当前位置:文档之家› 浅谈一次风机变频器自动旁路改造

浅谈一次风机变频器自动旁路改造

浅谈一次风机变频器自动旁路改造
浅谈一次风机变频器自动旁路改造

浅谈一次风机变频器自动旁路改造

雷鸣,谢胤

作者单位:天津国电津能热电有限公司

地址:天津市东丽区华明镇范庄村北杨北公路邮编:300300 Primary Air Fan Inverter Automatic Bypass

Reconstruction

NAME:Lei Ming Xie Yin

Addr. Yang North Road,The Fan Village North,Huaming town,Dongli District,Tianjin

ABSTRACT: Priary air fan of the Tianjin Guodian Jinneng Co-Generation Co.,LTD.#1 Unit were analyzed by manual bypass tofeasi- -bility analysis and design of automatic bypas-

-s, for the exchange of.

KEY WORD: Priary air fan;inverter;automatic bypass;reconstruction

摘要:本文对天津国电津能热电有限公司#1机组一

次风机变频器由手动旁路改为自动旁路的可行性分

析及设计进行了简析,以供交流。

关键词:一次风机;变频器;自动旁路;改造

1 概述

变频调速技术是当代最先进的调速技术,它不仅能够为我们提供舒适的工艺条件,满足用户的使用要求,更重要的是这项技术应用在风机、泵类等具有平方转矩特性的负载时,可以节约大量的能量,最大节能率可以达到50%~75%。因此应用此项技术进行节能改造将会有非常明显的经济意义,同时它也具有优良的环境意义和优异的速度调节性能。

根据变频调速技术原理,变频调速设备用在电力、冶金、矿山、供水等行业将会大有前途,可以取代一些相对落后的调速方案,最大限度地提高企业的经济效益。

天津国电津能热电有限公司#1机组(330MW亚临界供热机组)于2009年8月12日10时完成168小时试运,正式进入商业运行。该机组一次风机设计采用变频调速,手动旁路(即变频、工频模式通过刀闸手动切换)。自投产以来,由于受变频器本体故障、工作环境等因素影响,多次运行中跳闸,导致RB动作,对锅炉稳定燃烧产生影响,给机组的安全稳定运行带来风险;同时,由于RB动作,快减负荷,造成AGC 解除,电量受限,受到电网两个细则考核。为此,我们在不断提高设备可靠性的同时也在积极探寻一种可以将变频器故障影响降至最低的方法。

2 一次风机变频器自动旁路改造可行性分析

自动旁路是一项应用于变频器的自动切换控制系统,可以达到变频、工频之间的无扰切换,从而大大提高设备可靠性。我们针对这一技术,结合我公司实际情况,对此项改造的效果进行了论证分析:

2.1 一次风机变频器自动旁路的改造,运行方面要达到如下几点:

2.1.1 通过变频与工频运行方式之间的协调、切换,保证一次风机不间断运行;

2.1.2 在一次风机变频运行状态自动切换至工频过程中,对切换点的位置判断准确、动作及时有效;

2.1.3 通过变频转速与一次风调节挡板的开度配合,保证一次风不失压,风机不抢风、

不返风,使锅炉在一次风机切换时,燃烧稳定、不发生跳磨或灭火现象。

2.2 挡板与变频器匹配曲线:

当运行中的变频器产生故障但没有跳闸,要进行停运消缺时,需要将风机由变频转为工频方式运行。在风机停变频启工频的过程中,将该侧风机入口调节挡板关至适当位置,同时将风机转至工频运行。在切换过程中产生的一次风压扰动由非切换侧风机进行调节。为实现无扰切换,风机工频启动时入口挡板所在位置,应保证风机出力和变频方式出力相当。一次风机变频方式运行的转速要成功转换为一次风工频调节挡板的开度。

一般做法是:变频器切换时,自动将入口调整挡板由100%关至70%,基本满足一次风机切换时对于压力的要求。但由于我公司一次风机出力较大,工频状态下挡板开至50%已能够满足80%负荷,对应变频情况下指令约为70%。

因此要做到切换时一次风压波动最小,就必须摸清不同变频指令下对应的挡板开度,以便再切换时能够将风压扰动降至最低。

方法如下:在机组平稳运行时,将A侧一次风机切手动保证出力不再改变,将B侧变频方式一次风机变频器调节切手动并记录此时的转速值,由运行人员缓缓将B侧变频器输出指令给至最大(相当工频转速),同时逐渐关闭入口调整挡板,此时风机全速运行,入口挡板关至一定开度,记下此时开度值。这样所得到的数值即是一组对应值,通过不同负荷下多次实验即可得到转换函数的近似描点曲线。

2.3 设备要求:

一次风机入口挡板要采用快速动作调节挡板(全行程动作时间不超过20s),以保证切换过程中入口拦板迅速动作到位,在风机转工频前不会失压过多。逻辑中同时设置了最长关闭挡板时间限制,到达此时限后立即闭合工频开关,挡板则继续关闭至要求位置。2.4 逻辑要求:

2.4.1 原变频状态下一次风机保护跳闸条件不变;一次风机工作方式切换时,自动闭锁该切换风机RB连锁功能一段时间,若切换失败再触发RB保护动作;

2.4.2工频风机跳闸直接产生机组RB,不做自动向变频切换。

2.4.3 考虑到变频器的调节特性与入口挡板的调节特性相差较大,并且同一侧风机有挡板和变频器2种执行器,为了防止同时自动调节造成系统震荡,或者调节过程中挡板卡涩,在变频器切至工频位置后,应减少挡板调节,以另一侧变频调解为主。

2.4.4 在切换过程中,另一侧一次风机应继续保持自动投入状态,自动跟踪一次风母管压力,通过变频器调整来实现一次风压的稳定,将系统波动降至最低。

我们针对上述要求,通过理论论证及模拟实验,积累了大量的数据,并得出自动旁路改造可行的结论。

因此,我们决定对一次风机变频器进行自动旁路改造,以期降低故障工况下的扰动,提高机组可靠性,保障安全运行。

3 一次风机变频器自动旁路改造方案

采用变频器对一次风机进行控制的目的:改善工艺过程,提高控制性能,减小风机起停电流,延长设备的使用寿命,减少维修量。保持风机出口风门最大,通过改变变频器的输出频率(电机速度)来调节风量,以节约原来通过改变风门开度调节风量时浪费在风门上的能源。

此次,一次风机变频改造采用自动旁路技术,即:当变频器发生故障时将负载自动切换至工频运行,工频切换开关采用真空断路器,确保切换时开关能够开关切换电流。变频器故障处理完毕再切换至变频运行,提高一次风机设备可靠性,最大限度降低因变频器故障导致的燃烧扰动及负荷限制,保障机组安全稳定运行。

一次风机变频器一拖一自动旁路改造具体方案如下:

3.1 改造前

手动旁路,即通过切换QS1、QS2、QS3

三组隔离开关实现旁路运行;变频时QS1、QS2合入,QS3断开;工频时QS1、QS2断开,QS3合入,如图一。

3.2 改造后

增加一面自动切换旁路柜,一次回路接线如图二。QS3刀闸拆除,增加K1、K2、K3真空开关,K1、K2采用真空接触器,K3采用真空断路器。QS1、QS2作为检修变频器时明显断开点,正常时合入。变频运行时K1、K2合入,K3断开。工频运行时K1、K2断开,K3合入。当变频故障时,依次断开K2、K1,合入K3。切换时间3-5秒。(以上顺序切换变频器主控程序设定,当切换失败时跳开电源开关)。

 

图一:改造前

图二:改造后3.3 施工方案

将工频自动旁路柜并排放置在刀闸切换柜旁。取消两柜间隔板,通过交联软电缆(耐压10kV以上)连接一次回路。

变频室侧墙外移1000mm,以方便安装旁路柜。柜尺寸L1000*K1500*G2200。

主控程序升级改造为工频自动旁路版本。

控制接线依据设计图纸连接。

4 DCS与变频器控制相关逻辑

为配合此次一次风机变频器自动旁路改造,根据实际情况,需对DCS与变频器控制逻辑进行相应调整,具体情况如下:4.1 一次风机变频启动控制

DCS接收到“变频就绪”允许信号后,发出“变频启动指令”,变频器PLC控制系统接收到启动指令后,K1真空断路器合闸,并在在3S内完成变频器自充电过程,K2真空断路器合闸,同时给DCS发一个“变频运行”状态信号,运行频率从0Hz按照设定的时间升频至给定频率值。

4.2 一次风机变频停止控制

A、“一次风机变频运行”信号有效时,DCS发“一次风机变频停止指令”至变频器控制系统。

B、变频器接收到“变频停止指令”信号后,运行频率按照设定的时间降至0Hz,然后断开“变频运行”信号,断K2、K1,一次风机6kV侧开关由DCS手动断开。

4.3 一次风机变频急停控制

A、当DCS系统一次风机保护动作跳闸一次风机6kV侧开关时,DCS同时发“一次风机急停”3S脉冲信号,至变频器控制系统。

B、一次风机6kV侧开关跳闸触发一次风机RB功能。

4.4 一次风机变频故障切工频控制

A、变频器出现重故障不能变频运行时,由变频器PLC控制系统自动实现一次风机切工频运行。

B、“一次风机变频运行”信号消失与“变频器重故障”,一次风机调节挡板关闭至35%或延迟5S后,自动旁路投入,完成变、工频切换。

C、一次风机变频故障切工频不成功,变频器PLC控制系统将联跳一次风机6kV 侧开关,一次风机RB功能触发。

4.5 一次风机工频启动控制

A、就地手动切换变频器工频方式,K3真空断路器合闸。

B、DCS合一次风机6kV侧开关。

4.6 一次风机工频停止控制

“一次风机工频运行”信号有效时,DCS发“一次风机工频停止指令”至6kV开关,开关断开电机停止。

4.7 一次风机RB功能逻辑说明

一次风机RB的触发条件不变:即运行的一次风机6kV侧开关跳闸,在负荷满足的情况下触发RB功能。

5 改造后成果

基于上述论证、实验的基础,我们于2012年9月#1机组小修期间,完成了#1机组一次风机自动旁路改造,静、动态实验均满足要求,大大提高了一次风机的设备可靠性,为机组安全运行进一步夯实基础,为公司争创金牌机组做出了贡献!

收稿日期:2013.7.16

作者简介:

雷鸣(1982-),男,天津,研究生,工程师,电气、集控

高压变频器市场情况分析报告

高压变频器市场情况分析报告 一、高压变频器产品市场概述 高压变频器技术的发展历史较短。在中国,90年代后期高压变频器才开始在电力、冶金等少数行业得到应用,由于产品和技术都由国外厂商垄断,价格高昂,而且进口产品对我国电力运行环境的适应性较差,行业发展缓慢。2000年以后,国内企业的高压变频器技术和生产制造工艺得到了大幅提高,产品运行的稳定性和可靠性显著提升,产品生产成本也大幅下降,高压变频器行业开始进入快速发展时期,行业应用领域被大幅拓宽。 高压变频器总体竞争形势而言,目前仍然是国外品牌垄断高端市场,主要由西门子、ABB、日本三菱垄断,包括炼钢高炉等场合应用的超大功率(8000KW 以上)变频器,轧钢机、机车牵引等应用的特种变频器等,而中小容量产品的低端产品则是国产品牌占据优势。虽然国内品牌在高端市场的影响力及技术水平方面与国外品牌有一定差距,但以利德华福、合康变频为代表的领先品牌已不再满足于产品应用局限于中低端市场的情况,开始向大功率、超大功率等高端应用市场的进军。例如在2008 年11 月份,广州智光电气公司推出的7 000kV A级超大功率高压变频调速系统,将打破高压大功率变频调速系统长期被国外品牌“一统天下”的格局。该设备已通过国家电控配电设备质量监督检验中心检验,这意味着我国高压变频器市场将告别被外国品牌垄断的时代。且随着国内厂家的技术进步和质量稳定性的提升,加上服务和价格方面的优势,预计未来几年高端产品被国外厂家垄断的市场局面将有所改观。 国外高压变频器的技术开发起步早,目前各大品牌的变频器生产商,均形成了系列化的产品,其控制系统也已实现全数字化。几乎所有的产品均具有矢量控制功能,完善的工艺水平也是国外品牌的一大特点。目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。 二、中国高压变频器预计市场规模 根据中国电机系统节能项目组在所著的“中国电机系统能源效率与市场潜力分析”中对于1999年中国分行业用电量与电动机装机容量和耗电量的详细调查分析,中国用电设备的总容量为3.73亿kW,其耗电量为9800亿kW时,占当年全国总用电量的81%;其中由电动机拖动的设备总容量为1.83亿kW,其耗电

风机变频电控改造方案(通用方案)

河南地方煤炭集团季布煤业有限公司 主 通 风 机 变 频 改 造 技 术 方 案

季布煤业主通风机变频改造技术方案 一、季布煤业公司风机现状: 季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。风叶角度正向。现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。 二、存在在主要问题: 1、冲击电流大 通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。 2、电能的严重浪费 主通风机一直处在较轻负载下运行。在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。因此造成能源浪费,增加生产成本。所以就造成了电能的无端浪费!有悖于国家的节能减排政策。 3、启动困难,机械损伤严重 主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。

4、自动化程度低 主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。 三、通风机变频改造技术特点: 1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。 2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。 3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。 4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。并配备以太网模块为以后实现全矿井自动化作准备。实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。 5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.

引风机变频分析

引风机电机改变频调速的分析 (平电公司引风机电机改变频调速的可行性) 一、前言 我公司引风机电机的调速问题,已经提了多年,一直未能得到解决。2000年9月#1机组检修期间曾经作过很多工作,目的是恢复随机安装的变速开关运行,实现引风机电机的高/低速切换,但未能成功。主要原因有两个,一是变速开关设备的可靠性不能保证;另一是此种开关操作方式对其他设备的影响。从现在的情况看,即使开关设备能够恢复正常操作,运行中高/低速切换,对锅炉稳定运行来说也有一定风险,所以变速开关恢复正常运行的问题最终放弃。 引风机电机改变频调速,前几年也曾进行过技术咨询,主要是变频技术满足不了我公司电压高、功率大的要求,而且改造费用非常高。但近几年大容量、高压变频器发展很快,目前国内300MW及以下发电机组进行风机变频改造的电厂已不少于5家(如山东德州电厂、河南三门峡电厂、辽宁青河电厂等)。虽然600MW发电机组风机改变频目前国内尚无一例,但进行此类变频改造,技术上已有一定的可行性。下面将有关引风机电机的调速方式及改变频调速的利弊作简要分析。 二、风机电机调速的方法及其区别 调速方法:对一般的风机电机(如#1、#2机组的引风机电机)来说,实现调速的方法有三种,一是恢复当前的变速开关;二是每台电机电源增加两台真空开关及相应的电缆,通过开关的相互切换方式,实现电机的变级调速,这两种方法原理相同,只不过是后者用两台真空开关代替前者一台变速开关,按现在的机组运行调节要求,这两种变速方式都存在严重不足,其能够实现高/低变速(496 rpm或594 rpm),但不能实现真正意义上的调速。因为这两种变速的原理是改变电机定子绕组接线的极对数,只能实现高/低两种速度的切换,过程中无法实现转速的线性调节,这就是电机典型的变极调速。两种方法操作的过程是:停电—高/低速开关切换—送电。变速切换时,风机电机会出现短时停电,相当于风机停开各一次,切换的过程对风机、电机以及电源母线都会有冲击。第三种方法是变频调速,即在电机电源侧增加一套变频调节装置,通过改变电机电源的频率,从而达到调速的目的,对我公司引风机电机来说,调速的范围可以达到0—600rpm。 变极调速、变频调速的区别:因为电机的同步转速与电压频率及电机定子绕组级对数的关系为:n=60f/p 其中n-电机的同步转速,f-电源频率,p-电机的极对数。所以两种调速的区别很大,也很明显。 1、变极调速:变极调速是通过绕组接法的改变来改变电机的极对数p以达到变 速的目的,因为电机的极对数不是任意可调,所以这种方式变速是跳跃式,达不到连续性调速的目的。我公司#1、#2机安装的变速开关改变的是电机的极对数p ,高/低速时对应的电机极对数是5/6极,所以电机高/低速的同步转速分别是600/500rpm,实际转速是594/496 rpm

一次风机变频器故障分析

一次风机变频器故障分析 发表时间:2017-11-30T08:53:09.113Z 来源:《电力设备》2017年第21期作者:张小锋1 瞿丽莉2 赵广勋1 党龙1 [导读] 摘要:某电厂一次风机运行信号正常,风机却失去出力,处理故障中机组因为全炉膛灭火而跳闸,经对一次风机故障后的操作过程和故障变频器的现场检查分析认为 (1 陕西华电(蒲城)发电有限责任公司陕西渭南 715501; 2 西安热工研究院有限公司陕西西安 710043) 摘要:某电厂一次风机运行信号正常,风机却失去出力,处理故障中机组因为全炉膛灭火而跳闸,经对一次风机故障后的操作过程和故障变频器的现场检查分析认为,变频器出现故障的原因为变频装置内双电源切换回路中一电源线端子松动,导致主控电源瞬时丢失;电源失去后由于UPS拆除后,变频装置电源无法切换到备用电源,失去控制电源的变频装置无法发出“重故障”信号,导致一次风机电气开关处在合位,但风机未运行的状况。 关键词:一次风机;变频器;故障分析;建议 0 前言 风机是火电厂运行的主要设备,耗电量占厂用电的30%左右[1],通过挡板或者静叶调节改变风机出力,使大量的电能消耗在节流损失中,近些年随着变频器技术的发展,大量的变频器应用于火电厂风机上[2],用于控制交流电动机的转速,从而控制风机出力,节能效果明显。但是,也出现了很多由于变频器故障而引起的机组异常事件[3,4],通过各种案例,归纳变频器的故障,有助于提高风机可靠性和机组可靠性。某机组因为变频器故障导致了非停,文章对此进行了分析。 1 系统及事件简介 某电厂机组容量为300MW,每台锅炉配有两台一次风机,一次风机由变频电机驱动,变频装置为高压变频装置。 事件前,机组负荷198MW,C、D、E层给煤机运行。事件发生时,B一次风机变频方式运行,变频装置在无任何故障报警及进、出线开关变位的情况下,输出电流突降为0A;B一次风机虽然运行信号在,但实际已不出力,运行人员在处置过程中锅炉全炉失火MFT发出,机组跳闸。 2 运行操作调整情况 事件发生时,B一次风机变频方式运行,变频装置在无任何故障报警及进、出线开关变位的情况下,输出电流从55.89A突降为0A (DCS显示为坏质量);13:39:08,一次风风压低报警,检查发现B一次风机有运行信号,但一次风机电流、转速均显示坏质量,B侧一次风压低至1.5kPa,炉膛负压持续下降低至-560Pa。经运行人员综合分析,B一次风机虽然运行信号在,但实际已不出力。遂立即关B一次风机出口电动门,因B一次风机电机6kV母线侧开关在合闸状态,风机运行信号在,保护逻辑不允许关B一次风机出口电动门;13:39:46,运行人员立即手动停运B一次风机,触发机组RB保护动作,同时投入DE3油枪;13:39:48,RB发出;13:39:54,自动投入BC层油枪;13:39:55,锅炉全炉失火MFT发出,机组跳闸。 3 变频器检查情况 就地检查B一次风机变频装置无烧损,输入输出信号电缆绝缘及通断无异常;B一次风机电机的6kV电源开关分合闸试验、测动静触头通断及6kV电缆绝缘均正常;查DCS的历史记录,13:39:03,B一次风机变频装置在变频方式下运行,在无重故障报警以及变频装置的进线开关QF3、出线开关QF4无变位的情况下,B一次风机变频器输出电流从55.89A突降为51.5A,以后该控制柜的控制器采样板再无电流信号送到DCS(即:DCS显示为坏点)。此刻B一次风机电机运行电流实际降到了0A;13:39:18,变频装置重新显示变频输出电流为0A;13:39:40,“主电源故障”轻故障报警信号发出。几乎同时,在无任何操作及状态变化的情况下,DCS再次显示该电流值变为坏点;13:45:32,该点又变为好点并显示为0A。 机组调停备用后,对电源切换回路中的K1,K2继电源的动作值和返回值进行了检测无异常;模拟变频装置内部的主控电源供电回路中的380V/220V电源变压器T3副边单点接地故障,变频装置工作正常;检查变频器内部各元件的工作电压均正常;检查变频装置内部接线时发现双电源切换回路中空开QF11出线侧一相电源线端子有松动,其余接线端子排及回路接线紧固无松动、过热迹象 4 原因分析 1)全炉失火原因 B一次风机变频装置故障后输出电流降为0A,变频装置未发出“重故障信号”,B一次风机无法由变频切换到工频运行,DCS上仍显示B 一次风机为运行状态(B一次风机电机6kV母线侧开关仍处于合闸状态),而就地B一次风机实际没有出力。尽管运行人员及时发现了B一次风机电流、转速显示坏质量,此时由于风机运行状态信号在,保护逻辑不允许关B一次风机出口电动门和A、B一次风机之间联络门,导致A 一次风机的风量通过B一次风机出口排出,一次风压持续下降,最终因一次风压低无力携带煤粉进锅炉[5]。 2)变频装置未发出“重故障”信号的原因 变频装置有主、备用两路控制电源,当主电源失去后,系统会自动切换到备用电源切换期间需靠回路中的UPS电源使变频器保持正常运行,同时,变频装置会发出轻故障信号提醒运行人员。当主、备电源同时失去后,变频装置PLC发出“重故障”信号,一次风机由变频切换到工频,保证一次风机仍处于正常运行。 此次在变频装置主电源丢失后,B一次风机变频装置未发“重故障”(或变频未切换到工频)的主要原因是UPS被拆除。当UPS拆除后,一旦变频装置主电源丢失,变频装置电源无法切换到备用电源,失去控制电源的变频装置无法发出“重故障”信号。 4)变频装置主电源丢失的原因 变频装置内双电源切换回路中空开QF11下方一相电源线端子松动,导致主控电源瞬时丢失。 5)UPS被拆除的原因 事件机组B一次风机变频装置UPS在实际运行中,故障频率较高[4],由于检修人员未认识到UPS在系统中的重要性,因而在未履行设备异动手续的情况下短接了UPS。 5 采取措施 1)加强定期工作的执行力度,一是做好运行机组电气、热工重要端子的测温监视工作;二是做好停备机组电气、热工重要端子的紧

风机变频改造功能设计说明书

引风机变频改造功能设计说明书 国电湖南宝庆煤电有限公司#1、2机组引风机变频技改工程所采用的变频器为西门子(上海)电气传动设备有限公司提供的空冷型完美无谐波变频器,6KV AC,3相,50HZ,AC输入,0-6KVAC输出。变压器采用7000KVA空冷干式30脉冲隔离变压器。该变频器的控制方式采用多极PWM叠加技术,结构采用多个变频单元串联叠加输出的方式。整套变频装置由旁通柜、变压器柜、功率单元柜和控制柜四部分组成,可以在机组正常运行中实现变频回路和工频回路的自动切换或手动切换。 引风机高压变频改造采用“一拖一自动旁路”方式,如下图所示。变频器一次回路由真空断路器QF1、QF2、QF3组成。变频回路由QF2、QF3两台真空断路器控制, 工频回路由真空断路器QF1组成。真空开关均采用铠装移开式开关设备。 变频装置与电动机的连接方式见下图: 6kV电源经真空断路器QF2到高压变频装置,变频装置输出经真空断路器QF3送至引风机电机变频运行;6kV电源还可经真空断路器QF1直接起动引风机工频运行。QF1与QF3电气硬接线闭锁,保证远方就地操作均不能两台开关同时合闸。 1、引风机电源开关QF逻辑 1.1引风机电源开关QF合闸允许条件 1)任一台冷却风机运行

2)任一台引风机电机油站油泵运行 3)引风机电机油站供油压力正常(大于0.2MPa) 4)引风机轴承温度正常<90℃ 5)引风机电机前、后轴承温度<70℃ 6)引风机电机三相线圈温度<125℃ 7)风机调节导叶关状态 8)引风机入口烟气挡板1、2关闭 9)引风机出口电动门开状态 10)任一台空预器投入运行 11)引风机无电气故障 12)脱硫系统启动允许 13)建立烟风通道 14)无跳闸条件 15)变频器进线开关QF2在分闸位置 16)工频旁路开关QF1在分闸位置 1.2引风机电源开关QF保护跳闸条件 1)引风机A轴承温度>110℃,延时5s 2)引风机A电机前轴承温度或后轴承温度>80℃ 3)引风机A电机三相线圈温度>130℃ 4)引风机A轴承X向振动过大7.1mm/s且Y向振动报警4.8mm/s加品质 判断(延时3s)

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

一次风机高压变频器冷却方案

高压变频器冷却方案 由于变频器本体在运行过程中有一定的热量散失,为保证变频器具有良好的运行环境,需要为变频器室配备一套独立的冷却系统。综合冷却系统的投资和运营成本、设备维护量、无故障运行时间,现提出以下三种冷却系统解决方案: 一、空调密闭冷却方式 1.1系统介绍 为了提高高压大功率变频器的应用稳定性,解决好高压变频器环境散热问题。目前常用的办法是:密闭式空调冷却。该方法主要是为高压变频器提供一个固定的具有隔热保温效果的房间,根据高压变频器的发热量和房间面积大小计算出空调的制冷量,从而配备一定数量的空调。 采用空调冷却时,房间的建筑面积过大会增加空调冷却负荷。同时,由于变频器排出的热风不能被空调全部吸入冷却,因此,造成系统运行效率低,造成节约能源的二次浪费。变频器室内的冷热风循环情况如下图所示。 变频器从柜体的正面和后面吸入空气,经柜顶风机将变频器内部的热量带走排到室内。从而在变频器室上部形成一个温度偏高、压力偏高的气旋涡流区,在变频器的正面部分形成一个偏负压区。在运行中,变频器功率柜正面上部区域实际上是吸入刚排出的热风进行冷却,形成气流短路风不能达到有效的冷却效果。空调通常采用下进上出风结构,从而与变频器在一定程度上形成了“抢风”现象,这就是“混合循环区”。在这个区域变频器吸入的空气不完全是空调降温后的冷空气,空调的降温处理也没有把变频器排出的热空气全部降温,从而导致了整个冷却系统的运行效率不高。 变频器自身是节能节电设备,而通常采用的空调式冷却则造成能源的二次浪费。这种情况在大功率、超大功率的变频应用系统中更加明显。 1.2空调技术特点

a)高效制冷 b)广角送风,室温均匀舒适 c)防冷风设计,送风舒适 d)独立除湿 e)低温、低电压启动 f)室外机耐高温运转 g)室内密闭冷却 h)防尘效果好 i)运行成本高

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

23冷却塔风机变频改造方案

冷却塔风机变频改造方案 一、变频器的工作原理和节能分析 1.1 风机的特性 风机是传送气体的机械设备,是把电动机的轴功率转变为流体的一种机械。风机电机输出的轴功率为: 图1中风机的压力与风量的关系曲线及扭矩与电机速度的关系曲线,充分说明了调节阀调节风量法与变频器控制的调节风量法的本质区别与节能效果。 (1) 电动机恒速运转,由调节阀控制风量

图1 风机的运行曲线 如图1所示,调节阀门的开启度,R会变化。关紧阀门,管道阻力就增大。 管道阻力由R1变到R2,风机的工作点由A点移到B点。 在风量从Q1减少到Q4的同时,风压却从H1上升到H5,此时电机轴的功率从P1变化到P2。 (2) 变频器调节电机的速度来控制风量 当风量由Q1变化到Q4时,便出现图上虚线所示的特性。达到Q4、H4所需的电机轴功率为P3,显然P2大于P3,其差值P2-P3就是电机调速控制所节约的功率。 二、冷却塔系统变频改造过程 2.1 冷冻机组冷却循环水系统介绍: 冷冻机组的冷却循环水系统如图2所示。冷冻机组的冷却循环水系统主要由冷冻机组、冷却水泵、冷却塔组成。冷却水经冷却水泵加压后,送入冷冻机组的冷凝器,届时,由冷却水吸收制冷剂蒸气的热量,使制冷剂冷却、冷凝。冷却水带走制冷剂热

量后,被送入冷却塔,经布水器,通过冷却塔风机降温,降温后的冷却水通过出水管,流入冷却水泵,经加压后再送入冷冻机组的冷凝器。 图2 冷冻机组冷却循环水系统图 2.2 冷却塔变频节能改造原理 图3 冷却塔变频改造示意图 三、变频器选择

由于风机负载为平方转矩类负载,因此变频器应选择V/F控制型通用变频器,日锋变频器为优化电压空间矢量型变频器,使用寿命高于同类产品,接近于零的故障率,性能价格比非常好,为变频器市场上最优越产品之一。 四、总结 冷却塔风机加装变频后具有以下优点: ·操作方便,安装简单; ·能进行无级调速,调速范围宽,精度高,适应性强。 ·节能效果非常明显; ·由于采用了变频控制,随着转速的下降,风压、风量也随之下降,使得冷却水的散失也下降,节约了水量。 ·由于用水量下降,水的硬度指标上升减慢,使得水处理的用药量减少; ·由于转速下降,减少了减速箱的磨损,延长了减速箱的寿命; 总之,冷却塔变频器控制系统的使用,使得厂房调温系统可靠性提高,安全性好,具有明显的节电效果。 冷却塔是冷冻机组的冷却水最主要的热交换设备之一,它主要靠冷却塔风机对冷却水降温,风机过去是靠交流接触器直接启动控制,风机的转速是恒定的,不能调速,因此,风机的风量也是恒定的,不能调节。为了使冷冻机组进口冷却水温度保持在某个温度段之间,我们在冷却水泵的出口,即冷冻机组的冷却水进口管道上安装一个温度传感器,采集冷却水温度,通过给出一路模拟信号给变频器,经变频器自身的PID进行调节如图3所示,变频器给出适当的电压和频率给冷却塔电机调节冷却塔风机转速

一次风机变频、工频切换操作注意事项及故障处理

一次风机变频、工频切换操作注意事项及故障处理 日常操作 1、变频器为高压危险装置,任何操作人员必须按照操作规程进行操作; 2、需要给变频器送电时,必须先送控制电源,变频器自检正常后给出“高压合闸允许”信号后,方可给变频器送高压电; 3、需要切断变频器电源时,应先断高压电,再断控制电; 4、切断控制电源后,要把UPS开关同时关掉,否则UPS过度放电将导致UPS损坏; 5、使用液晶屏时,只需用手指轻触即可,严禁使劲敲击或用硬物点击,并严禁任何无关人员任意指点液晶屏,以防产生误操作; 6、变频器出现轻故障(比如冷风机故障、控制电源掉电等)时,虽然不会立即停机,但必须及时处理,否则会演变成重故障,导致停机; 7、严格保证变频器运行的环境温度不超过40℃,否则会影响变频器的寿命,运行安全不能保证; 8、变频器所有参数在设备交付运行前都已进行合理设置,用户不得随意更改。如果确需要更改,请事先和北京利德华福电气技术有限公司技术工程人员联系 启动操作 1、如果变频器处于断电状态,启动时应先加上控制电源; 2、变频器自检正常后,给出“高压合闸允许”信号,方可给变频器送高压电; 3、如果现场高压开关或控制系统没有得到变频器提供的“高压合闸允许”信号,请确认变频器控制电源是否加上,变频器本身是否处于故障状态; 4、隔离开关处在变频位置时,用户高压真空开关合闸只相当于给变频器送电,电机并不启动,需要启动电机,还必须给变频器发启动指令。这一点和用户原来的操作习惯有所区别; 5、对于风机负载,变频器启动前,风机挡板最好处于关闭位置。并确认电机没有因为其他风机的运行而反转,否则容易引起变频器启动时过流; 6、电机需要启动时,如果电机刚停机不久,应确认电机已经完全停转,否则容易引起变频器启动时单元过电压或者变频器过电流; 7、现场控制系统只有在得到变频器的“系统待机”信号后,才能给变频器发启动指令,正常启动变频器; 8、给变频器的启动指令必须在高压合闸3秒后发出,持续时间应不小于3秒; 9、变频器启动后,必须提供合适的转速给定。如果转速给定为0,变频器虽然启动,电机仍然不会转动; 10、在闭环运行的情况下,如果给定值不合理,电机也可能运行在非用户期望的状态下; 11、电机通过变频器启动,对风机、水泵、电机、开关及电网的冲击都很小,只要满足以上条件,启动次数及时间间隔没有限制; 12、工频旁路情况下,要启动电机,直接将高压真空开关合闸即可。 停机操作 1、要实现变频器正常停机,必须先给出变频器的停机或急停指令,不能直接分断高压真空开关。运行情况下直接分断高压真空开关,变频器有可能将按电源故障(缺相或欠压)处理。这时必须履行故障处理措施,查明并记录故障原因,排除故障,将变频器复位后方可重新开机,给操作带来不必要的麻烦; 2、给变频器发停机或急停指令使电机正常停机后,高压真空开关可以分断,也可以不分断。

引风机电机变频改造项目设计方案

内蒙古丰泰发电 引风机电机变频改造项目设计方案 北京天福力高科技发展中心 2007年3月

目录 1. 概述 (1) 2. 系统改造方案 (1) 2.1. 主回路方案 (1) 2.2. 变频器运行方案 (2) 2.2.1. 变频器正常工况 (2) 2.2.2. 变频器异常工况 (2) 2.2.3. 变频器基本性能简介 (3) 2.2.4. 变频器控制接口(可按用户要求扩展) (5) 2.2.5. 变频器结构 (5) 2.2.6. 变频器的保护 (6) 3. 施工方案 (6) 3.1. 变频器的安放 (6) 3.2. 变频器进线方式 (11) 3.3. 暖通设计方案 (11) 3.4. 变频器内部安装接线及端子排出线图 (12) 3.4.1. 变频器内部的电气接线 (12) 3.5. 变频器进机组DCS信号(供参考) (15) 3.6. 变频器输入输出接口说明 (16) 3.6.1. 高压接口 (16) 3.6.2. 低压控制接口 (16) 3.7. 电源要求、接地要求 (17) 3.7.1. 电源要求 (17) 3.7.2. 接地要求 (17) 3.8. 变频控制方案 (17) 3.9. 施工方案计划 (18) 3.10. 施工材料表 (19)

1.概述 利用变频器驱动异步电机所构成的调速系统,对于节能越来越发挥着巨大的作用,利用变频器实现调速运行,是变频器应用的最重要的一个领域,尤其是风机、水泵等机械运行的节能效果最为明显。由于变频器可以方便的实现软起动,因而可以有效地减少电动机启停时对电网的冲击,改善电源容量裕度。 2.系统改造方案 对于内蒙古丰泰发电有限公司引风机电机变频装置,北京天福力高科技中心根据招标书要求提供西门子罗宾康品牌完美无谐波系列(Perfect_Harmony)高压变频器。该系列变频采用若干个低压PWM变频功率单元串联的方式实现直接高压输出。 该变频器具有对电网谐波污染极小,输入功率因数高,输出波形质量好,不存在谐波引起的电机附加发热、 转矩脉动、噪音、dv/dt及共模电压等问题 的特性,不必加输出滤波器,就可以使用 普通的异步电机,包括国产电机。 2.1.主回路方案 如图一:K1、K2、K3组成旁路刀闸 柜;K2与K3互锁,K2闭合,K3断开, 电机变频运行;K2断开,K3闭合,电机

变频器改造技术方案一拖一(福建鸿山热电厂)

变频改造技术方案(福建鸿山热电厂变频改造) 广东明阳龙源电力电子有限公司 2007年9月19日

变频改造技术方案 一、概述 变频调速技术是当代最先进的调速技术,它不仅能够为我们提供舒适的工艺条件,满足用户的使用要求,更重要的是这项技术应用在风机、泵类等具有平方转矩特性的负载时,可以节约大量的能量,最大节能率可以达到60%~75%。因此应用此项技术进行节能改造将会有非常明显的经济意义,同时它也具有优良的环境意义和优异的速度调节性能。 根据变频调速技术原理,变频调速设备用在电力、冶金、矿山、供水等行业将会大有前途,可以取代一些相对落后的调速方案,最大限度地提高企业的经济效益。 二、水泵配套电机技术参数及实际运行参数 表1:凝结泵配套电机主要技术参数 三、变频改造技术方案 对于变频改造项目来说,应从实际出发,根据系统的要求,全面考虑,综合比较。首先是必须保证变频调速装置的可靠、稳定运行。其次是节能降耗和技改投资的回收。再次是尽可能避免更换原有电机,减少系统的变动。最后,变频调速装置尽可能安装在现成的厂房、机房或控制室等建筑内,避免增加土建工程。 采用变频器对凝升泵进行控制的目的:改善工艺过程,提高控制性能,减轻水泵起停,延长设备的使用寿命,减少维修量。保持水泵出口阀门最大,通过改变变频器的输出频率(电机速度)来调节流量,以节约原来通过改变阀门

开度调节流量时浪费在阀门上的能源;通过变频器实现水位闭环控制,保持水位的恒定。 从改善工艺过程和控制性能,节能降耗、减小变频调速装置对电网污染的角度出发,根据现场的具体水泵负载情况,建议选用以下配置的变频器。 表2:系统所配置的变频器 1、变频改造一次接线原理图及配置 采用广东明阳龙源电力电子有限公司的高压大功率变频器进行改造后,电气系统一次原理示意图如下图1所示。6kV电源经变频装置进线刀闸QS2到高压变频装置,变频装置输出经出线刀闸QS3送至电动机;6kV电源还可经旁路刀闸QS1直接起动电动机。进线刀闸QS2和旁路刀闸QS3的作用是:一旦变频装置出现故障,即可马上手动断开进线刀闸QS2和出线刀闸QS3,将变频装置隔离。手动合旁路刀闸QS1,在工频电源下起动电机运行。旁路柜进出线刀闸QS2、QS3和旁路刀闸QS1之间装设机械闭锁装置,旁路柜系统满足“五防”联锁要求。 图1 变频改造方案示意图 主要配置为: 1)控制柜一台; 2)模块柜一台; 3)变压器柜一台; 4)旁路柜两台; 2、变频器外形尺寸及接口定义

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

一次风机变频器故障的事故处理预案最终

一次风机变频器故障事故处理预案 一次风机运行时,一旦变频器发生故障跳闸将会引起机组负荷大幅度的波动,甚至造成机组跳闸等不安全情况的发生,为防止当一次风机变频器故障时,运行人员处理不当造成事故扩大,保证机组安全运行,特制定本预案。 一、当一次风机变频器轻故障报警时的处理: 一次风机变频器发生轻故障报警时,应立即安排电气运行人员到变频室查看故障原因同时联系电检,如故障可以消除应立即将其消除,如故障无法消除应汇报单元长、值长做好变频器在线切工频的准备。接到值长一次风机由变频切至工频的命令后,适当降低锅炉负荷,解除一次风机自动,提高正常一次风机至最大出力,将故障一次风机入口调节门关至电流刚刚发生变化为止,维持一次风压稳定。电气运行人员到一次风机变频室利用手拍变频器急停按钮并立即将急停按钮旋出(此操作非常重要),将一次风机由变频切至工频运行。(另一种变频切至工频方法是在盘面上点击“变频器急停”按钮,此时变频器停运,再点一次“变频器急停”按钮将其复位,则切至工频运行。(在人员有准备的情况下使用第一种方法,即就地切换更有保障。) 一次风机由变频切至工频切换成功后,锅炉监盘人员及时调整一次风机入口调节门开度(经验开度为50%左右),维持对一次风压稳定,防止一次风机过流,并加强对各磨煤机风速的监视,保证锅炉燃烧稳定,同时根据气温变化及时调整减温水量,防止超温。如一次风机由变频切至工频不成功,一次风机变频器跳闸,应立即手动拉开一次风机电机开关,一次风机跳闸触发RB,RB动作后,按一次风机跳闸处理。 二、当一次风机变频器重故障时的处理: 1、一次风机变频器发生重故障时,一次风机变频应自动切至工频运行: 1.1如果一次风机由变频切至工频切换成功,由于一次风机入口门全开,一次风压会突升,各磨煤机入口一次风量增大,一次风速升高,造成机组负荷、气温、气压升高,一次风机电机会出现过流现象(根据调试经验一次风机电流最大到186A,风机额定电流为154.9A),监盘人员应立即将切工频的一次风机入口调节门关至合适的电流为止(经验开度为50%左右),保证一次风机电流、一次风压正常,同时加强对各磨煤机风速的监视,保证锅炉燃烧稳定,同时根据气温变化及时调整减温水量,防止超温。 1.2如果一次风机由变频切至工频切换不成功一次风机跳闸,应按一下步骤处理: 1)RB保护投入且动作正常时,不需要干扰RB动作过程,检查一下设备联动正常。联跳上层磨煤机(根据RB动作后机组负荷对应的燃料主控指令自动调整),投AB层#1、#3角大油枪,关相应二次风门,另一侧一次风机自动调节超驰开10%,关过热器、再热器各减温水调节门,闭锁吹灰系统; RB触发后自动转入“机跟炉”“滑压方式”运行方式,5minRB动作结束。

引风机高压变频器改造研究

引风机高压变频器改造研究 发表时间:2014-12-02T14:31:05.810Z 来源:《价值工程》2014年第10月中旬供稿作者:刘斌[导读] 为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。 刘斌LIU Bin (河北灵达环保能源有限责任公司,石家庄051430)(Hebei Lingda Environment-friendly Energy Co.,Ltd.,Shijiazhuang 051430,China)摘要:为减少故障和检修时间,延长锅炉引风机电机使用寿命,河北灵达环保电厂对锅炉引风机高压变频进行改造。介绍了高压变频改造的必要性和实施方案,阐述了高压变频改造后的效果,对类似情况下的高压变频器具有指导意义。 Abstract: In order to reduce malfunctions and maintenance time and prolong the service life of boiler induced draft fan motor, HebeiLingda Environment-friendly Power Plant reforms the high-voltage frequency converter of boiler induced draft fan. This paper introducesthe necessity and implementation programmes of high-voltage frequency conversion, and describes the effect of high-voltage frequencyconversion reform, which is of guiding significance for high-voltage frequency converters in similar situations. 关键词院高压变频器;引风机;改造方案 Key words: high-voltage frequency converter;induced draft fan;improvement plan 中图分类号院TN77 文献标识码院A 文章编号院1006-4311(2014)29-0053-02 1 设备概况 目前我公司引风机电机规格为250KW 10000VYKK-450-2 型.变频器采用DFCVERT-MV 高压大功率变频器,自投运以来出现运行不稳定,故障率较高的状况,故障类型主要分为控制系统故障和硬件系统故障两类,控制系统方面主要有“单元系统通讯故障”,硬件方面主要有“单元缺相故障,旁通运行”、“单元直流过压”、“单元直流欠压”“单元系统通讯故障”由于是单机运行风险比较大,因此对变频器运行的可靠性要求非常高,在此基础上进行改造。 2 主控系统改造 2.1 改造目的 现有功率单元控制板故障率较高,经常出现单元直流过压问题就是控制板设置的保护定值漂移所致,究其原因是因为板件设置的电位器工作不稳定,且没有功率单元测温功能,当冷却风扇停运后跳高压开关,稳定性较差。 2.2 改造方案 2.2.1 更换硬件:主控板、光纤。 2.2.2 升级软件:PLC 软件、触摸屏、功率单元控制程序、296 升级到7058 配套软件,功率单元控制板和触摸屏修改软件程序。 2.2.3 实施方案 现有主控系统设备,包括主板及端子板、光通子板及母板、光纤拆除。 于升级现有功率单元控制板程序为122 控制板。盂将原连接功率单元和光通子板的光纤,由一对一改接同级三单元串联后连接主控板方式。榆根据硬件的变更,连接相应的二次连接线。虞对PLC 软件、触摸屏、功率单元控制程序进行升级,并将主板程序由296 升级到7058 配套软件。 2.3 改造前后效果对比 2.3.1 技术参数对比,如表1。 2.3.2逻辑功能对比,如表2。

相关主题
文本预览
相关文档 最新文档