当前位置:文档之家› 电能表接线智能仿真系统培训资料(高)

电能表接线智能仿真系统培训资料(高)

电能表接线智能仿真系统培训资料(高)
电能表接线智能仿真系统培训资料(高)

电能表接线智能仿真系统培训

学习资料(2)

电流反接

电流反接时,可能在CT处反接,也可能在电能表表尾处反接。我们知道当电流流过负载时必定会产生电压降,可以用万用表测量CT和表尾处电流进、出端子对地的交流电压,当进端电压高于出端电压时,表示此处电流没有反接,否则此处电流反接。

一、三相三线电能表错误接线检查及判断

PT极性反,A、C线电压出现173V

如图1所示,互感器二次侧a-b相极性接反,在表尾出现的ac合成电压.U a`c=-.U ab+.U bc ,是-.U ab、.U bc两线电压的矢量和,.U a`c大小为线电压的3倍即173V,并且矢量方向在.U b的位置上,其向量图如图2所示。同理,可得.U c`a在.U b上,.U ac`、.U ca`在-.U b上。且U20、U50、U80中有一个电压为0V,该相即为b相。

测量∠(.U25,.U85)来判断相序。现分析电压相序为a`cb(逆相序)的情况,.U25=.U a`c,.U85=.U bc,则∠(.U25,.U85)=330°。同理,可分析得到,电压为正相序时,有∠(.U25,.U85)=30°或120°(<180°);电压为逆相序时,有∠(.U25,.U85)=240°或330°(>180°)。

这样就知道了电压的相序,但此时还不能判断a、c两相到底是哪相极性反,先假设某一相反(如a相反),依据电压、电流的相位关系,画出向量图,确定二元件的电流(如果分别为Ia、Ic);再假设c相反,也画出向量图,此时二元件的电流必为-Ia、-Ic。再测量电流进出,确定两元件电流有无反接,即可得出答案。

举例

判断步骤:

1)U25=173V , 有PT 极性反接 2)U8

→地=0V ,U8为b 相

3)相序判断,∠(U25,U85)=330°>180°,故为逆向序;

图1 a-b 相极性接反接线图

4)电压相别为 acb

5)假定a-b反接,则一元件电压.U a`c在Ub方向上,二元件电压为Ubc,做出向量图;可看出一元件电流I1为Ic,二元件电流I7为Ia;

再假设c-b反接,一元件电压.U ac`在-Ub方向上,二元件电压

Ubc`=Ucb,做出向量图;可看出一元件电流I1为-Ic,二元件电

流I7为-Ia;

例1 c-b相极性接反向量图

6)再用万用表分别测量表尾和CT端子排进出端对地电压,若测得表尾

和CT端子都是进端电压高于(或同时低于)出端电压,则应是电压a-b

极性反接的情况;反之,若测得表尾或CT端子有一个是进端电压高于

出端电压,另一个是进端电压低于出端电压,则应是电压c-b极性反

接;

PT有一相断相

如图3所示,TV二次侧接了有功和无功电能表。由于断相,与该断相相关的矢量都是不完整的,测试得到的信息较少,分两种情况:

b相断,应有U20、U50、U80均小于100V,但大于0V;U25、U85、U28有一电压为100V,此电压为不断相的两相间的线电压,该两相即为a、c相,则剩下的一相即为b相。但是a、c两相相序,是ac还是ca,还无法确定。

b相不断,应有U20、U50、U80中一电压为0V,该相即为b相,一为100V,另一小于100V;U25、U85、U28有一电压为100V,该电压为不断相与b相间的线电压,另两电压小于100V。但是a断、还是c断还无法确定。

以上分析后,可以确定b相电压,但还不能完全确定电压错误情况,应测取全电压(未断相的两相间线电压,大小为100V)与两元件电流之间的相位,根据负载特性及电流的状态来反推该全电压。

举例2:已知负载为感性

判断步骤:

1)U80=0V,U8为Ub;

2)U20=57V,知U2 断相,U85=100V,为全电压;

3)假设相别为acb,a相断,根据电压、电流相位,画出向量图如图所示,

可知此时负载为容性,.I1=-.I c,.I7=-.I a;

再假设相别为cab,c相断,同理有.I1=-.I c,.I7=-.I a;

4)而已知负载为感性,所以相序为cab,c相断,两元件电流分别为-.I c,-.I a。

.

I7

. U b

.

U a

.

I1

.

U bc

.

U c

例2图相序为acb

.

I7

.

U b

.

U a

.

I1

.

U c

例2图相序为cab

.

U ba

二、 三相四线电能表错误接线检查及判断

PT 极性有一相反,线电压出现57V

如下图所示,b 相极性反,有Uab ′= Ucb ′=57V ,Uac=100V ,

PT 极性有一相反时,此时,相电压均为57V ;三个线电压中,有两个线电压大小为57V ,剩下的一个线电压为全电压100V ,即为极性不反的两个相电压合成的线电压。

测量极性不反的两个相电压间的相位,在U2电压极性反时,则测∠(U5n ,U8n )若为=120°,则为正向序,若为=240°,则为逆向序;同理,在U5电压极性反时,则测∠(U8n ,U2n ),若为=120°,则为正向序,若为=240°,则为逆向序;同理,在U8电压极性反时,则测∠(U2n ,U5n )若为=120°,则为正向序,若为=240°,则为逆向序; 找参考电压Ua ;

再测量同相别的电压与电流之间的相位关系,画向量图。

PT 有一相断相,该相相电压小于57V ,与该相相关的线电压小于100V ,其他均为全电压。其它分析过程同三相四线不断相时。

Ub

智能电能表采集失败的原因和处理措施

智能电能表采集失败的原因和处理措施 社会经济对电力有更高的需求,智能电能表也遭受史无空前的关注。作为用电设备的基本部分,智能电能表除了可以对设备产生的电能消耗进行计量外,还是采集用电信息和数据传输的重要节点。本文简单介绍了智能电能表的原理和特征,分析了智能电能表在电网中的具体应用和运行维护,希望提升对智能电能表总体的管控水平,发挥智能电能表技术的最大功效。 标签:智能电能表;采集失败;原因;处理措施 1智能电能表的原理及特点 1.1智能电能表原理 电子式智能电能表,参照和结合了电子式电能表的相关原理。作为近年研发的高科技产品,其核心部件为电子元器件。基本原理:采集电压以及电流在不同时段的数据,借助集成电路来搜集电压,并对不同电流信号进行处理,将它们更改为合适的脈冲输出。利用单片机进行集中处理,将脉冲转变成用电量后再予以输出。 1.2智能电能表特点 1.功耗,智能电能表搭载了优质的电子元件,表的功耗基本上都在0.6w~0.7w。有些集中式电能表,其到户功率并不是很大。一个感应式电能表,它的功耗已经低到1.7w。 2.精度,显示误差上,2.0级电子式电能基本上是5%~400%,误差结果不超过±2%。现行选择的均为1.0级,其误差相对更小。 3.过载、工频范围,过载倍数上,本文提及的智能电能表可以达到6~8倍,它的量程明显够宽。如果一只表倍率达到8~10倍,用户也会更为喜欢,有些还将接近20倍。考虑到它的工作频率非常宽,达到40HZ~1000HZ。针对那些感应式电能表,过载倍数同样接近于4倍,频率则基本上只有45~55HZ。 4.功能,智能电能表选取了电子技术,根据通信协议能够和计算机之间完成联网。利用编程软件,控制应用硬件。故而,智能电表的体积并不是很大,允许远传控制(抄表也可以是断送电)、对恶性负载进行辨识、预先付费,也可以反窃电。同时,用户也可以修改软件参数,适应基本的控制需求。上述功能,从前的感应式电能表根本没有办法实现。 2智能电能表在电网中的具体应用 2.1计量电能功能 通常而言,电能表首要的功能在于电能计量。和人类平时选择的传统电表不同,我们这里的智能电能表不仅能够计量电能,还能够自由编程、自动存储和带记忆等多项不同的功能,控制电能质量,也可以对店家费率进行自如转换。

智能电能表数据采集关键技术分析及研究

智能电能表数据采集关键技术分析及研究 发表时间:2019-12-17T09:55:50.343Z 来源:《中国电业》2019年17期作者:张怡 [导读] 文章从智能电能表的原理及其功能特点分析入手 摘要:文章从智能电能表的原理及其功能特点分析入手,并从信息采集技术、数据采样技术、数据传输技术以及数据存储技术等几个方面,对智能电能表数据采集关键技术进行论述。期望通过本文的研究能够对智能电能表数据采集效率的提升有所帮助。 关键词:智能电能表;数据采集;关键技术 智能电能表这一概念出现于上个世纪90年代,因当时此类电能表的价格较为昂贵,所以并未得到大范围普及,只在一些大型电力用户中进行应用。随着技术的发展,使智能电能表的功能日益强大,价格则逐步降低,为其替代传统电能表奠定了基础。在智能电能表应用中,数据采集是较为重要的环节。借此,下面就智能电能表数据采集关键技术展开分析探讨。 1智能电能表的原理及其功能特点分析 智能电能表是传统电能表的升级版,除具备传统电能表的相关功能之外,如用电量计量等,还能对电能数据进行采集和传输,由此使得智能电能表成为智能配电网中不可或缺的数据采集设备。以智能电能表为基础构建的AMI(高级量测体系)和AMR(自动抄表系统)等,给电力用户提供了全面且详细的用电信息,这样用户便可对自己的用电量进行管理,从而达到减少电费支出的目的。 1.1工作原理 智能电能表集多种先进的技术于一身,如计算机、通信、测量等技术,由此使其成为能够进行数据采集与传输的智能化计量装置。它的基本工作原理如下:借助A/D(模数)转换器,或是专用的计量芯片,对电力用户用电设备的电流及电压等物理量进行实时采集,利用CPU(中央处理器),对采集到的信息进行分析处理,完成电能计算,最后将得出的电能等内容以通信的方式进行输出。 1.2功能特点 与传统的电能表相比,智能电能表的功能更加强大,其特点体现在如下几个方面:一是智能电能表的精度能够在较长的时间内保持不变,不需要对其进行轮校,安装过程对智能电能表的精度基本不会造成影响,由此使其具备较高的可靠性。二是智能电能表的量程、功率因数都比较宽,启动过程的灵敏性较佳,能够保障计量的准确度。三是智能电能表具有强大的功能,如集中抄表、多费率、防窃电、预付费等等。四是当剩余电量低于预先设定好的报警电量时,智能电能表会自动提醒电力用户购电,若是表中的剩余电量低于报警电能,则会自动跳闸断电一次。 2智能电能表数据采集中关键技术的运用 在智能电能表的应用中,数据采集是较为重要的一个环节,在该环节中,主要涉及以下关键技术: 2.1信息采集技术的运用 智能电能表是数据采集系统的前端设备,按照类型可分为机电一体式和全电子式两种,前者在传统电能表改造中的应用较多,不仅便于安装,而且还能降低造价。但从信息传输上看,由于机电一体式电能表采用脉冲的方式对信息进行输出,准确度不高,常常会出现脉冲丢失的情况。而全电子式智能电能表从电能计量到数据处理,均以集成电路为核心的电子器件来实现,不需要机械部件,由此使整个电能表的体积变得更小,耗电量随之降低,精确度显著提高。全电子式电能表的数据输出接口包括RS-485和电力线载波,由此使电能表可以获得多种数据信息,如电流、电压、功率因数等等。 在对电力用户的电能信息进行采集的过程中,可以通过集中抄表终端来实现,该终端由两个部分组成,一部分是集中器,另一部分是采集器。通常情况下,供电企业可以借助配电网中的变压器设备,对电力用户的电能信息进行采集和控制,而集中抄表终端中的集中器,可利用通信通道,对电能表信息进行采集和处理。同时,集中器还能与现场工作人员的手持式设备进行数据交换,借助远程通信,则可与主站完成数据交换。采集器的主要作用是负责对单个或是多个电能表的电能量进行采集,并将采集到的信息传给集中器。 2.2数据采样技术的运用 在智能电能表数据采集过程中,采样一个较为重要的环节,可将之视作为波形离散化,具体是指将时间与幅值连续的模拟信号,转换为时间非连续、幅值连续的模拟信号。数据采样时,必须遵循相应的规律,如抽样定理和取样定理。前者是通信理论中较为重要的定理之一,是模拟信号实现数字化的重要理论依据之一,包括时域和频域两个部分。后者在实际中可以借助A/D转换器来完成,在数据采集系统中,A/D转换器类似于电子开关,每间隔一定的时间闭合一次,通过编码获取原本连续的某个时刻的样本值。 2.3数据信息传输技术的运用 在智能电能表数据采集中,数据信息的传输是重中之重,为确保传输稳定性,需要运用相应的传输技术。由此使得数据信息传输技术成为智能电能表数据采集中不可或缺的关键技术之一。以智能电能表为核心的数据采集系统的通信网络分为两个层次,其中一层位于主站与集中器之间,由于需要保证远距离传输,所以可选用无线网络、光纤或是电力载波等通信方式。而另一层位于集中器、采集器与智能电能表之间,可将之称为本地网络。 2.3.1无线通信网络。无线通信是目前主流的数据信息传输方式,在无线网络中,各节点之间,不需要借助线缆,便可完成远距离传输通讯。无线通信中较为常用的数据信息传输方式有GPRS(通用无线分组业务)、CDMA(码分多址),这两种通信方式最为突出的特点是抗干扰能力强,并且保密性比较好,能够为数据信息的传输安全提供保障。但由于成本较高,加之会受到网络运营商的限制,所以在智能电能表数据采集中,这两种通信方式的适用性较为一般。为了满足智能电能表数据采集的需要,可以利用230MHz电力无线专网,该无线网络归属于电力专网的范畴,可对相关的数据通信资源进行利用,在该通信网络的频段内,采用两种工频点,以模拟式无线通信技术为基础,可为智能电能表数据采集提供强有力的通信支撑。 2.3.2光纤通信。这是比较常见的一种通信方式,光波是该通信方式的信息载体,光纤则是信息传输媒介。该通信方式具有容量大、距离远、信号干扰小、无辐射等优点,但由于光纤本身的质地比较脆,机械强度差,受损的可能性比较大,一旦光纤损坏则会影响数据传输。目前,常用的光纤通信有两种类型,一种是有源光纤通信,另一种是无源光纤通信,由于前者会受到电源的影响,所以并不适用于智能电能表数据采集系统,而后者中的以太无源光网络技术较为成熟,可用于智能电能表数据采集。 2.3.3电力线载波。这是一种以电力线作为传输媒介进行数据传输的通信方式。在电力载波领域中,可按电压等级将电力线分为以下三

智能电表制造数据采集系统的原理及设计

智能电表制造数据采集系统的原理及设计 今天为大家介绍一项国家发明授权专利——智能电表制造数据采集系统。该专利由灏翰创科有限公司申请,并于2017年12月26日获得授权公告。 内容说明本发明涉及电表生产管理领域技术,尤其是指一种智能电表制造数据采集系统。发明背景随着物联网技术的发展,二维码技术在产品流通过程中对产品的跟踪管理覆盖面也越来越广泛,但是目前的技术仍然存在不足之处:企业的各个部门通常只对独自掌控范围的产品进行流通跟踪,只要产品脱离相关负责部门的掌控范围,流通到市场,甚至是消费者手中,企业对该产品的去向便一无所知,消费者对该产品的整个生产制作、维修、测试数据也一无所知,并且在产品的售后管理上普遍存找维修人员困难、维修周期长等问题。在智能电表制造生产的过程也是如此,因此,创建一个能够有效地管理智能电表制造的平台,使零配件从设计、安装调试、出入库、销售到维修等阶段的相关信息都能够进行跟踪和追溯,较好地满足企业对工业制造的运营和管理。通过发明和建立这样一个平台,对于企业的提升和整个装备制造业的稳定发展都将有着异常积极的意义。 发明内容本发明针对现有技术存在的缺失,提供一种智能电表制造数据采集系统,用于物料追溯,电表质量数据查询,客户服务,并为电表设计持续改进提供数据库。 为实现上述目的,本发明采用如下技术解决方案:一种智能电表制造数据采集系统,包括云服务器、ERP系统服务器和智能电表生产制作过程的多台PCB终端机,ERP系统服务器及各台PC终端机均与云服务器连接形成广域网通讯,ERP系统服务器与各台PC终端机连接形成局域网通讯;多台PCB终端机包括制造工单管理PC终端;物料发料管理PC 终端,其配备有标签打印机和物料批号扫描枪;电表系列号管理PC终端,其配备有电表铭牌和二维码打印机;应用于不同检测工序的多台电表测试PC终端,各台电表测试PC 终端均配备有各自的测试设备和检测工位二维码扫描枪;电表计量校准PC终端,其配备有计量校准用的测试设备和计量校准工位二维码扫描枪;电表包装PC终端,其配备有包装工位二维码扫描枪;电表修理数据管理PC终端,其配备有修理工位二维码扫描枪。

预付费电能表培训资料

培训资料

目录 一、产品简介 (1) 1.1 概述 (1) 1.2技术参数 (1) 1.3液晶显示内容 (1) 1.4端子接线图 (2) 二、功能说明 (2) 2.1计量功能 (3) 2.2输出显示功能 (3) 2.3监控功能 (4) 2.4其它功能 (4) 三、CPU卡片说明 (5) 3.1 CPU卡片类型及定义 (5) 3.2 插卡故障说明 (5) 3.3 插卡显示 (6) 四、系统安全体系 (8) 4.1 安全原则 (8) 4.2 一卡一密、一表一密 (8) 4.3 CPU卡认证 (8) 五、维修指导 (8) 5.1 工作原理 (8) 5.2 维修思路 (9) 5.3 举例分析 (11) 5.4 注意事项 (12)

一、产品简介 1.1 概述 DDSY521-D1型单相电子式预付费电能表符合GB/T 18460.3-2001 《IC 卡预付费售电系统第3 部分:预付费电能表》和《胜利油田电力管理总公司预付费电能表IC卡技术规范》的相关要求。 该表能实现计量,红外编程及抄表,LCD显示等功能。该表支持IC卡、红外抄设表,具有电能测试脉冲输出功能。 铭牌上印刷的表号为8位顺序号。 铭牌上指示灯排列在显示器正下方,且从左到右依次排列红外收发灯、脉冲灯和报警灯。 1.2技术参数 ●外型尺寸163mm?120mm?63mm ●技术参数 1.3 液晶显示内容

1.4端子接线图(具体见端盖反面接线图) 二、功能说明 (一)计量功能 2.1电能计量功能 2.1.1 计量多时段有功总电量,正反电量合计,反向有功电能按正向电能累加。 2.1.2 冻结电量:电表在冻结日(默认为1日0时)自动冻结当时电量,保存在断电不丢失的数据储存单元中。保存最近6次冻结电量。同时将上两月的冻结电量相减计算出上月用电量(月结电量)。 (二)输出显示功能 2.2 输出功能 2.2.1具有脉冲测试口和脉冲灯输出功能,脉冲宽度为80±20ms。 2.2.2 具有秒信号输出功能 2.3显示功能 电表具有轮显和插卡显示两种显示方式。 2.3.1 数据轮显功能 可实现参数轮显,轮显的参数可任意设置,每项参数显示3秒钟。具体设置如下: 轮显方式:可根据需要,选择按厂家固定方式轮显(00)或按用户自己设定的参数轮显(01)。 当轮显方式为00时,电能表按厂家固定的轮显方式轮显(轮显顺序不可改变),轮显数据项依次为: 1 剩余电量 2 累计用电量 3上月用电量 4户号(显示8位,显示为“XX·XX·XX XX”) 5表号(显示8位) 6日期 7时间 当轮显方式为01时,电能表即按用户自己设置的轮显内容轮显,最少可设置1个,最多可设置16个。 2.3.2 电能表异常显示 1、电表出现故障时,背光和报警灯常亮。 2、电能表插修改密钥卡进入运行状态后,电能表上盖被打开,背光和报警灯常亮,常显“uuuuuuuu”,只有插检查卡才能恢复正常显示。 3、电能表进入运行状态插用户卡后,电能表端盖被打开,背光和报警灯常亮,常显“nnnnnnnn”,只有插检查卡才能恢复正常显示。

智能电表数据采集研究

智能电表数据采集研究 摘要:为克服农网地区低压供电半径长、环境复杂、线路干扰大的不利影响,凭借技术创新,优化集中器的自动路由寻址程序,利用示波器寻找干扰源,通过定时投切控制装置隔离重大干扰源;管理措施方面,通过精益生产管理理念,加快安装速度、提高安装工艺水平、减少后期维护,实现抄到率班组级同业日对标管理;注重流程化和全过程管理,优化管理流程和业务流程,进而全面提升智能电表数据采集管理水平。 关键词:智能电表;数据采集;数据分析 Abstract: In order to overcome the rural network area radius of the low voltage power supply, the complex environment and the line interference, by virtue of technological innovation, to optimize the concentrator automatic routing addressing procedures, use an oscilloscope to find the source of interference, through the regular switching control device isolation major sources of interference; in management measures, through lean manufacturing management concepts to speed installation and improve the installation process level, reducing the post-maintenance, to achieve the copying rate team level with the industry standard management; focus on processes and process management to optimize the management and business processes, enhance overall smart meter data collection and management level.Key words: smart meters; data acquisition; data analysis 中图分类号:TB381 文献标识码:A 文章编号: 为进一步深化营销管理,大力加强营销工作的基础建设,努力提高智能电表数据采集管理水平,实现营销管理的集约化、专业化、精益化和规范化的管理模式,本文对智能电表数据采集进行了研究分析,论述了如何凭借专业技术知识和现场勘查经验,及时准确辨识其影响因素并找出对应的解决方法。 一、智能电表数据采集原理 用电信息采集系统是由服务器、前置机、集中器、采集器、电能表等硬件设备,和链接这些硬件的软件系统,以及使用、维护这些硬件、软件的专业人员组成的有机整体。用电信息采集系统工作原理结构图如下:

电表接线及工作原理

电度表接线及工作原理 单相有功电度表/三相四线制有功电度表/电子式电能表的工作原理及接线 一、机械式电度表的型号及其含义 电度表型号是用字母和数字的排列来表示的,内容如下: 类别代号+组别代号+设计序号+派生号。如我们常用的家用单相电度表:DD862-4型、DDS97l型、DDSY97l型等。 1、类别代号: D--电度表 2、组别代号 表示相线:D--单相;S--三相三线;T--三相四线。 表示用途的分类:D--多功能;S--电子式;X--无功;Y--预付费;F--复费率。 3、设计序号用阿拉伯数字表示。 每个制造厂的设计序号不同,如长纱希麦特电子科技发展有限公司设计生产的电度表产品备案的序列号为971,正泰公司的为666等。 综合上面几点: DD--表示单相电度表:如DD971型DD862型 DS--表示三相三线有功电度表:如DS862,DS97l型 DT--表示三相四线有功电度表:如DT862、DT971型 DX--表示无功电度表:如DX97l、DX864型 DDS--表示单相电子式电度表:如DDS97l型 D丅S--表示三相四线电子式有功电度表:如DTS97l型 DDSY--表示单相电子式预付费电度表:如DDSY97l型 DTSF--表示三相四线电子式复费率有功电度表:如DTSF97l型 DSSD--表示三相三线多功能电度表:如DSSD97l型 4、基本电流和额定最大电流 基本电流是确定电度表有关特性的电流值,额定最大电流是仪表能满足其制造标准规定的准确度的最大电流值。 如5(20)A 即表示电度表的基本电流为5A,额定最大电流为20A,对于三相电度表还应在前面乘以相数,如3x5(20)A。 5、参比电压 指的是确定电度表有关特性的电压值 对于三相三线电度表以相数乘以线电压表示,如3x380V。 对于三相四线电度表则以相数乘以相电压或线电压表示,如3x220/380V。 对于单相电度表则以电压线路接线端上的电压表示,如220V。 二、机械式三相四线电度表的读法 1、如果您的三相四线电度表是最右边没有红色读数框的,那黑色读数框的都是整数,只是在最右边(即个位数)的"计数轮"的右边带有刻度,而这个刻度就是小数点后的读数;如果是带有红色读数框的,那红色读数框所显示的就是小数。 2、如果您的表输出是不带电流互感器的,那表上显示的读数就是您实际用电的计量读数,如果是计量带有互感器的,那要看互感器的规格了,比如用的是100/5的互感器,那它的倍率为20(即100除以5),如果是200/5的即倍率为40,如果是500/5的,那倍率就是100。以此类推,把表上显示的读数,再乘以这个倍率,就是您实际使用的电量数,单位为

电能表的实物接线图

单相电能表的实物接线 单相电能表的实物接线 漏电开关的作用是:用于保护人体触电和设备绝缘破坏触电的故障。 漏电开关使用:在安装接线后,按下漏电保护器的漏电测试按纽,可制造一短暂人工漏电情况,以检验漏电保护器能否动作。测试按纽应每月试验一次,以检验漏电保护器之功能。在接地漏电情况下,漏电保护器自动跳闸。在故障未被清除之前,即使再把手推至“ON”的位置,也不能使电路重新接通,避免了人为错误地将故障电路接上。

; 单相电能表的实物接线 单相电能表的实物接线 漏电开关的作用是:用于保护人体触电和设备绝缘破坏触电的故障。 漏电开关使用:在安装接线后,按下漏电保护器的漏电测试按纽,可制造一短暂人工漏电情况,以检验漏电保护器能否动作。测试按纽应每月试验一次,以检验漏电保护器之功能。在接地漏电情况下,漏电保护器自动跳闸。在故

障未被清除之前,即使再把手推至“ON”的位置,也不能使电路重新接通,避免了人为错误地将故障电路接上。 ` 在图中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L 2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连接,使电动机 可以实现正反两个方向上的运行。 而图(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。再按下反转起动按钮SB3,接触器K M2线圈通电且自锁,主触点闭合使电动机反转。但是在(b)图中,若按下正转起动按钮SB2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触器工作。 所以在图(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。除非按下停止按钮SB1,接 触器KM1线圈断电,KM1常闭触点 复位闭合,再按下反转起动按钮SB3实现电动机的反转,同时,串接在KM1线圈支路中的KM2常闭触点 断开,封锁了接触器KM1使它无法通电。 这样的控制线路可以保证接触器KM1 、KM2不会同时通电,这种作用称为互锁,这两个接触器的常闭触点称为互锁触点,这种通过接触器常闭触点实现互锁的控制方式称为接触器互锁,又称为电气互锁。

智能电表数据集中采集器的分析

智能电表数据集中采集器的分析 【摘要】本文对智能电表数据集中采集器进行了分析。总结了当前数据集中采集器的特点,设计了智能电表数据集中采集器的总体功能、硬件及软件。 【关键词】智能电表数据采集硬件设计功能 “十一五”期间,我国经济和社会得到了高速的发展,人民生活质量不断提高,我国电力行业也在逐步推进市场化的进程,电力企业市场化的经营模式逐渐形成,城乡电网改造工程逐步实施,1户1表的政策得到了深入的贯彻执行,特别是近几年智能电网的发展,在配电网中广泛应用智能电表代替传统的电表。智能电表中核心的部件是其数据集中采集器,其主要实现了对电网中数据的有效采集及传输功能,为智能用电及智能配电网的建设奠定了基础。本文对智能电表数据集中采集器进行了分析。 1 当前的集中采集器综述 当前智能电表中的抄录系统主要是由3部分构成的,即数据集中采集模块,微机管理系统和数据集中器。其中集中器主要实现了对上下设备的数据汇总和分配,并且能够实现对电能表智能控制命令传输的作用,有利于电能采集数据的集中。 当前智能电表的数据集中器主要是利用上行的通道对远程系统所发出的命令进行接收,并能够实现有效动作的执行。其能够预先设定好的参数向通信服务器实现连接,这样就能够对电能采集信息进行传输,利用下行的数据通道可以完成数据的发送,综合上行和下行数据传输即可实现对智能电表的综合控制。通过以上分析我们可以看出,集中采集器能够有效实现数据采集命令的控制,并能够实现对智能电表所发出的数据进行存储的功能。 2 集中器功能总体设计 对智能电表数据集中器进行总体设计主要是利用其所对应的下行设备来支持645数据传输规约来实现的。其可采用RS-485总线规约进行通信,并依据645数据规约来实现数据的有效传输,相比与传统的智能电表数据采集器,本数据集中采集器具有以下功能: (1)自动查找智能电表功能:在相关的应用地点安装数据集中器后,系统可进行具体的参数配置:首先对智能电表进行自动查找,自动地通过下行通道来发出找表的相关指令,且能够实现接收数据的自动分析。如果经过分析其接收的智能电表地址是正确的,则系统将对智能电表的地址进行存储。数据集中器的这项功能实现了智能电表地址的有效查找和分析,不但节约了时间,而且更具经济性和实用性,有利于提高系统的整体效率。

电能表的工作原理及接线

单相有功电度表/三相四线制有功电度表/电子式电能表的工作原理及接线 ——图文JW原创 一、机械式电度表的型号及其含义。 电度表型号是用字母和数字的排列来表示的,内容如下:类别代号+组别代号+设计序号+派生号。 如我们常用的家用单相电度表:DD862-4型、DDS97l型、DDSY97l型等。 1、类别代号: D--电度表 2、组别代号 表示相线:D--单相;S--三相三线;T--三相四线。 表示用途的分类:D--多功能;S--电子式;X--无功;Y--预付费;F--复费率。 3、设计序号用阿拉伯数字表示。 每个制造厂的设计序号不同,如长纱希麦特电子科技发展有限公司设计生产的电度表产品备案的序列号为971,正泰公司的为666等。 综合上面几点: DD--表示单相电度表:如DD971型 DD862型 DS--表示三相三线有功电度表:如DS862,DS97l型 DT--表示三相四线有功电度表:如DT862、DT971型 DX--表示无功电度表:如DX97l、DX864型 DDS--表示单相电子式电度表:如DDS97l型,DDS156型电子式单相电能表 DTS--表示三相四线电子式有功电度表:如DTS97l型 DDSY--表示单相电子式预付费电度表:如DDSY97l型 DTSF--表示三相四线电子式复费率有功电度表:如DTSF97l型 DSSD--表示三相三线多功能电度表:如DSSD97l型 4、基本电流和额定最大电流

基本电流是确定电度表有关特性的电流值,额定最大电流是仪表能满足其制造标准规定的准确度的最大电流值。 如 5(20)A 即表示电度表的基本电流为5A,额定最大电流为20A,对于三相电度表还应在前面乘以相数,如 3x5(20)A。 5、参比电压 指的是确定电度表有关特性的电压值 对于三相三线电度表以相数乘以线电压表示,如3x380V。 对于三相四线电度表则以相数乘以相电压或线电压表示,如3x220/380V。 对于单相电度表则以电压线路接线端上的电压表示,如220V。 二、机械式三相四线电度表的读法 1、如果您的三相四线电度表是最右边没有红色读数框的,那黑色读数框的都是整数,只是在最右边(即个位数)的"计数轮"的右边带有刻度,而这个刻度就是小数点后的读数;如果是带有红色读数框的,那红色读数框所显示的就是小数。 2、如果您的表输出是不带电流互感器的,那表上显示的读数就是您实际用电的计量读数,如果是计量带有互感器的,那要看互感器的规格了,比如用的是100/5的互感器,那它的倍率为20(即100除以5),如果是200/5的即倍率为40,如果是500/5的,那倍率就是100。以此类推,把表上显示的读数,再乘以这个倍率,就是您实际使用的电量数,单位为KWh(千瓦时:度)。即:实际用电量=实际读数×倍率 3、互感器如果不只绕一匝,那么,实际用电量=互感器倍率/互感器匝数×实际读数。匝数,指互感器内圈导线的条数,不指外圈。 一般计量收费时,大多不计小数位的读数。 三、一度电是多少 关于一度电的问题,举例说明,在用电器的额定电压下,一个1000瓦的用电器使用上一个小时就消耗1度电。如果1度电1元钱,那么说,一个1000瓦的用电器使用上一个小时就花掉1元钱。例如,一只电饭煲,它的说明书上标1000W220V,那么这只电饭煲在家里用上一小时就花掉1元钱。 四、机械式单相电度表的接法 1、单相电度表的构成及电路原理图 单相有功电度表(简称:单相电度表)由接线端子、电流线圈、电压线圈、计量转盘、计数器构成,只要电流线圈通过电流,同时电压线圈加有电压,转盘就受到电磁力而转动。单相电度表共有5个接线端子,其中有两个端子在表的内部用连片短接,所以,单相电度表的外接端子只有4个,即1、2、3、4号端子。由于电度表的型号不同,各类型的表在铅封盖内都有4各端子的接线图。原理图如下

电能表管理系统使用说明

DBMIS6电表管理 信息系统 使 用 手 册 第1章系统简介 本系统是针对预付费电能表开发的一套给供电部门使用的售电管理软件,功能齐全,界面友好,结构清晰,操作方便,是推广使用预付费电表的有力工具。 了解电卡表售电系统 整个售电系统所需的软硬件设备包括:预付费电表、IC卡读写器、IC卡、计算机终端管理系统。 关于电卡表 预付费电表(简称电卡表),高精度、长寿命的静止式电子表,保证了长期稳定的计量准确性。 关于读写器 读写器明华RD系列接触式IC卡读写器,读写器在售电过程中使用十分频繁,要求质量稳定。 读写器用一根串口数据线连接计算机的串行端口上。连接速度(波特率)为 9600bps。通电后读写工作时有指示灯指示。 关于IC卡 采用了标准加密IC卡,这种IC卡保密性好、安全可靠、通用性强、成本低廉,易于普遍推广采用。 关于管理软件 管理软件在Windows 32位环境下设计开发,自带微软的MDAC数据访问部件,运行于MS Windows98 SE/2000,现在假设您已将系统成功安装在该平台上。 如果系统运行时显示不正常,请确保您的系统显示颜色设置至少为16位色800*600分辩率以上(32位真彩色1024*768尤佳)。 系统功能完备 第- 1 -页共38页

除应具有很强的业务处理功能外,还应具有较强的统计分析功能,提供全面的统计 分析资料,为分析和决策提供帮助。 系统结构严密 系统应提供严密的操作权限管理,方便、规范的基础资料录入功能,完善的资料备份、整理、恢复功能,保证系统运行的安全可靠。 系统界面美观 系统应提供简便的操作方式和美观舒适的操作接口。每个操作环节都有相应的提示信息,窗口和菜单的设计力求简单明了。 图1.1 主屏幕 系统提供菜单、快捷工具栏和工具面板以便用户可以很方便地进入各模块。菜单中包括了系统所有功能模块的控制;快捷工具栏包含日常业务和其它常用相关模块。您可以很方便地使用您具有操作权限的各模块。 菜单结构 1登录管理2日常业务3用户管理4查询报表 开机人员登录开户配表登记用户档案管理购电情况查询 更改人员密码营养售电服务销户恢复处理表库情况查询 检查登录日志电表数据管理超时用户分析抄表情况查询 退出管理系统电表更换处理各区售电分析类型对照查询 报停退费处理各月售电分析营业售电报表 恢复购电处理电表管理报表 统计汇总报表 5设置维护 6 电卡7帮助 系统设置维护读入电卡数据帮助目录 人员电价设置补用户购电卡使用手册 数据库修改补电表设置卡版权信息 数据库压缩制作专用电卡 数据库备份读写设备选择 数据库恢复 第- 2 -页共38页

电能表接线智能仿真系统培训资料(高)

电能表接线智能仿真系统培训 学习资料(2) 电流反接 电流反接时,可能在CT处反接,也可能在电能表表尾处反接。我们知道当电流流过负载时必定会产生电压降,可以用万用表测量CT和表尾处电流进、出端子对地的交流电压,当进端电压高于出端电压时,表示此处电流没有反接,否则此处电流反接。 一、三相三线电能表错误接线检查及判断 PT极性反,A、C线电压出现173V 如图1所示,互感器二次侧a-b相极性接反,在表尾出现的ac合成电压.U a`c=-.U ab+.U bc ,是-.U ab、.U bc两线电压的矢量和,.U a`c大小为线电压的3倍即173V,并且矢量方向在.U b的位置上,其向量图如图2所示。同理,可得.U c`a在.U b上,.U ac`、.U ca`在-.U b上。且U20、U50、U80中有一个电压为0V,该相即为b相。 测量∠(.U25,.U85)来判断相序。现分析电压相序为a`cb(逆相序)的情况,.U25=.U a`c,.U85=.U bc,则∠(.U25,.U85)=330°。同理,可分析得到,电压为正相序时,有∠(.U25,.U85)=30°或120°(<180°);电压为逆相序时,有∠(.U25,.U85)=240°或330°(>180°)。 这样就知道了电压的相序,但此时还不能判断a、c两相到底是哪相极性反,先假设某一相反(如a相反),依据电压、电流的相位关系,画出向量图,确定二元件的电流(如果分别为Ia、Ic);再假设c相反,也画出向量图,此时二元件的电流必为-Ia、-Ic。再测量电流进出,确定两元件电流有无反接,即可得出答案。

举例 判断步骤: 1)U25=173V , 有PT 极性反接 2)U8 →地=0V ,U8为b 相 3)相序判断,∠(U25,U85)=330°>180°,故为逆向序; 图1 a-b 相极性接反接线图

智能用电终端

智能用电终端 一、产品简介 用电信息数据采集设备是智能用电环节数字化、自动化、互动化的有力支撑,是智能电网用电环节的重要基础。按照国家电网公司用电信息采集系统标准技术规范、智能电能表标准技术规范,致力于为用户提供完善的用电信息采集系统解决方案。产品包含:专变采集终端(SEA3500、FKWA83-ZTI01、FKGA43-ZTIII02)、SEA3600台区自动化管理终端、集中器(SEA3700、DJGZ23-ZT20103、DJGZ23-JYPLC2J)、采集器(SEA3800、DCZL23-ZT20103、DCZL23-JYPLC6C)、SEA3900型电能量采集终端、单相费控智能电能表(DDZY1339系列、DDZY733系列)、三相费控智能电能表(DTZY1339系列、DTZY733 系列)、三相智能电能表(DTZ1339/DSZ1339、DTZ733/DSZ733)。 采集终端产品简介 专变采集终端采用工业级的ATMEL高性能32位嵌入式CPU,LINUX操作系。实现对专变用户的电能信息采集与处理(电能表数据采集、电能计量设备工况和电能质量监测,以及客户用电负荷和电能量的监控),实现电力需求侧管理要求的所有功能。 产品功能 1)显示当前用电情况、控制信息、抄表数据、终端参数、维护等信息 2)交流采样:三相电压、电流、功率、功率因数、有功无功电量等数据量 3)监测功能:自诊断报警、出厂设置和运行参数更改报警、计量回路运行状态报警、计量装置封印异常、终端停电报警 4)RS485、RS232、红外、GPRS/CDMA/PSTN/以太网/光纤等模块,实现与电能表、抄表机和主站的数据通讯,支持国内外主流电表规约5)GPRS通信模块和230M通信模块可在线更换、现场组网,保证远程通信信道升级至光纤通道后的无缝切换 6)保存60天以上历史日数据和12个月以上的历史月数据 7)功控、电控、限电控、遥控等多种负荷控制方式

智能电表用电采集系统优势

智能用电采集系统方案 一、智能表简介 智能电表是智能电网的智能终端,它已经不是传统意义上的电能表,智能电表除了具备传统电能表基本用电量的计量功能以外,为了适应智能电网和新能源的使用它还具有用电信息存储、双向多种费率计量功能、用户端控制功能、多种数据传输模式的双向数据通信功能、防窃电功能等智能化的功能,智能电表代表着未来节能型智能电网最终用户智能化终端的发展方向。 1、智能表外观如下图所示: 备注:表面板打开后是通讯模块安装处,用于实现电力线通讯功能。 2、主要功能特点: ①、可计量正向、反向有功 ②、分时计量正向、反向有功 ③、大屏幕液晶显示,具有丰富的状态指示与汉字辅助提示 ④、最多可存储13个月的历史电量和需量记录 ⑤、具有开盖检测功能

⑥、远程费控功能 3、主要技术参数 ①、通信规约:DL/T645-2007 ②、准确度等级:有功2.0级 ③、参比电压:220V ④、电流规格:1.5(6)A;5(60)A。 ⑤、工作频率:50HZ ⑥、工作电压范围:0.8U-1.2U ⑦、整机功耗:<40VA,1.5W ⑧、时钟误差:≤0.5S/d ⑨、工作环境:相对湿度:≤95%,工作湿度-40℃~+85℃ ⑩、设计寿命:10年 二、卡表介绍 IC卡预付费电度表是以IC卡作为电能量值数据传输介质,在电度表(电子式电度表或机械式电度表)中加入负荷控制部分等功能模块,从而实现电量抄收和电量结算的智能型电度表。 三、用电信息采集系统整体解决方案 使用我司提供的用电信息采集系统配合智能电表,可搭建完整的用电信息采集系统。能够自动自动采用户的用电设备的运行信息,并实现远程控制。采集系统是国家电网公司和南方电网公司正在积极建设的系统,用电信息采集系统可应用于计量、抄表、线损、配电、电费、用检、营业等工作,极大的提高工作的效率和精确率。

电表的工作原理

电表的工作原理 电能表的工作原理是:当把电能表接入被测电路时,电流线圈和电压线圈中就有交变电流流过,这两个交变电流分别在它们的铁芯中产生交变的磁通;交变磁通穿过铝盘,在铝盘中感应出涡流;涡流又在磁场中受到力的作用,从而使铝盘得到转矩(主动力矩)而转动。负载消耗的功率越大,通过电流线圈的电流越大,铝盘中感应出的涡流也越大,使铝盘转动的力矩就越大。即转矩的大小跟负载消耗的功率成正比。功率越大,转矩也越大,铝盘转动也就越快。铝盘转动时,又受到永久磁铁产生的制动力矩的作用,制动力矩与主动力矩方向相反;制动力矩的大小与铝盘的转速成正比,铝盘转动得越快,制动力矩也越大。当主动力矩与制动力矩达到暂时平衡时,铝盘将匀速转动。负载所消耗的电能与铝盘的转数成正比。铝盘转动时,带动计数器,把所消耗的电能指示出来。这就是电能表工作的简单过程。 单相电子式电能表的工作原理,及如何接线 该表接线图只有两种 第一种: 参比电压220V 参比频率50Hz 基本电流1.5(6) 2.5(10) 5(20) 1 和 2 接电网电流互感器的次级 3 火进(出) 4 零进(出) 第二种: 参比电压220V

参比频率50Hz 基本电流5(30) 10(40) 15(60) 20(80) 1 火进 2 火出 3 零进 4 零出 家用单相电子式电度表的工作原理及原理图 电子式电度表是利用电子电路,芯片来测量电能的,用分压电阻或电压互感器将电压信号变成可用于电子测量的小信号,用分流器或电流互感器将电流信号变成可用于电子测量的小信号,利用专用的电能测量芯片将变换好的电压,电流信号进行模拟或数字乘法,并对电能进行累计,然后输出频率与电能成正比的脉冲信号。脉冲信号驱动步进马达带动机械计度器显示,或送微机处理后进行数码显示。 单相电子式载波预付费电能表IC卡表的工作原理?

电能计量接线图

低压计量基础知识与查处窃电 作者:张立华 2010年张立华独立编写《低压电能计量知识和查处窃电》培训教材一书,作为本单位抄表员及所站长的技能培训教材,培训10期,每期35人-40人,学员技能水平明显提高.特此证明(内容见复印件) 廊坊供电公司客服中心廊坊供电公司培训中心 签字:签字: 2011年9月9日2011年9月9日

在现代化的建设与人民生活中谁都离不开电,电力的建设与发展与国民经济和人民生活质量息息相关,但是,电能作为一商品,在社会主义市场经济交换过程中,窃电的现象也就相伴而生。窃电者为了达到目的,往往是千方百计使窃电的手法更加隐蔽和更加巧妙,并随着科技知识的普及,窃电行为的手段、窃电的方法也在发生变化。对此,作为供电行业的用电管理人员一定要时刻警惕和高度重视,针对各种窃电行为进行深入的调查研究和分析,同时应采取相应的对策。就象公安人员研究犯罪分之的作案手法一样,只有掌握了犯罪分子的作案规律、共性案例和特殊性案例及其手法才能做好如何防范,而且要比窃电者棋高一酬,掌握工作的主动权,使国家的财产损失减少到最小。 窃电的手法虽然五花八门,但万变不离其宗,最常见的是从电能计量的基本入手。我们知道,一个电能表计量电量的多少,主要决定于电压、电流、功率因数三要素和时间的乘积,因此,只要想办法改变三要素中的任何一个要素都可以使电表慢转、停转甚至反转,从而达到窃电的目的(例如:矢压、矢流、短接(分流)、改变电能表进出线或极性等);另外,通过采用改变电表本身的结构性能的手法,使电表慢转(例如:改变电流线圈匝数、倒转表码、更换传动齿轮损坏传动齿轮等),也可以达到窃电的目的;各私拉乱接、无表用电的行为则属于更加明目张胆的窃电行为。下面介绍电能计量基础知识和如何查处窃电。

智能电能表远程采集常见问题及应对措施

? 201 ? ELECTRONICS WORLD? 技术交流 用电信息采集系统是国网公司打造坚强智能电网的重要组成部分,目前已在各省市公司得到全面推广。该系统的应用为电力企业实现精益化用电管理、规范用电秩序起到了有利的保障作用,同时也为电力用户享受“互联网+”带来的便利提供了数据支撑。 智能电能表作为用电信息采集系统的终端设备,其数据能否实时准确采集是用电信息采集系统功能实现的关键,但是由于管理、设备、外部环境等诸多因素影响,智能电能表采集不成功的现象时有发生,本文结合实际工作分析导致智能电能表采集不成功的常见问题并提出应对措施。 1.常见问题 管理原因造成智能表采集不成功。SG186新装业务流程归档后,由于工作衔接问题,工作人员未及时将新装电能表接入到用电采集系统中,导致两个系统档案不匹配,采集不成功。无为县是劳务输出大县,每年外出务工人员较多,部分电力用户在外出务工之前私自将计量箱内进线开关拉闸,造成电能表失电,若客户经理未能及时发现并合闸,将直接影响采集。台区改造过程中,工程施工人员责任心不强,施工时未将电能表接线端子拧紧,接触不良导致电能表烧毁。客户经理对电力用户的实际用电容量把控不准,电能表配置不合理,导致过负荷烧毁电能表。 设备原因造成智能表采集不成功。主站服务器配置较低,无法满足大批量数据同时处理,使得数据处理、存储受到影响。带宽较小,大批量数据同时传输过程中出现丢包现象。集中器的上行通道参数配置不正确,通讯模块、载波模块出现问题,电压缺相、电压不足等也会影响智能表的采集成功率。智能电能表的质量参差不齐,部分厂家的电能表易出现亮屏、黑屏等故障。 环境原因造成智能表采集不成功。偏远山区、地下室等地通信信号较弱,对采集成功率影响较大。此外SIM的质量等外部因素也会造成智能表采集不成功。 2.管理方面应对措施 加强基础档案管理。确保用电信息采集系统终端APN、端口等相关参数等配置准确。 加强业扩现场勘查制度和业务流转程序。通过现场勘查,准确掌握电力用户的实际用电容量,合理配置电能表。SG186新装流程归档后,工作人员需及时准确的将新装智能电能表接入用电信息采集系统,确保两系统数据同步。 加强客户经理走访工作。通过客户经理的走访,及时宣传、告知电力用户不要拉闸进线开关;对发现的私自拉闸导致电能表失电的要及时恢复送电。 加强施工质量的监督。台区改造过程中,除监理人员外,供电所需安排人员到岗到位,加强对外部施工人员作业监督,确保施工质量。 加强二次绩效考核制度。通过二次绩效考核的奖惩机制,充分调动客户经理的工作积极性,督促客户经理及时排查电能表故障并消缺,杜绝因电力用户个人拉闸造成电能表采集不成功的情况。二次绩效考核制度的实施,是解决管理方面因素的重要举措。 3.设备方面应对措施 主站方面问题。配置性能较高的服务器、存储设备,满足大批量数据同时处理,避免数据传输、存储过程受到影响。建设高速稳定的通信信道,确保数据交互的安全、稳定、准确。 集中器方面问题之集中器不在线。确保用电信息采集系统中查看集中器上行通道参数正确,根据近几年的运维经验,上行通道参数问题导致集中器不上线的比例主要存在于新投运集中器,要确保新投运集中器参数设置;根据通信信号强度及天线是否折损,判断是否是信号、SIM卡槽、SIM卡欠费等问题;集中器通信天线尽量不要放置于台区框架之上,防止因台区三相不平衡导致中性点偏移,烧毁通信模块。 集中器方面问题之集中器部分抄表。现场测量集中器是否缺相或电压不足,整理出采集失败的电能表并核实是否通电;将采集失败的电能表与主站中的电能表档案核对,判断电能表是否跨台区;台区供电半径太大,可以在线路末端加个集中器分开抄表。 集中器方面问题之集中器在线不抄表。现场测量集中器电压,尤其是A相电压是否正常,电压的正常范围为-20%-30%Ua。排查此集中器下的电能表是否属于本台区。观察集中器路由模块的三相灯闪烁情况,正常的是三相轮闪,出现三相灯闪烁很慢或者同时闪烁的情况,有可能是模块损坏。集中器时钟系统应该与本地时间相对应,误差不能偏大,现场读取集中器时钟,发现集中器时钟与系统本地时间不对应,需要重新设置集中器时钟与系统本地时间对应,然后重启集中器。从主站上查看此台区是否是台区配置失败,有可能是之前加表删除表时集中器下线然后导致台区配置失败,这样也可能导致集中器不抄表,这就需要重新下发集中器参数,待台区配置完成抄表即可正常;排除以上几种可能之后还是抄不到表,就有可能是集中器损坏导致的,更换集中器。 智能电能表问题。智能表在运行中过程中出现黑屏。智能表显示屏硬件损坏、电池欠压、雷击烧坏显示屏等都是智能表亮屏、黑屏、缺划、花屏的常见故障,首先检查电能表电池是否欠压,然后对电能表进行测试,检查是否出现错误。若无问题一般需要更换智能表。4.环境方面应对措施 加强通信信号的覆盖。对于部分偏远地区、地下室信号弱的问题,需协调通信运营商增设基站,或者利用弧面、加长接收天线等方法增强信号。 采取措施避免强磁场干扰。找出干扰源,对干扰采取EMC措施,具体的措施有:接地、屏蔽、加装EMC滤波器、电抗器等。 集中器、智能表安装避免雷击、进水等。 5.其他方面应对措施 除以上列举问题外,可能出现系统、集中器、智能电能表均正常,但采集不成功的现象,此时需逐级判断故障。首先用掌机现场测试电表,若现场能招测到数据,则是集中器载波通信模块版本低或异常,更换或升级载波通信模块;若测试不到数据,则可能是电能表载波通信模块异常,需更电能表换载波通信模块。其次核对智能表地址对应、规约、档案参数的正确性,透抄能抄到数据,历史招测不成功,无日冻结数据。检查电能表时钟是否与本地系统时间一致,电能表时间系统应该与本地时间相对应,误差不能偏大,发现时间不对应,需要重新设置电能表时钟与本地系统时间相对应,然后重启集中器。 智能电能表采集成功率是用电信息采集系统的一项重要指标,是提升供电企业服务能力的基本前提。电能表在运行过程中会出现各种故障,这就需要工作人员以用电信息采集系统来支撑,结合工作经验,利用全面的观察法、现场测试法、横向比较法等判断故障原因,从而有针对性的采取有效的解决办法,保证智能电能表及时恢复运行。

相关主题
文本预览
相关文档 最新文档