当前位置:文档之家› 巧用数学归纳法解答数列问题

巧用数学归纳法解答数列问题

巧用数学归纳法解答数列问题
巧用数学归纳法解答数列问题

巧用数学归纳法解答数列问题

在解答与正整数*)(N n n ∈有关的命题时,数学归纳法是一种常用的方法.下面举例说明如何用数学归纳法探索数列的通项公式、探索与数列有关的参数的取值范围、证明与数列有关的不等式.

一、巧用数学归纳法探索数列的通项公式

例1(07.江西)设正整数数列{}n a 满足:24a =,且对于任何*

n ∈N ,有 11111122111

n n n n a a a a n n ++++<<+-+.(Ⅰ)求1a ,3a ;(Ⅱ)求数列{}n a 的通项n a . 解:(Ⅰ)由已知不等式得:1111112(1)2n n

n n n n a a a a ++??+<++<+ ???. ① 当1n =时,由①得:21211111222a a a a ??+

<+<+ ???,即1112212244a a +<+<+, 解得12837

a <<.∵1a 为正整数,∴11a =. 当2n =时,由①得:33111126244a a ??+<+<+ ???

,解得3810a <<. ∵3a 为正整数,∴39a =. ∴11a =,39a =.

(Ⅱ)方法一:由11a =,24a =,39a =,猜想:2n a n =.

下面用数学归纳法证明.

1

当1n =,2时,由(1)知2n a n =均成立; 2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时, 由①得221111112(1)2k k k k a k

a k ++??+<++<+ ???3212(1)(1)11k k k k k k a k k k +++-?<<-+- 221211(1)(1)11

k k k a k k k k ++?+-<<++-+- ∵2k ≥时,2(1)(1)(2)0k k k k k -+-+=-≥,∴(]21011

k k k +∈-+,. 11k -≥,∴(]1011

k ∈-,. 又1k a +∈*N ,∴221(1)(1)k k a k ++≤≤+.

故21(1)k a k +=+,即当1n k =+时,2n a n =成立.

综上,由1 ,2 知,对任意n ∈*N ,2

n a n =.

评析:①本题是探索型题,“先猜想、后证明”,对思维能力有较高要求;②运用数学归纳法的关键是“由当k n =时成立,如何过渡与转换为当1+=k n 时也成立.”

二、巧用数学归纳法探索数列中参数的取值范围

例2(04.湖北)已知0>a ,}{n a 满足 a a =1,n

n a a a 11+=+, ,3,2,1=n . (Ⅰ) 已知}{n a 的极限存在且大于0,求n n a A ∞

→=l i m ;(Ⅱ)设A a b n n -=, ,3,2,1=n .证明:)

(1A b A b b n n n +-=+ ;(Ⅲ)若n n b 21≤对1,2,3,n =…都成立,求a 的范围. 解:(Ⅰ)∵n n a ∞→lim 存在,∴A a a n n n n ==∞

→+∞→lim lim 1, ∴)1(lim lim 1n

n n n a a a +=∞→+∞→,即A a A 1+=,………………………(*) ∵0>A ,∴2

42++=a a A . (Ⅱ)结合条件及(*)式得:)(11111A b A b A A b A a a A a b n n n n n n +-=-+=-+

=-=++, ∴)

(1A b A b b n n n +-=+. (Ⅲ)若n n b 21≤对 ,3,2,1=n 都成立,则当1=n 时有211≤b ,即 2

1242≤++-a a a ,解得:23≥a . 下面用数学归纳法证明当23≥a 时,n n b 2

1≤对 ,3,2,1=n 都成立. ①当1=n 时,由前解答知结论成立.

②假设当)1(≥=k k n 时,结论成立,即k k b 21≤

成立.则当1+=k n 时, A

b A A b A b A b A b b k k k k k k k +?≤+=+-=+121)()(1, ∵23

≥a ,∴2244923242=++≥++=a a A ,∴

1212≥-=-≥+k

k k b A A b . ∴112

1121)(++≤+?≤+=k k k k k k A b A A b A b b ,即当1+=k n 时,结论也成立. ∴由①、②可知,对任意*N n ∈,结论都成立.

∴n n b 2

1≤对 ,3,2,1=n 都成立的a 的取值范围是23≥a . 评析:①本题题涉及的知识点有数列、数列极限、方程、不等式、数学归纳法等,考查学生综合应用数学知识的能力,考查学生的运算、推理和逻辑思维能力;②本题第(Ⅲ)问是证明与自然数有关的命题,可优先考虑用数学归纳法,在确定a 的取值范围时,利用了从特殊到一般的思想方法.

例3(05.湖南)自然状态下的鱼类是一种可再生的资源,为持续利用这一资源,需从宏观上考察其再生能力及其捕捞强度对鱼群总量的影响.用n x 表示某鱼群在第n 年初的总量,

+∈N n ,且01>x ,不考虑其它因素,设在第n 年内鱼群的繁殖量及被捕捞量都与n x 成正

比,死亡量与2n x 成正比,这些比例系数依次为正数a ,b ,c .(Ⅰ)求1+n x 与n x 的关系式;

(Ⅱ)猜测,当且仅当1x ,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明) (Ⅲ)设1,2==c a ,为保证对任意1x )2,0(∈,都有+∈>N n x n ,0,则捕捞强度b 的最大允许值是多少?证明你的结论.

解:(Ⅰ)从第n 年初到第1+n 年初,鱼群的繁殖量、被捕捞量、死亡量分别为n ax 、

n bx 、2n

cx ,∴21n n n n n cx bx ax x x --+=+,即)1(1n n n cx b a x x --+=+(*N n ∈).………(*)

(Ⅱ)若每年年初鱼群的总量保持不变,则1x x n =(*N n ∈)恒成立,从而由(*)得:)1(111cx b a x x --+=,即)1(111cx b a x x --+=,∴c b a x -=

1,∵01>x ,∴b a >. 于是于是猜测:当且仅当b a >,且c b a x -=

1时,每年年初鱼群的总量保持不变. (Ⅲ)当1,2==c a 时,)3(1n n n x b x x --=+.………(**)

若b 的值使得对任意1x )2,0(∈,都有*,0N n x n ∈>,则由(**)得:

b x n -<<30,*N n ∈.

特别地,有b x -<<301,∴130x b -<<,又∵1x )2,0(∈,∴10≤

下面用数学归纳法证明当1x )2,0(∈,1=b 时,都有*,20N n x n ∈<<.

①当1=n 时,结论显然成立.

②假设当k n =(1≥k )时,结论成立,即20<

0)2(1>-=+k k k x x x ,

又∵211)1()2(21<≤+--=-=+k k k k x x x x ,∴当1+=k n 时,结论也成立.

综合①、②可得,当1x )2,0(∈,1=b 时,都有*,20N n x n ∈<<.

∴为保证对任意1x )2,0(∈,都有+∈>N n x n ,0,则捕捞强度b 的最大允许值是1. 评析:①由鱼群的总量不变推断出1x x n =恒成立,即得到c

b a x -=1,利用归纳、猜想、证明得到b 的最大允许值是1;②本题涉及的知识点有数列、方程、不等式、数学归纳法等,考查考生分析、归纳、推理、论证能力及应用所学知识解决实际问题的能力.

三、巧用数学归纳法证明数列不等式

例4(06.湖南)已知函数x x x f sin )(-=,数列}{n a 满足:101<

1n n a a <+. 证明:(I)先用数学归纳法证明:10<

①当1=n 时,101<

②假设当k n =(1≥k )时,结论成立,即10<

∵当10<-='x x f ,∴)(x f 在)1,0(内单调递增.

∵)(x f 在]1,0[上连续,∴)1()()0(f a f f k <<,即11sin 101<-<<+k a .

∴当1+=k n 时,结论成立.

∴由①、②可得,10<

又∵10<

(II)设函数x x x x g sin 6

1)(3+-=(10<-=,即x x

121sin 2121cos 121)(22222=->-=+-='x x x x x x x g , ∴)(x g 在)1,0(内单调递增.

∵)(x g 在]1,0[上连续,且0)0(=g ,∴当10<x g ,∴0)(>n a g ,即

0sin 613>+-n n n a a a ,∴13sin 61+=->n n n n a a a a ,即∴316

1n n a a <+. 评析:本题以函数为载体,考查导数及应用、数学归纳法、构造法、不等式证明、递推数列等基础知识和基本技能,考查分析、判断、推理和运算能力以及等价转化的数学思想.

例5(07.Ⅰ)已知数列{}n a 中12a =

,11)(2)n n a a +=+,123n =,,,….(Ⅰ)求

{}n a 的通项公式;(Ⅱ)若数列{}n b 中12b =,13423

n n n b b b ++=+,123n =,,,…,证明:342-≤

,,…. 解:

(Ⅰ)由题设:11)(2)n n a a +=

+1)(1)(2n a =+

1)(n a =

11)(n n a a +=.

∴数列{n a -

是首项为2

1的等比数列,

∴1)n n a =,

∴{}n a

的通项公式为1)1n n a ?=

+?,123n =,,,…. (Ⅱ)用数学归纳法证明.

(ⅰ)当1n =

2<,112b a ==,所以112a b ≤<,结论成立.

(ⅱ)假设当n k =时,结论成立,即342-≤

,也即430k k b a -<≤ 当1n k =+

时,13423k k k b b b ++=

+(3023k k b b -=>+,

又1323k b <=-+

1(323

k k k b b b +-=+

2(3(k b <-

4431)(k a -≤

41k a +=

也就是说,当1n k =+时,结论成立. 根据(ⅰ)和(ⅱ)知342-≤

23n =,,,…. 作者简介:中学数学高级教师,四川省省级骨干教师、省级优秀教师,在《中学生理科月刊》、《数理报》等刊物发表论文20余篇.

数列极限数学归纳法综合能力训练

1 mn 4(m n) mn 2(m n) 【综合能力训练】 一、选择题 1?数列{a n }是等比数列,下列结论中正确的是( ) A. a n ? a n+1 >0 B. a n ? a n+1 ? a n+2>0 C. a n ? a n+2 >0 D. a n ? a n+2 ? a n+4>0 2.在等比数列{a n }中,a 1=sec 0 ( B 为锐角),且前n 项和S n 满足lim S n = ,那么B 的 n a 1 取值范围是( ) A. (0, ) B. (0, ) C. (0, ) D. (0, 2 3 6 4 3.已知数列{a n }中,a n =p^ (n € N ),则数列{a n }的最大项是( ) n 156 A.第12项 B.第13项 C.第 项或13 . D.不存在 4.三个数成等差数列,如果将最小数乘 2,最大数加上 7,所得三数之积为 1000,且成 等比数列,则原等差数列的公差一定是( ) A.8 B.8 或—15 C. ± 8 D. ± 15 112 1 2 3 1 2 9 1 5.已知数列{a n }: , + , + +-, + + …+ ” , ... 那么数列{ 2 3 3 4 4 4 10 10 10 a n ?a n 1 的所有项的和为( ) A.2 B.4 C.3 D.5 n 1 | n n 1 . n 6.已知a 、b € —?a -> lim n ,贝V a 的取值范围是( ) n a n a A. a>1 B. — 11 D.a>1 或一1O ,且 |a 10|<|an|, S n 为其前 n 项之和, 则() A. S 1,S 2,…, S 10都小于零,S 11, S 12, …都大于零 B. S 1,S 2,…, S 5都小于零,S 6, S 7,… 都大于零 C. S 1,S 2,…, S 19都小于零,S 20, S 21 , …都大于零 D. S 1,S 2,…, S 20都小于零,S 21 , S 22 , …都大于零 9.将自然数1, 2, 3,…,n ,…按第k 组含k 个数的规则分组: (1), (2, 3), (4, 5, 6),…,那么1996所在的组是( ) A.第62组 B.第63组 C.第64组 D.第65组 10.在等差数列中,前 n 项的和为S n ,若 S m =2n,S n =2m,(m 、 n € N 且m ^ n ),则公差d 的 值为( )

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高一数学归纳法分析及解题步骤

高一数学归纳法分析及解题步骤 当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。让我们一起到一起学习吧! 高一数学归纳法 《2.3数学归纳法》教学设计 青海湟川中学刘岩 一、【教材分析】 本节课选自《普通高中课程标准实验教科书数学选修2-2(人教A 版)》第二章第三节《2.3数学归纳法》。在之前的学习中,我们已经用不完全归纳法得出了许多结论,例如某些数列的通项公式,但它们的正确性还有待证明。因此,数学归纳法的学习是在合情推理的基础上,对归纳出来的与正整数有关的命题进行科学的证明,它将一个无穷的归纳过程转化为有限步骤的演绎过程。通过把猜想和证明结合起来,让学生认识数学的本质,把握数学的思维。本节课是数学归纳法的第一课时,主要让学生了解数学归纳法的原理,并能够用数学归纳法解决一些简单的与正整数有关的问题。 二、【学情分析】 我校的学生基础较好,思维活跃。学生在学习本节课新知的过程中可能存在两方面的困难:一是从骨牌游戏原理启发得到数学方法的

过程有困难;二是解题中如何正确使用数学归纳法,尤其是第二步中如何使用递推关系,可能出现问题。 三、【策略分析】 本节课中教师引导学生形成积极主动,勇于探究的学习精神,以及合作探究的学习方式;注重提高学生的数学思维能力;体验从实际生活理论实际应用的过程;采用教师引导学生探索相结合的教学方法,在教与学的和谐统一中,体现数学的价值,注重信息技术与数学课程的合理整合。 四、【教学目标】 (1)知识与技能目标: ①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题。 (2)过程与方法目标: 努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。 (3)情感态度与价值观目标: 通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。 五、【教学重难点】

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

归纳法基本步骤

归纳法基本步骤 (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤nn0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 (1)确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。 (2)数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。 (3)证明数列前n项和与通项公式的成立。 (4)证明和自然数有关的不等式。 数学归纳法的变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

高中奥数_函数 不等式 数列 极限 数学归纳法

函数 不等式 数列 极限 数学归纳法 一 能力培养 1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨 问题1数列{n a }满足112 a =,212n n a a a n a ++???+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100n n a -的最小值; (III)设函数()f n 是 1100n n a -与n 的最大者,求()f n 的最小值. 问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件: 1a a =,1()n n a f a -= (n =2,3,4,???),21a a ≠, 1()()n n f a f a --=1()n n k a a --(n =2,3,4,???),其中a 为常数,k 为非零常数. (I)令1n n n b a a +=-(n N * ∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞. 问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ?,PM PN ?,NM NP ?成公差小 于零的等差数列. (I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.

三 习题探讨 选择题 1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b = A, 23 B,2131n n -- C,2131 n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 A, B, C, D, 4在等差数列{}n a 中,1125 a = ,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是 A,475t > B,837525t <≤ C,437550t << D,437550t <≤ 5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22 221x y a b +=(0a b >>)上三个点,F 为焦点, 若,,AF BF CF 成等差数列,则有 A,2132x x x =+ B,2132y y y =+ C,213 211x x x =+ D,2213x x x =? 6在ABC ?中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以 13为 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = . 8223323232323236666n n n n S ++++=+++???+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15 n n a a a →∞++???+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前 2m 项之和2m S = . 11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,

数学归纳法解题

2012届高考数学难点 数学归纳法解题 数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法. ●难点磁场 (★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12 )1(+n n (an 2+bn +c ). ●案例探究 [例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n . 命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a . 证明:(1)设a 、b 、c 为等比数列,a =q b , c =bq (q >0且q ≠1) ∴a n +c n =n n q b +b n q n =b n (n q 1+q n )>2b n (2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2 c a +)n (n ≥2且n ∈N *) 下面用数学归纳法证明: ①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2 (2c a c a +>+ ②设n =k 时成立,即,)2 (2k k k c a c a +>+ 则当n =k +1时,4 1211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=4 1(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2 c a +)k +1 [例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -2 1成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和. 命题意图:本题考查了数列、数学归纳法、数列极限等基础知识. 知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =-3 21-k 应舍去,这一点往往容易被忽视.

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

数列的极限数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ? ??-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

巧用数学归纳法解答数列问题

巧用数学归纳法解答数列问题 在解答与正整数*)(N n n ∈有关的命题时,数学归纳法是一种常用的方法.下面举例说明如何用数学归纳法探索数列的通项公式、探索与数列有关的参数的取值范围、证明与数列有关的不等式. 一、巧用数学归纳法探索数列的通项公式 例1(07.江西)设正整数数列{}n a 满足:24a =,且对于任何* n ∈N ,有 11111122111 n n n n a a a a n n ++++<<+-+.(Ⅰ)求1a ,3a ;(Ⅱ)求数列{}n a 的通项n a . 解:(Ⅰ)由已知不等式得:1111112(1)2n n n n n n a a a a ++??+<++<+ ???. ① 当1n =时,由①得:21211111222a a a a ??+ <+<+ ???,即1112212244a a +<+<+, 解得12837 a <<.∵1a 为正整数,∴11a =. 当2n =时,由①得:33111126244a a ??+<+<+ ??? ,解得3810a <<. ∵3a 为正整数,∴39a =. ∴11a =,39a =. (Ⅱ)方法一:由11a =,24a =,39a =,猜想:2n a n =. 下面用数学归纳法证明. 1 当1n =,2时,由(1)知2n a n =均成立; 2 假设(2)n k k =≥成立,则2k a k =,则1n k =+时, 由①得221111112(1)2k k k k a k a k ++??+<++<+ ???3212(1)(1)11k k k k k k a k k k +++-?<<-+- 221211(1)(1)11 k k k a k k k k ++?+-<<++-+- ∵2k ≥时,2(1)(1)(2)0k k k k k -+-+=-≥,∴(]21011 k k k +∈-+,. 11k -≥,∴(]1011 k ∈-,. 又1k a +∈*N ,∴221(1)(1)k k a k ++≤≤+. 故21(1)k a k +=+,即当1n k =+时,2n a n =成立. 综上,由1 ,2 知,对任意n ∈*N ,2 n a n =. 评析:①本题是探索型题,“先猜想、后证明”,对思维能力有较高要求;②运用数学归纳法的关键是“由当k n =时成立,如何过渡与转换为当1+=k n 时也成立.” 二、巧用数学归纳法探索数列中参数的取值范围

数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练 1.如图,曲线2 (0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。 w.w.w.k.s.5.u.c.o.m 2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有2 1,,n n n a b a +成等差数列, 2211,,n n n b a b ++成等比数列. (1)试问{}n b 是否成等差数列?为什么? (2)如果111,2a b ==,求数列1n a ?? ???? 的前n 项和n S . 3. 已知等差数列{n a }中,2a =8,6S =66. (Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥1 6 .

4. 已知数列{n a }中5 3 1=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-= n n a b (+∈N n ) (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求 )1(lim -∞→n b n n . 5. (Ⅰ (Ⅱ (Ⅲn 项的 6. (1(2 7. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意* ∈N n ,都有 n n pa p S p -=?-)1((p 为大于1的常数),并记 n n n n n n n S a C a C a C n f ??++?+?+=21)(2211 .

数学归纳法

“数学归纳法”教学设计 一、教材与内容解析 (一)内容与内容解析 数学归纳法是人教B版普通高级中学教科书数学选修2-2第二章第三节的内容。本节课的主要内容是介绍数学归纳法的原理。 由于正整数具有无穷无尽的特点,有些关于正整数n的命题,难以对n进行一一的验证,从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的结论,这是数学归纳法产生的根源。 数学归纳法是一种证明与正整数n有关命题的重要方法。它的独到之处便是运用有限个步骤就能证明无限多个对象,而实现这一目的的工具就是递推思想。 数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推。递推是实现从有限到无限飞跃的关键,没有它我们就只能停留在对有限情况的把握上。 数学归纳法是以归纳为基础、以演绎为手段证明结论的一种方法,是归纳法与演绎法的完善结合.这也许是数学归纳法不是归纳法但又叫“数学归纳法”的原因. (二)地位与作用解析 从应用上看,数学归纳法是解决与正整数有关命题的一种推理方法,它将无限多个归纳过程转化为一个有限步骤的演绎过程,是证明与正整数有关问题的重要工具。数学归纳法本质是归纳递推,但它与归纳法有着一定程度的关联。在数学结论的发现过程中,不完全归纳法发现结论,最终利用数学归纳法证明解决问题。 从思想方法上看,数学归纳法蕴含了无限转化为有限的思想,体现了奠基、递推、总结一体的整体思想。 从美学上看,数学归纳法展现了无限与有限的统一美;揭示了有限推证无限,把无限“沦为”有限的思维美;数学归纳法的发展历程展现了数学文化美。 二、教学问题诊断 1.学生已有的经验和基础:(1)学生已有数学归纳法的萌芽和相关经验.虽然学生没有正式学过数学归纳法,但小学的数数、找一列数的规律、高中等差数列和等比数列通项公式的推导过程等等,都蕴含着数学归纳法的萌芽和基础.(2)学生已经有用具有代表性的元素来代替任意的、无穷多的元素的经验.如在线面垂直的定义和证明中,用“平面内

相关主题
文本预览
相关文档 最新文档