率亦称作默弗里效率,反映塔板实际增浓度与理论板增浓度的差距,可分别以气相浓度和液相浓度表示,气相默弗里效率的定义为:

11

+*

+--=n n n n mv y y y y E (3-28) 式中:n y 、1+n y — 分别为离开和进入第n 块板的气流浓度

n *

n y — 与离开第n 板的液流浓度n x 成平衡的气相浓度

全塔效率E 可看作精馏塔中各单板效率的平均值,是理论塔板数t N 与实际塔板数的比值:

%N N E p

t 100?= (3-29) 精馏塔操作中,抽样测定某塔板上下方的气、液流浓度,则可确定该板的单板效率,测定塔顶、塔底产品浓度,并依据操作参数计算达到该分离程度所需的理论板数,则可确定该塔的全塔效率。

填料塔操作与板式塔存在相似之处,按照传质单元的概念,将板式塔一块塔板的分离作用当量为某一段填料层,则可仿照板式塔对填料塔进行计算。填料层高度的等板高度HETP 定义为填料层高H 和理论板数t N 的比值:

t N H HETP = (3-30)

对确定的分离,得到理论板数t N ,测出实际填料层高,即可得到等板高度。

3. 实验内容

①完成精馏塔的操作,实现对乙醇―正丙醇混合液的分离。

②测定在全回流和部分回流条件下板式精馏塔的全塔效率或填料精馏塔的等板高度。

4. 实验装置与流程

参见图3-5(以板式塔为例)。

5. 实验方法及步骤

准备好阿贝折光仪,调整超级恒温水浴使折光仪处在所需温度。 ②

利用进料阀向塔内加料至排出口接近溢流流出为止。 ③

打开冷凝器的冷却水。 ④ 打开塔釜加热电源开关,缓慢加热。注意加热过程中釜内必须有足够的料液(液位应保持在塔釜2/3高度之上),否则立即停止加热。建议升温电压不大于70V ,待塔板上开始鼓泡时,可适当加大电压到不大于100V ,若出现液泛现象时,可将电压下调到不大于80V 。接通塔身保温电源,电压不高于50V 并保持不变,实现全回流运行。

⑤ 观察全塔传质情况,稳定后在塔顶、塔釜用注射器同时取样后利用折光仪进行样品浓度分析。

⑥ 调整为部分回流操作,方法是调节进料转子流量计阀门,以h l 0250.~.的流量向塔内加料,打开数显时间继电器开关,控制回流比为4:1 。

⑦ 观察全塔传质情况,稳定后记录塔顶、塔底及进料温度,在塔顶、塔釜和进料三处

图3-5 精馏实验装置与流程示意图

1―蒸馏釜 2―液封管 3―塔板 4―冷凝器 5―回流

控制器 6―加料高位槽 7―加料流量计 8―塔顶温度

用注射器取样,利用折光仪分析;可连续三次取样分析,重复性达到要求后即为有效结果。

⑧ 测试结束将加热功率调节旋钮复位到零,关闭电源开关,待塔冷却后(塔内不在有

气液流动)再关冷却水。

⑨ 将塔顶、塔底收集的料液倒入原料瓶中。

6. 实验注意事项

① 折光仪在每次进样分析后,都要擦拭样品池,注射器取样前应注意利用样品进行清

洗。

② 严禁直接接触玻璃塔身,塔身上面镀有一层金属膜,用作电阻加热,容易发生触电

事故。

③ 本实验设备由玻璃制成,在加热时应注意不要过快以免发生玻璃破裂。

④ 实验开始应先开冷却水再加热,停止时则反之,加热过程中若釜中液位不够高,塔

釜排空管上连接的软胶管中可能会有料液喷出,应予注意。

⑤ 开加热前塔釜内一定要有足够的料液,否则不得加热。

7. 阿贝折射仪使用说明

① 每次测定之前须将进试样池的镜面用无水酒精与乙醚(1:1)的混合液轻擦干净,以

免影响成相清晰度和测量准确度。

② 调节恒温水浴,开通循环水,使折光仪温度达到所需测量温度并稳定后即可测量。 ③ 测量时,将被测样品利用针头从棱镜组侧面小孔中加入,要求液层均匀,充满视场,

无气泡。打开遮光板,合上反射镜,调节目镜视度,使十字线成相清晰,此时旋转手轮并在目镜视场中找到明暗分界线的位置,再旋转手轮使分界线不带任何彩色,微调手轮,使分界线位于十字线的中心,再适当转动聚光镜,此时目镜视场下方显示的示值即为被测液体的折射率。

建议测试时选择温度为30℃,该温度下的浓度换算公式为:

D n 61325.42844116.58-=W (3-31)

式中:W — 样品的质量分率

D n — 样品的折光率读数

8. 思考题

① 如何判断精馏塔的操作已经达到稳定?

② 在实验数据处理过程中,进行效率计算时,塔釜应如何对待?

③ 依据课本相关内容和本实验现象,影响效率的因素有那些,操作中应注意那些问

题?

④ 计算理论塔板数的过程中,进料热状态参数应如何确定?

板式精馏塔的操作和塔效率的测定实验(doc 11页)

更多资料请访问.(.....)

板式精馏塔的操作与塔效率的测定 一、实验目的 (1)熟悉板式塔的结构及精馏流程; (2)理论联系实际,掌握精馏塔的操作; (3)学会精馏塔塔效率的测定方法。 二、基本原理 1.二元精馏过程的质量指标和操作变量 精馏塔的进料通常是前一工序或另一精馏塔的出料,为简化讨论,认为它稳定不变。 二元精馏过程的质量指标是塔顶塔釜的轻组分含量和。主要操作变量是塔顶采出率D和塔釜加热量Qh。 2.维持连续精馏过程稳定操作的条件 (1)根据进料量及组成、产品的分离要求,严格维持物 料平衡。 1)总物料平衡:塔的总进料量应恒等于总出料量。即 F = D + W 当进料量大于出料量时,会引起淹塔;相反,出料量大于进料量时,会引起塔釜干料,最终都将破坏精馏塔的

正常操作。 2)各组分的物料平衡:在满足总物料平衡的情况下,应同时满足轻组分物料平衡。即 由上述二式可知:为获得合格产品,必须保证一定的塔顶、塔釜采出率: 和 实际操作中,塔釜采出率W一般是根据塔釜液位的高低来操作,而塔顶采出率D的大小则直接影响着质量指标。(2)精馏塔应有足够的分离能力。 在塔板数一定的情况下,正常的精馏操作要有足够的回流比,才能保证一定的分离效果,得到合格的产品。而回流比的大小是由塔内热量衡算所决定,其中,塔釜加热量Qh是个十分重要的操作变量。 (3)精馏塔操作时,塔内应有正常的气液负荷量,避免发生以下不正常的操作状况: 1)严重的液沫夹带现象 上升气流将塔板上的液体的一部分带至上层塔板,这种现象称为液沫夹带。液沫夹带是一种与液体主流方向相反的流动,属返混现象,将使板效率降低。液流量

[整理]华东理工化工原理

第一章 流体流动 < 返回上一页> 1 .量纲分析法的目的在于 ______ 。 A 得到各变量间的确切定量关系; B 得到各无量纲数群的确切定量关系; C 用无量纲数群代替变量,使实验与关联工作简化; D 用无量纲数群代替变量,使实验结果更可靠。 2 .某物体的质量为 1000kg ,则其重量为 ____________ 。 A)1000N B)9810N C)9810kgf D)1000/9.81kgfB 3 . 4 ℃ 水在 SI 制中密度为 ________ 。 4 . 用标准孔板流量计测量管中的流量,采用如图所示三种装置,两测压孔距离 h 相等,其读数分别为 R 1 , R 2 , R 3 。则___。( d 1 = d 2 = d 3 ,流速相等) A)R 2 < R 1 < R 3 < R 2 = R 3 C )R 1 < R 2 < R 3 D)R 1 = R 2 = > R 2 = 5 . 一敞口容器 , 底部有一进水管 ( 如图示 ) 。容器内水面保持恒定 , 管内水流动 的速度头为 0.5m 水柱 ( 流速 u= 3.132m /s) 。 水由水管进入容器 , 则 2 点的表压 p 2 =( ) 水柱。 A) 2.0m ; B) 1.5m ; C) 1.0m ; D) 0.75m 6 .层流与湍流的本质区别是: ________ 。 A) 湍流流速 > 层流流速; B) 流道截面大的为湍流,截面小的为层流; C) 层流的雷诺数 < 湍流的雷诺数; D) 层流无径向脉动,而湍流有径向脉动。 7 .转子流量计的主要特点是 ________ 。 A) 恒截面、恒压差; B) 变截面、变压差;C) 恒流速、恒压差; D) 变流速、恒压差。 8 .①层流底层越薄 __________ 。 A) 近壁面速度梯度越小 B) 流动阻力越小 C) 流动阻力越大 D) 流体湍动程度越小 ②双液体U形差压计要求指示液的密度差 __________ 。 A) 大 B) 中等 C) 小 D) 越大越好 本章自测题答案:1.c ;2.b ;3.b ;4.d ;5.b ;6.d ;7.c ;8.c c

精馏塔操作和全塔效率的测定

实验四精馏塔操作和全塔效率的测定 一、实验目的 1.充分利用计算机采集和控制系统具有的快速、大容量和实时处理的特点,进行精馏过程多实验方案的设计,并进行实验验证,得出实验结论。以掌握实验研究的方法。 2.学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3.学习精馏塔性能参数的测量方法,并掌握其影响因素。 4.测定精馏过程的动态特性,提高学生对精馏过程的认识。 二、实验内容 本实验为设计型实验,学生应在教师的协助下,独立设计出完整的实验方案,并自主实施。必须进行的实验内容为1?3,可供选做的实验内容为4?7,最少从中选做一个 1.研究开车过程中,精馏塔在全回流条件下,塔顶温度等参数随时间的变化情况。 2测定精馏塔在全回流、稳定操作条件下,塔体内温度沿塔高的分布。 3测定精馏塔在全回流和某一回流比连续精馏时,稳定操作后的全塔理论塔板数、总板效率和塔体内温度沿塔高的分布。 4在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随回流比的变化情况。 5.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料流量的变化情况。 6.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料组成的变化情况。 7.在部分回流、稳定操作条件下,测定塔体内温度沿塔高的分布和塔顶浓度随进料热状态的变化情况。 三、实验原理 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T。按照式(4- 1 ) 可以得到总板效率E T,其中N P为实际塔板数。 E T二业100% N P (4-1) 部分回流时,进料热状况参数的计算式为 C pm (t BP - t F ) r m (4-2)

浮阀式连续精馏塔及其主要附属设备设计说明书

化学工程与工艺专业 《化工原理》课程设计说明书 题目:浮阀式连续精馏塔及其主要附属设备设计姓名: 班级学号: 指导老师: 同组学生姓名: 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 评审 单元 评审要素 评审内涵 评审等级 检查 方法 指导 老师 评分 检阅 老师 评分 设计 说明书 35% 格式规范 是否符合规定的格式要求 5-4 4-3 3-2 2-1 格式 标准 内容完整 设计任务书、评分标准、 主要设备计算、作图、后记、参考文献、小组成员及 承担任务 10-8 8-6 6-4 4-1 设计 任务书 设计方案 方案是否合理及 是否有创新 10-8 8-6 6-4 4-1 计算 记录 工艺计算 过 程 计算过程是否正确、 完整和规范 10-8 8-6 6-4 4-1 计算 记录 设计 图纸 30% 图面布置 图纸幅面、比例、标题栏、明细栏是否规范 10-8 8-6 6-4 4-1 图面布 置标准 标注 文字、符号、代号标注 是否清晰、正确 10-8 8-6 6-4 4-1 标注 标准 与设计 吻合 图纸设备规格 与计算结果是否吻合 10-8 8-6 6-4 4-1 比较图纸与说明书 平时 成绩 20% 出勤 计算、上机、手工制图 10-8 8-6 6-4 4-1 现场 考察 卫生 与纪律 设计室是否整洁、 卫生、文明 10-8 8-6 6-4 4-1 答辩 成绩 15% 内容表述 答辩表述是否清楚 5-4 4-3 3-2 2-1 现场 考察 内容是否全面 5-4 4-3 3-2 2-1 回答问题 回答问题是否正确 5-4 4-3 3-2 2-1 总 分 综合成绩 成绩等级 指导老师 评阅老师 (签名) (签名) 年 月 日 年 月 日

精馏塔的操作及塔效率的测定实验

或液相经过一层实际塔板前后的组成变化值与经过一层理论塔 X n 1 图1塔板气液流向示意 按气相组成变化表示的单板效率为 匚 _ yn 一 y n 1 匸MV * y n — yn + 按液相组成变化表示的单板效率为 精馏塔的操作及塔效率的测定实验 实验目的 1. 了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2 .学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 .基本原理 1 .全塔效率E T 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即 E T N T -1 N P 式中,N T -完成一定分离任务所需的理论塔板数,包括蒸馏釜; N p —完成一定分离任务所需的实际塔板数,本装置 N p = 10。 全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分 离能力的影响。对于塔内所需理论塔板数 N T ,可由已知的双组分物系平衡关系,以及实验中测得的塔 顶、塔釜出液的组成,回流比 R 和热状况q 等,用图解法求得。 2?单板效率E M y n_1 单板效率又称莫弗里板效率,如图 1所示, 相 板前后的组成变化值之比。 y^n X n y n

X F y £ q-1 E X n - X n E ML 二 *■ X n 」—X n 式中,y n 、y n 1 —离开第n 、n+1块塔板的气相组成,摩尔分数; X n J 、X n —离开第n-1、n 块塔板的液相组成,摩尔分数; y n -与X n 成平衡的气相组成,摩尔分数; X n —与y n 成平衡的液相组成,摩尔分数。 3.图解法求理论塔板数 N T 图解法又称麦卡勃—蒂列( McCabe — Thiele )法,简称 M — T 法,其原理与逐板计算法 完全相同,只是将逐板计算过程在 y -x 图上直观地表示出来。 精馏段的操作线方程为: y n 1 R X n X D- R 十1 R+1 y n 1 -精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; X n -精馏段第n 块塔板下流的液体组成,摩尔分数; X D -塔顶溜出液的液体组成,摩尔分数; R —泡点回流下的回流比。 提馏段的操作线方程为: L ' X WX W ' X m 一 ' L _W L -W 式中, Y m 1 式中,y m1 —提馏段第 m+1块塔板上升的蒸汽组成,摩尔分数; X m —提馏段第 m 块塔板下流的液体组成,摩尔分数; X W -塔底釜液的液体组成,摩尔分数; L —提馏段内下流的液体量,kmol/s ; W -釜液流量, kmol/s 。 加料线(q 线)方程可表示为:

精馏塔的操作及塔效率的测定实验【共6页】

精馏塔的操作及塔效率的测定实验 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方精馏塔的操作及塔效率的测定实验一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、基本原理 1、全塔效率全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即式中,-完成一定分离任务所需的理论塔板数,包括蒸馏釜;-完成一定分离任务所需的实际塔板数,本装置=10。 全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分离能力的影响。对于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得。

2、单板效率单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。 图1 塔板气液流向示意按气相组成变化表示的单板效率为按液相组成变化表示的单板效率为式中,、-离开第n、n+1块塔板的气相组成,摩尔分数;、-离开第n- 1、n块塔板的液相组成,摩尔分数;-与成平衡的气相组成,摩尔分数;-与成平衡的液相组成,摩尔分数。 3、图解法求理论塔板数图解法又称麦卡勃-蒂列(McCabe -Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 精馏段的操作线方程为:式中,-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;-精馏段第n块塔板下流的液体组成,摩尔分数;-塔顶溜出液的液体组成,摩尔分数;-泡点回流下的回流比。 提馏段的操作线方程为:式中,-提馏段第m+1块塔板上升的蒸汽组成,摩尔分数;-提馏段第m块塔板下流的液体组成,摩尔分数;-塔底釜液的液体组成,摩尔分数;-提馏段内下流的液体量,kmol/s;-釜液流量,kmol/s。 加料线(q线)方程可表示为:其中,式中,-进料热状况参数;-进料液组成下的汽化潜热,kJ/kmol;-进料液的泡点

不同回流位置板式精馏塔效率的测定比较

1 / 1 不同回流位置板式精馏塔效率的测定比较 一﹑实验目的 1.了解精馏装置的基本流程及筛板精馏塔的结构,熟悉精馏操作方法; 2. 熟悉板式精馏塔结构和精馏流程,掌握精馏操作方法。 3. 掌握精馏塔全塔效率的测定方法。 4. 研究不同回流位置下的塔顶组成、全塔效率的变化。 二、基本原理 1.精馏塔操作要领 (1)维持好物料平衡,即 F =D +W Fx F =Dx D +Wx W (1) 或 W D F D W D W F x x x x F W x x x x F D --=--= (2) 式中:F 、D 、W — 分别为进料、馏出液、釜残液的流率,kmol.s -1 ; x F 、x D 、x W ― 分别为进料、馏出液、釜残液中轻组分的组成摩尔分率; D/F 、W/F ―分别为塔顶、塔底的采出率。 若物料不平衡,当F >D+W 时,将导致塔釜、降液管和塔板液面升高,压降增大,雾沫夹带增加,严重时甚至会淹塔;当F <D+W 时,将导致塔釜、降液管和塔板液面降低,漏液量增加,塔板上气液分布不均匀,严重时甚至会干塔。 在规定的精馏条件下,若塔顶采出率D/F 超出正常值,即使精馏塔具有足够的分离能力,从塔顶也不能得到规定的合格产品;若塔底采出率W/F 超出正常值,则釜残液的组成将增加,既不能达到分离要求,也增加了轻组分的损失、 (2)控制好回流比。精馏塔应采用适宜的回流比操作,在塔板数固定的情况下,当满足Dx D ≤Fx F 且塔处于正常流体力学状态时,加大回流比能提高塔顶馏出液组成x D ,但能耗也随之增加。加大回流比的措施,一是减少馏出液量,二是加大塔釜的加热速率和塔顶的冷凝速率,但塔釜的加热速率和塔顶的冷凝速率在装置中是有限度的。因此在操作过程中,调节回流比时要将两者协调好,尤其是后者涉及维持热量平衡。 (3)精馏塔是分离均相混合物的重要设备。衡量板式精馏塔分离性能,一般用总板效率表示: p T N N E = (3) 式中:E —总板效率; N T —理论板层数; N P —实际板层数。 理论板层数N T 的求法可用M-T 图解法。本实验是使用乙醇-水二元物系在全回流条件下操作,只需测定塔顶流出液组成x D 和釜液组成x w ,即可用图解法求得N T ,实际板层数N p 为已知,所以利用上式可求得塔效率E . 三、实验设备

填料塔的操作

填料塔的操作是从物料平衡、热量平衡、相平衡及填料塔性能等几个方面考虑,通过控制系统建立并调节塔的操作条件,使填料塔满足分离要求。 控制系统可采用手动、一般自动化仪表或智能计算机操作。 (一)、控制参数I 图中表示了塔操作控制的典型参数,其中6个流量参数:进料量、塔顶和塔釜产品流量、冷凝量、蒸发量和回流量。 除流量参数外,还有压力、塔釜液位、回流罐液位、塔顶产品组成和塔釜产品组成等参数。 精馏塔常用控制参数 压力和液位控制是为了建立塔稳态操作条件,液位恒定阻止了液体累积,压力恒定阻止了气体累积。对于一个连续系统,若不阻止累积就不可能取得稳态操作,也就不可能稳定。压力是精馏操作的主要控制参数,压力除影响气体累积外,还影响冷凝、蒸发、温度、组成、相对挥发度等塔内发生的几乎所有过程。 产品组成控制可以直接使用产品组成测定值, 也可以采用代表产品组成的物性,如密度、蒸气压等。最常用的是采用灵敏点温度。 (二)、填料塔操作瓶颈及解决方法 任何一个设计都不可能把装置中的每个设备及每个设备中的每个部分设计在同一最大负荷百分数下操作,而许多工厂则希望采取各种手段使装置生产能力达到最大,这就使装置中的至少一个部分成为操作瓶颈,填料塔操作中,填料塔的任一部分、塔顶冷凝器、塔釜再沸器等都可能成为操作瓶颈,这里所指的瓶颈是指装置已达到设计负荷需进一步提高分离效率和生产能力,而装置中的某一设备或某一设备的某一部分限制了生产能力和分离效率的提高。

1、填料塔为操作瓶颈 填料塔在设计气液负荷范围内操作可取得所需的分离效率,超过此负荷范围,会导致分离效率下降、压降升高泛塔等现象,多数情况下填料塔操作提高处理能力和分离效率的瓶颈是填料塔本身。 (1)填料塔处理能力的提高 ①增、降压操作 若设备及工艺条件允许,适当增、降塔压是提高填料塔处理能力的最好办法。 在常压附近,提高压力可使处理量提高,低压、相对挥发度高及相对挥发度随压力变化不大时,增压操作对处理量提高最大。压力较高,有时降低压力可提高处理能力,在高压、相对挥发度低及相对挥发度随压力升高而降低很大的场合,降压操作处理量提高较大。 ②进料的预热 填料塔进料以上填料段和进料以下填料段通常并不是在同一泛点百分数下操作,普通精馏通常为泡点进料,若将进料预热或预冷,可以使塔的上下段负荷发生变化,若进料段以下为操作瓶颈,热进料可降低塔釜热负荷和下段气液相负荷,代价为上段气液相负荷有所增加。相反,若上段为瓶颈,冷进料降低了上段的气液相负荷,代价是下段填料负荷有所增加。 这种方法提高幅度通常较小,但对进料以下气液比很大的场合,这种方法调节幅度较大, 这时对塔的效率影响也大。过热进料影响上段的分离效率,过冷进料影响下段的分离效率,一般认为过冷进料对塔本身的分离效率影响不大,只有一块理论板,但对高效填料塔影响会超过此值,对于液气比很高的场合影响也会

实验十 板式精馏塔的操作及全塔效率的测定

实验十 板式精馏塔的操作及全塔效率的测定 一、实验目的: 1.熟悉筛板式精馏塔的结构、精馏流程及原理; 2.熟悉筛板式精馏塔的操作方法; 3.学会精馏塔效率的测定; 4.观察精馏过程中汽液两相在塔板上的接触情况; 5.了解回流的作用; 二、实验内容 1.测定在全回流条件下的全塔效率; 2.在进料条件下:进料浓度约25~28%(体积百分数,以下用v 表示)的乙醇水溶液,达到塔顶馏出液乙醇浓度大于93%(v ),塔釜残液乙醇浓度小于3%(v )。并在规定的时间内完成500mL 的采出量,记录下所有的实验参数; 3.要求控制料液进料量为3 L/h ,调节回流比,尽可能达到最大的塔顶馏出液浓度。 三、操作原理 精馏操作是分离工程中最基本最重要的单元之一。在板式精馏塔中,混合液在塔板上传质、传热,气相逐板上升,液相逐板下降,层层接触,多次部分气化,部分冷凝,在塔顶得到较纯的轻组分,塔釜得到较纯的重组分,从而实现分离,实验物料是乙醇—水系统。 1.维持稳定连续精馏操作过程的条件 (1)根据进料量及其组成、以及分离要求,严格维持塔内的物料平衡 总物料平衡— F=D+W 若F >D+W ,塔釜液面上升,会发生淹塔;相反若F <D+W ,会引起塔釜干料,最终导致破坏精馏塔的正常操作。 各组分的物料平衡— Fx F = Dx D + Wx W 塔顶采出率 W D W F x x x x F D --= 若塔顶采出率过大,即使精馏塔有足够的分离能力,塔顶也不能获得合格产物。 (2)精馏塔的分离能力 在塔板数一定的情况下,正常的精馏操作要有足够的回流比,才能保证一定的分离效果,获得合格的产品,所以要严格控制回流量。 (3)精馏塔操作时,应有正常的汽液负荷量,避免不正常的操作状况 1) 严重的液沫夹带现象 2) 严重的漏液现象 3) 溢流液泛 2.产品不合格原因及调节方法 (1)由于物料不平衡而引起的不正常现象及调节方法

精馏塔效率的测定

精馏塔效率的测定 1. 实验目的 ①熟悉板式精馏塔和填料精馏塔的结构、性能与操作。 ②掌握板式塔全塔效率及填料塔等板高度的测定方法。 ③了解精馏操作中各项操作因素之间的关系与相互影响。 2. 实验原理 板式精馏塔连续稳态操作时涉及的基本参数有:F 、D 、W 、F x 、D x 、W x 、α、R 、q 、E 、p N 共计11个,操作中必然满足的基本关系有以下几方面: ①物料平衡:包括总物料与各组分的平衡,基本衡算式为: W D F += (3-25) W D F Wx Dx Fx += (3-26) 式中:F 、D 、W — 进料,塔顶、塔底产品的摩尔流率,s m ol F x 、D x 、W x — 进料,塔顶、塔底产品中轻组分的摩尔分率,无因次 上述参量中,只有4个独立变量,通常F 、F x 、D 、W 确定,则D x 、W x 唯一确定。 ②相平衡:采用相对挥发度,则平衡方程为: ()x x y 11-+=αα (3-27) 式中:α— 平均相对挥发度,无因次 ③在分离效率E ,分离程度D x 、W x 确定的前提下,操作回流比R 与实际塔板数p N 的对应;若人为改变操作参数从而引起回流比的改变,在分离效率与塔板数固定的前提下,必然引起塔两端产品浓度的改变。 ④进料参数的固定,进料参数包括进料量F 与进料浓度F x ,进料的热状态参数q 以及引入进料的位置进N ,人为改变上述参数,必然破坏精馏塔已有的平衡,引起相应操作参数的改变,最终使塔建立新的平衡,从而改变分离效果。 除上述平衡外,精馏操作中还要满足热量的平衡,即塔底加热量与塔顶冷凝量的对应以及冷、热物料热量交换的平衡,在恒摩尔流假定的前提下,热量平衡与物料平衡是相互关联、相互制约的,在数学描述中可以不再单独考虑。 常用的精馏塔效率分为单板效率和全塔效率。 单板效率亦称作默弗里效率,反映塔板实际增浓度与理论板增浓度的差距,可分别以气相浓度和液相浓度表示,气相默弗里效率的定义为: 11 +* +--=n n n n mv y y y y E (3-28) 式中:n y 、1+n y — 分别为离开和进入第n 块板的气流浓度 n * n y — 与离开第n 板的液流浓度n x 成平衡的气相浓度 全塔效率E 可看作精馏塔中各单板效率的平均值,是理论塔板数t N 与实际塔板数的比值:

填料精馏塔等板高度的测定

填料精馏塔等板高度的测定实验报告 院(系)生物与化学工程系年级2011级专业化学工程与工艺姓名吕志超学号1140902030 课程名称专业实验实验日期2013年3月13日实验地点3L216 指导老师胡建明 一、实验目的与要求 1、熟悉全回流及部分回流精馏操作,比较不同气液相流量及回流比对填料塔分离性能的影响。 2、测定全回流及部分回流操作下的理论平衡级数,并计算填料等板高度。 3、了解传质单元高度的影响因素。 二、实验原理 在全回流下测定填料精馏塔的理论板数,只能评价不同结构的精馏塔及填料性能,不能反映实际操作条件下的分离性能。全回流下,要达到一定分离要求,所需理论板数虽为最少(对一定柱高而言,达到的分离能力为最大),但无产品馏出,无实用价值。 随着塔顶回流比的减小,塔顶产物量增加,但达到一定分离效果,所需理论板数增加,即塔的分离能力下降。回流比减少到某一最小值时,需要的理论板数为无穷大,实际上不能达到特定的分离要求。 本实验采用全回流及部分回流操作,通过测定塔底与塔顶的浓度,计算或绘图得出所需的理论塔板数,并由此计算填料的等板高度。 若从塔顶冷凝液中取出一定量的产品D(称为馏出液),回流量为L,且令 (1) R为回流比。部分回流比下,精馏塔理论板数N T的计算,可用计算机用CAD 作图求得。塔的填料高度Z与理论板数N T之比为填料的等板高度,即:在工业生产上,最佳回流比的确定,要综合考虑设备费与操作费消耗,取其经济效果最佳时的回流比。 三、实验装置流程与试剂 1、试剂50%的乙醇水溶液 2、实验装置(如下图所示)

91011 8 32 112 13 14 1516 1718 7654 1-塔顶全凝器 2-塔头 3-测温铜电阻 4-玻璃内套管 5-玻璃外套管 6-上段测温铜电阻 7-精馏塔 8-下段测温铜电阻 9-取样口 10-塔釜 11-电加热包 12-分相器 13-三通旋塞 14-出液口 15-上段电加热 16-下段电加热 17-测温铜电阻 18-玻璃套管 四、实验方法步骤 1、本实验采用50%左右的乙醇水溶液作为试验液,将配制好的500ml 试验液加入蒸馏烧瓶内,并加入一定量沸石,以防爆沸。 2、启动加热电源,将釜内试液加热至沸。(开始加热用电压大致控制在满量程的70%)。 3、料液沸腾后,打开冷却水,开始全回流,适当补充塔釜料液至满刻度。 4、全回流30分钟以上,待操作状态完全稳定后,开始取塔顶、塔底样,用折光率仪进行分析。 5、调节回流比,在部分回流下操作,稳定一段时间后(20分钟),测定馏出液及塔底组成。 6、改变回流比,在选定的回流比下,稳定操作20分钟后,再次取样分析。 实验注意事项: (1)为了保持回流温度恒定,一定要随时注意保持冷却水量不变。 (2)为了维持蒸发量恒定,一定要严密控制电热套的电压,适当而缓慢增加。 (3)注意调节好恒定回流比。回流比的调节采用两个流量计的阀门调节。 五、实验数据记录与处理 1、将实验设备及试验液的基本参数参考下列表格进行记录 (1)试液及设备基本参数 柱内径 D (mm ) 填料层高度 Z (mm ) 试验液用量 V (ml ) 全回流压差 ΔP O (mmH 2O) 25 1150 400 50

填料塔

填料塔分离效率的测定 目录: 一.实验装置图 二.设备特点 三.设备主要部件 四.操作要点及注意事项 五.分析方法 六.教学实验要求 1.实验简介 2.实验准备工作 3.实验报告要求 七.附件 1.设备运行数据记录 2.学生实验报告 华东理工大学化学工程与工艺实验中心 2005年11月

一.实验装置图

二.设备特点 填料塔是生产中广泛使用的一种塔型,实验通过测定甲酸-水在正负系统内的HETP,考察系统表面张力对填料精馏塔效率的影响机理。实验采用带夹套的玻璃填料塔,内装磁拉西环,在填料层的上、下两端各有一个取样装置,其上有温度计套管插铜电阻测温。塔釜加热和塔身保温部分用可控硅电压调整器调节,并可观察工作电流。 三.设备主要部件 1.填料塔:塔内径为31mm,填料层高度约为 540mm,内装;4×4×1mm磁拉西环填料,整个塔体采用电加热保温; 2.塔釜:1000ml的圆底烧瓶; 3.冷凝头:玻璃蛇形冷凝器; 4.电热碗:规格为1000ml的电加热碗; 5.温度显示仪:用2台铜电阻温度显示仪显示填料塔上下端的温度; 6.调压器:2台,调节输出电压,控制塔釜加热量和塔体保温; 7.电流表:2台,用来监控加热输出电流值的大小,观察其工作是否正常。四.操作要点及注意事项 操作要点 测量填料层高度,实验分别在正系统与负系统的范围下进行。 1.正系统:取85(wt)%的甲酸–水溶液,略加一些水,使入釜的甲酸–水溶液既处在正系统范围; 2.将配制的甲酸–水溶液加入塔釜,并加入沸石;检查系统的密闭性; 3.打开冷却水,开启塔釜加热器,当塔顶有回流时调节塔身保温电流,防止保温电流过大; 4.全回流操作,待操作稳定后,用长针头注射器在上、下两个取样口取样分析; 5.待正系统实验结束后,按计算再加入一些水,使之进入负系统,补充沸石; 6.为保持正、负系统在相同的操作条件下进行实验,则应保持塔釜加热电压不变,塔身保温电流不变;以及塔顶冷却水量不变。 7.同步骤4,待操作稳定后,取样分析。 8.实验结束,关闭电源及冷却水,待釜液冷却后倒入废液桶中。 注意事项 1.步骤1根据计算加入适量的水,使系统处于正系统又接近共沸组成,画理论板时不至于集中于图的左端; 2.塔身保温电流逐渐增大;

精馏塔的计算

4.3 塔设备设计 4.3.1 概述 在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。 在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。本项目以正丁醇精馏塔的为例进行设计。 4.3.2 塔型的选择 塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。 a.板式塔。塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。 b.填料塔。塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。 4.3.2.1 填料塔与板式塔的比较: 表4-2 填料塔与板式塔的比较

4.3.2.2 塔型选择一般原则: 选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。 (1)下列情况优先选用填料塔: a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度; b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔; c.具有腐蚀性的物料,可选用填料塔。因为填料塔可采用非金属材料,如陶瓷、塑料等; d.容易发泡的物料,宜选用填料塔。 (2)下列情况优先选用板式塔:

实验一 填料塔分离效率的测定实验报告

实验一 填料塔分离效率的测定 一 实验目的 本实验的目的在于: (1) 了解系统表面张力对填料精馏塔效率的影响机理; (2) 测定甲酸–水系统在正、负系统范围的HETP 。 二 实验原理: 根据热力学分析,为使喷淋液能很好地润湿填料表面,在选择填料的材质时,要使固体的表面张力SV σ大于液体的表面张力LV σ。然而有时虽已满足上述热力学条件,但液膜仍会破裂形成沟流,这是由于混合液中低沸组分与高沸组分表面张力不同,随着塔内传质传热的进行,形成表面张力梯度,造成填料表面液膜的破碎,从而影响分离效果。 根据系统中组分表面张力的大小,可将二元精馏系统分为下列三类: (1) 正系统:低沸组分的表面张力l σ较低,即h l σσ<。当回流液下降时,液体的表面张力LV σ值逐渐增大。 (2) 负系统;与正系统相反,低沸组分的表面张力l σ较高,即h l σσ>。因而回流液下降过程中表面张力LV σ逐渐减小。 (3) 中性系统:系统中低沸组分的表面张力与高沸组分的表面张力相近,即h l σσ≈,或两组分的挥发度差异甚小,使得回流液的表面张力值并不随着塔中的位置有多大变化。 在精馏操作中,由于传质与传热的结果,导致液膜表面不同区域的浓度或温度不均匀,使表面张力发生局部变化,形成表面张力梯度,从而引起表面层内液体的运动,产生Marangoni 效应。这一效应可引起界面处的不稳定,形成旋涡;也会造成界面的切向和法向脉动,而这些脉动有时又会引起界面的局部破裂,因此由玛兰哥尼(Marangoni )效应引起的局部流体运动反过来又影响传热传质。

填料塔内,相际接触面积的大小取决于液膜的稳定性,若液膜不稳定,液膜破裂形成沟流,使相际接触面积减少。由于液膜不均匀,传质也不均匀,液膜较薄的部分轻组分传出较多,重组分传入也较多,于是液膜薄的地方轻组分含量就比液膜厚的地方小,对正系统而言,如图2–29所示,由于轻组分的表面张力小于重组分,液膜薄的地方表面张力较大,而液膜 较厚部分的表面张力比较薄处小,表面张力差推动液体从较厚处流向较薄处,这样液膜修复,变得稳定。对于负系统,则情况相反,在液膜较薄部分表面张力比液膜较厚部分的表面张力小,表面张力差使液体从较薄处流向较厚处,这样液膜被撕裂形成沟流。实验证明,正、负系统在填料塔中具有不同的传质效率, 负系统的等板高度(HETP)可比正系统大一倍甚至一倍以上。 本实验使用的精馏系统为具有最高共沸点的甲酸-水系统。试剂级的甲酸为含 85(Wt)%左右的水溶液,在使用同一系统进行正系统和负系统实验时,必须将其浓度配制在正系统与负系统的范围内。甲酸–水系统的共沸组成为:435.02 O H x ,而85(Wt)%甲酸的水溶液中含水量化为摩尔分率为0.3048,落在共沸点的左边,为正系统范围,水–甲酸系统的X –Y 图如图2所示。其汽液平衡数据如下: 表1 甲酸-水汽液平衡数据 图1 表面张力梯度对液膜稳定性的影响 图2 水–甲酸系统的x - y 图

化工专业实验

化工专业实验 Experiment of Chemical Engineering and Technolog y 课程编号: 学分:1.5 实验总学时: 45 先修课程:化工设备机械基础、物理化学、化工原理、化工热力学、化学反应工程、分离工程、化学工艺学 适用专业:化学工程与工艺 一、目的与任务 本课程是化学工程与工艺专业必修的实践性课程。它是从工程与工艺两个角度出发,即以化工工艺生产为背景,又以解决工艺或过程开发中所遇到的共性工程问题为目的,选择典型的工艺与工程要素,所组成系列的工艺与工程实验。它是进行(化工类)工程师基本训练的重要环节之一,在专业教学计划中占有重要的地位。化学工程与工艺实验是在学生已经接受了基础理论与专业知识教育,有经受过初步工程实验训练的基础上进行的。在本实验教学中,将使学生了解与熟悉有关化工工艺过程、化学反应工程、传质与分离工程等学科发展方向上的实验技术和方法;掌握与学会过程开发的基本研究方法和常用的实验基本技能;培养学生的创造性思维方法、理论联系实际的学风与严谨的科学实验态度,提高实践动手能力。为毕业环节乃至今后工作打下坚实的基础,起到承前起后的作用。 二、实验教学的基本要求 (1)复习相关原理,认真写好预习报告,独立设计实验方法。 (2)了解仪器设备的原理构造和使用方法。 (3)按实验要求作好实验。 (4)数据处理。 (5)实验分析。

注:1、类型---指设计性、综合性、验证性;2、实验内容可调整。 四、实验成绩的考核与评定办法: 实验成绩的考核,以实验预习报告、实验报告和实验过程为考核依据,成绩分优、良、中、及格和不及格五等。 五、有关说明: 根据《化工热力学》、《化学工艺学》、《化学反应工程》、《分离工程》课程教学大纲,参考教材: 《化学工程与工艺实验》,房鼎业、乐清华、李福清主编化学工业出版社。 撰写人:沈玉堂 审定人:姜廷顺 批准人:倪良 时间:2013年5月10日

实验一 填料塔分离效率的测定实验报告

实验一填料塔分离效率的测定实验报告实验一填料塔分离效率的测定 一实验目的 本实验的目的在于: (1) 了解系统表面张力对填料精馏塔效率的影响机理; (2) 测定甲酸–水系统在正、负系统范围的HETP。 二实验原理: 根据热力学分析,为使喷淋液能很好地润湿填料表面,在选择填料的材质时,要使固体 大于液体的表面张力。然而有时虽已满足上述热力学条件,但液膜仍的表面张力,,SVLV 会破裂形成沟流,这是由于混合液中低沸组分与高沸组分表面张力不同,随着塔内传质传热的进行,形成表面张力梯度,造成填料表面液膜的破碎,从而影响分离效果。 根据系统中组分表面张力的大小,可将二元精馏系统分为下列三类: (1) 正系统:低沸组分的表面张力较低,即。当回流液下降时,液体的表面,,,,lhl 张力值逐渐增大。 ,LV (2) 负系统;与正系统相反,低沸组分的表面张力较高,即。因而回流液下,,,,lhl 降过程中表面张力,逐渐减小。 LV

(3) 中性系统:系统中低沸组分的表面张力与高沸组分的表面张力相近,即,,,,lh或两组分的挥发度差异甚小,使得回流液的表面张力值并不随着塔中的位置有多大变化。 在精馏操作中,由于传质与传热的结果,导致液膜表面不同区域的浓度或温度不均匀,使表面张力发生局部变化,形成表面张力梯度,从而引起表面层内液体的运动,产生Marangoni 效应。这一效应可引起界面处的不稳定,形成旋涡;也会造成界面的切向和法向脉动,而这些脉动有时又会引起界面的局部破裂,因此由玛兰哥尼(,arangoni)效应引起的局部流体运动反过来又影响传热传质。 填料塔内,相际接触面积的大小取决于液膜的稳定性,若液膜不稳定,液膜破裂形成沟流,使相际接触面积减少。由于液膜不均匀,传质也不均匀,液膜较薄的部分轻组分传出较多,重组分传入也较多,于是液膜薄的地方轻组分含量就比液膜厚的地方小,对正系统而言,如图2–29所示,由于轻组分的表面张力小于重组分,液膜薄的地方表面张力较大,而液膜 较厚部分的表面张力比较薄处小,表面张力差 推动液体从较厚处流向较薄处,这样液膜修 复,变得稳定。对于负系统,则情况相反,在 液膜较薄部分表面张力比液膜较厚部分的表 图1 表面张力梯度对液膜稳定性的影响面张力小,表面张力差使液体从较薄处流向较 厚处,这样液膜被撕裂形成沟流。实验证明, 正、负系统在填料塔中具有不同的传质效率, 图2 水–甲酸系统的x - y图负系统的等板高度(HETP)可比正系统大一倍甚至一倍以上。

化工基础实验思考题答案

化工基础实验思考题答案 实验一流体流动过程中的能量变化 1、实验为什么要使高位水槽的水保持溢流? 答:保持溢流可使流体稳定流动,便于读数,同时伯努利方程只在流体稳定流动时才适用。 2、操作本实验装置应主意什么? 答:1)开启电源之前,向泵中灌水 2)高位水槽水箱的水要保持溢流 3)赶尽玻璃管中气泡 4)读数时多取几组值,取平均值 实验二流体流动形态的观察与测定 1、在实验中测定的雷诺数与流动形态的关系如何?如果出现理论与实际的偏差,请分析理由 答:1)层流时,理论与实际符合 2)过渡流测量值与理论值稍有偏差 偏差分析:(1)孔板流量计的影响 (2)未能连续保持溢流 (3)示踪管未在管中心 (4)示踪剂流速与水的流速不一致 2、本实验中的主意事项有那些? 答:(1)保持溢流 (2)玻璃管不宜过长 (3)示踪管在中心

实验三节流式流量计性能测定实验 1、你的实验结果可以得到什么结论? 答:流速较大或较小时,流量系数C并不稳定,所以性能并不很好 2、实验中为什么适用倒置U型管? 答:倒置的U形管作压差计,采用空气作指示液,无需重新装入指示液,使用方便 实验四连续流动反应器实验流程图 1、测定停留时间分布函数的方法有哪几种?本实验采用的是哪种方法? 答:脉冲法、阶跃法、周期示踪法和随机输入示踪法。本实验采用脉冲示踪法。 2、模型参数与实验中反应釜的个数有何不同,为什么? 答:模型参数N的数值可检验理想流动反应器和度量非理想流动反应器的返混程度。当实验测得模型参数N值与实际反应器的釜数相近时,则该反应器达到了理想的全混流模型。若实际反应器的流动状况偏离了理想流动模型,则可用多级全混流模型来模拟其返混情况,用其模型参数N值来定量表征返混程度。 3、实验中可测得反应器出口示踪剂浓度和时间的关系曲线图,此曲线下的面积有何意义? 答:一定时间内示踪剂的总浓度。 4、在多釜串联实验中,为什么要在流体流量和转速稳定一段时间后才能开始实验? 答:为使三个反应釜均能达到平衡。 实验五换热器传热系数的测定 1、实验误差主要来源那几个方面? 答:1)读数不稳定

板式精馏塔实验报告

板式精馏塔实验报告 学院:广州大学生命科学学院 班级:生物工程121班 分组:第一组 姓名: 其他组员: 学号:

指导老师:尚小琴吴俊荣 实验时间2014.11.15 摘要:此次实验是对筛板精馏塔的性能进行全面的测试,实验主要对乙醇正丙醇精馏过 程中的研究不同条件下改变参量时的实验结果,根据实验数据计算得出塔釜浓度、回流比、进料位置等与全塔效率的关系,确定该筛板精塔的最优实验操作条件。 关键词:精馏;回流比;全塔效率;塔釜浓度 Abstract:The sieve plate distillation column performance comprehensive testing, mainly on ethanol isopropyl alcohol distillation process in the different experimental conditions were discussed, the reactor concentration, reflux ratio, feed location and the entire towerThe relationship between the efficiency of sieve plate tower, determine the optimal experimental conditions of fine. Key words: Distillation;reflux ratio;the tower efficiency 引言:精馏是利用混合液中两种液体的沸点差异来分离两种液体的过程。精馏装置有精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节[2]。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题[4]。本研究从塔釜浓度、回流比、进料位置、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察[1],得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义通过本实验我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义[3]。 1.实验部分

精馏塔的操作和全塔效率的测定实验

精馏塔的操作和全塔效率的测定实验 10.1 实验内容 (2)在部分回流条件下进行连续精馏操作,在规定时间内完成500mL乙醇产品的生产任务,并要求塔顶产品中的乙醇体积分数大于0.93,同时塔釜出料中乙醇体积分数小于0.03。 10.2 实验目的 (1)了解板式精馏塔的结构及精馏流程。 (2)理论联系实际,掌握精馏塔的操作。 10.3 实验原理 10.3.1 概述 精馏是利用液体混合物中各组分的挥发度不同使之分离的单元操作。精馏过程在精馏塔内完成。根据精馏塔内构件不同,可将精馏塔分为板式塔和填料塔两大类。根据塔内气、液接触方式不同,亦可将前者称为级式接触传质设备,后者称为微分式接触传质设备。 塔板是板式精馏塔的主要构件,是气、液两相接触传热、传质的媒介。通过塔底的再沸器对塔釜液体加热使之沸腾汽化,上升的蒸汽穿过塔板上的孔道和板上的液体接触进行传热传质。塔顶的蒸汽经冷凝器冷凝后,部分作为塔顶产品,部分冷凝液则作为回流返回塔内。来自塔顶的液体自上而下经过降液管流至下层塔板口,再横向流过整个塔板,经另—侧的降液管流下。气、液两相在塔内整体呈逆流,板上呈错流, 10.3.2 精馏塔的效率及测定 塔板效率是精馏塔设计的重要参数之—。有关塔板效率的定义有如下几种:点效率、Nurphree板效率、湿板效率和全塔效率。影响塔板效率的因素有很多,如塔板结构、气液相流量和接触状况以及物性等诸多因素,都对塔板效率有不可忽视的影响。迄今为止,塔板效率的计算问题尚未得到很好的解决,—般还 是通过实验的方法测定。 由于众多复杂因素的影响,精馏塔内各板和板上各点的效率不尽相同,工程上有实际意义的是在全回流条件下测定全塔效率。全塔效率的定义如下

相关主题
文本预览
相关文档 最新文档