当前位置:文档之家› 成型零部件结构设计

成型零部件结构设计

成型零部件结构设计
成型零部件结构设计

成型零部件结构设计

成型零部件的结构设计包括凹模结构设计、凸模结构设计以及螺纹型芯和螺纹型环的结构设计等。

1 .凹模结构设计

凹模用于成型塑件的外表面,又称为阴模、型腔。按其结构的不同可分为整体式、整体嵌人式、局部镶嵌式、大面积镶嵌式和因壁镶嵌式五种。总体来说,整体式强度、刚度好,但不适用于复杂的型腔。镶嵌式采用组合的模具结构,使复杂的型腔加工相对容易,可避免采用同一材料,可利用拼接间隙排气,但易在塑件表面留下镶嵌块的拼接痕迹。

对凹模的各种结构类型分别介绍如下。

( 1 )整体式。由整块金属材料直接加工而成,如图4 一55 所示,用于形状简单的中小模具。特点是强度高、刚性好。

( 2 )整体嵌人式。将整体式凹模作为一种凹模块直接嵌人到固定板中,或嵌人模框中,模框再嵌人到固定板中。适用于塑件尺寸不大的多腔模。特点是加工方便,易损件便于更换,凹模可用冷挤压或其他方法单独加工,型腔形状与尺寸一致性好。图4 一56 ( a ) 所示为凹模从凹模固定板下部嵌人,用支承板、螺钉将其固定;图4 一56 ( b )所示为凹模从凹模固定板上部嵌人。

( 3 )局部镶嵌式。当凹模局部形状复杂,或某一部分容易损坏需要经常更换,常采用局部镶嵌式结构。如图4 一57 所示,其中,图4 一57 ( a )所示为嵌入圆销成型塑件表面直纹;图4 一57 ( b )所示为镶件成型塑件的沟槽;图4 一57 (。)所示为镶件构成塑件圆环形筋槽;图4 一57 ( d )所示为镶件成型塑件底部复杂的构形。

( 4 )大面积镶嵌式。对于底部或侧壁形状复杂的凹模,为了便于加工,保证精度,将凹模做成通孔式的,再镶上底,或将凹模壁做成镶嵌块。适用于深腔或底部、侧壁难于加工的组合型模具型腔,但各个结合面的研磨、抛光增加了工时.图4 一58 ( a )所示为侧壁和底部大面积镶拼的凹模结构;图4 一58 ( b )所示为底部大面积镶嵌的结构,采用圆柱面配合。

( 5 )四壁镶嵌式。对于大型和形状复杂的凹模,可将四壁和底板分别加工,经研磨后压人模套,侧壁之间采用扣锁连接,以保证连接的准确性.这种结构牢固、受力大,工程中常采用。图4 一59 ( a )、(b )中,侧壁相互之间采用扣锁以保证连接的准确性,连接处外侧做成0 . 3 ~ 0 . 4 mm 的间隙,使内侧接缝紧密。在四个角处,嵌人的半径R 应大于固定板(或模框)的转角半径r 。

2 .凸模结构设计

凸模用于成型塑件的内表面,又称为型芯、阳模或成型杆。凸模和成型杆两者并无严格的界线,通常成型杆特指能成型塑件上孔和局部凹槽的小型芯。凸模按结构也分为整体式和组合式两类.小型模具凸模常采用整体式,与模板做成一体,大、中型模具采用组合式。成型杆通常单独制造,再嵌人到模板中去。下面分别介绍凸模的整体式、组合式结构及小型芯(成型杆)组合式结构。

( l )整体式。整体式凸模,用一整块材料加工而成,结构简单、牢固,塑件成型质量好,但钢材消耗大,适用于小型模具,如图4 一60 所示。

( 2 )组合式。当塑件内表面复杂而不便于机械加工,或形状虽不复杂,但为节省优质钢材,减少切削量时,采用组合式凸模结构。组合式凸模按尺寸及复杂程度又有小直径组合式、大直径组合式、复杂型芯组合式之分。按组合型芯的形式又有整体嵌人式、局部镶拼嵌人式、完全镶拼嵌人式。组合式适用于大中型模具,便于设置凸模的冷却回路。图4 一61 ( a )所示为采用整体嵌人结构,图4 一61 ( b )所示为螺钉连接、销钉定位的结构,图4 一61 ( c )所示为型芯嵌入模板的结构,采用止口定位。

( 3 )成型杆(小型芯)组合式。成型杆(小型芯)通常单独制造,再嵌人模板中。

对于单个成型杆,固定方法如图4 一62 所示。图4 一62 ( a )中成型杆靠过盈配合直接压入模板的孔中,是最简单的一种固定形式,但牢固性差,配合不紧时有可能拔出。图4 一62 ( b )所示为采用过渡配合或小间隙配合,另一端铆死。图4 一62 ( c )所示为成型杆靠轴肩与垫板连接,是常用的形式,牢固可靠。图4 一62 ( d )所示为成型杆靠轴肩和圆

柱垫块与垫板连接或用螺钉压紧,适用于细长型芯,便于加工和固定.图4 一62 ( e )所示为螺钉压紧结构。

对于多个成型杆,采用凸肩垫板安装方法较好。当多个成型杆靠得很近时,可将固定板加工成大的长槽,如图4 一63 ( a )所示;或圆坑,如图4 一63 ( b )所示,作为公用沉孔。

对于非圆形的凸模,为了制造方便,常将型芯(凸模)做成两部分,下部分做成圆形,上部分做成非圆形,并将两部分可靠地连接成一个整体。

3 .螺纹型芯和螺纹型环的结构设计

螺纹型芯用于成型塑件上的螺纹孔,或者固定内螺纹嵌件;螺纹型环用于成型塑件上的外螺纹,或者固定外螺纹嵌件。通常,按其在模具上拆卸方式的不同分为自动卸除和手动卸除两种。这里仅介绍手动卸除结构。手动卸除结构要求成型前,螺纹型芯、螺纹型环能在模具内准确定位和可靠固定,使其不因外界的振动或物料的冲击而移位;开模后,型芯、型环能随塑件一起分别地从模内取出,在模外用手动的方法将型芯、型环从塑件上顺利地脱卸。

l )螺纹型芯

螺纹型芯,对于立式注塑机动模(下模)和卧式注塑机定模一侧的安装,常用圆柱配合面固定;对于立式注塑机定模(上模)和卧式注塑机动模一侧的安装,为防止型芯由于自重或设备操作的振动而坠落,用带有弹性元件的连接固定。

( 1 )圈柱配合面固定螺纹型芯。圆柱配合面固定螺纹型芯的常用方式如图4 一64 所示,螺纹型芯直接插人模具对应的配合孔中,通常采用HS / h7 的间隙配合,但在结构上应采取措施防止在熔料压力下型芯轴向移动沉人孔内,防止塑料进人配合间隙。图4 一64 ( a ) 所示的锥面起密封和定位作用;图4 一64 ( b )所示的圆柱形台阶起定位作用,并能防止型芯下沉;图4 一64 (。)所示为用支承垫板防止型芯下沉;图4 一64 ( d )所示为利用嵌件与模具的接触面防止型芯下沉;图4 一64 ( e )所示为嵌件下端沉人模具中,增加了嵌件的稳定性,并防止塑料

熔体挤人嵌件螺孔中;图4 一64 ( f )所示为将小径的盲孔螺纹嵌件,利用普通光杆型芯固定螺纹嵌件。

( 2 )弹性连接固定螺纹型芯。螺纹型芯的弹性结构及连接方法如图4 一“所示。特点是采用具有弹力的豁口柄或其他弹性装置,将螺纹型芯支撑在模孔内,成型后随塑件一起拔出,型芯与模具孔的配合为HS / fs 。

对于直径小于8 mm 的型芯,用豁口柄的形式,如图4 一65 ( a )所示,豁口柄的弹力将型芯支撑在模孔内,成型后随塑件一起拔出,台阶不但起定位作用,并可防止塑料的挤人.当型芯直径较大时,豁口柄的连接力较弱,可采用弹簧钢丝起连接作用,如图4 一65 ( b )所示,常用于直径5 ~ 10 mm 的型芯,其结构类似雨伞柄上的弹摘装t ,弹簧用价0 . 8 一价1 . 2 mm 的钢丝制成.图4 一65 ( c )所示的结构较简单,将弹簧片嵌人旁边的槽内,上端铆压固定,下端向外伸出。当螺纹直径超过10 mm 时,可采用图4 一65 ( d )所示的结构,用弹赞钢球固定螺纹型芯,要求钢球的位里正好对准型芯杆上的凹槽。当型芯的直径大于15 mm 时,则可将钢球和弹簧装置在芯杆内,避免在模板上钻深孔,如图4 一65 ( e )所示。4 一65 ( f )所示为用弹簧夹头连接,很可靠,但制造复杂。

2 )组纹型环

螺纹型环实际上是一个活动的螺母镶件,在模具闭合前装人模套内,成型后随塑件一起脱模,在模外卸下。螺纹型环常用的结构有整体式、组合式两类.

( 1 )整体螺纹型环。如图4 一66 ( a )所示,其外径与模孔采用HS / fs ( HS / h7 )间隙配合,配合长度通常取3 ~ 5 mm ,其余部分成3° ~ 5°斜角,尾部加工成台阶平面,高度

可取0 .5H ,以便于用扳手将螺纹型环从塑件上取下来.或在尾端钻出两孔,以便用辅助工具将其与塑件分离。

( 2 )组合式螺纹型环。如图4 一66( b )所示,适用于精度要求不高的粗牙螺纹的成型,通常由两瓣块组成,并用导销(小导柱)定位,两者的配合和整体式相同。为便于分开两瓣块,可在接合面外侧开出两条楔形槽,以便用尖劈状工具分开模具,取出塑件,但会在接缝处留下难以修整的滋边痕迹。

作者:汽车模具https://www.doczj.com/doc/4b7381181.html, https://www.doczj.com/doc/4b7381181.html,

支架零件图设计

1.设计的目的 设计是培养机械工程类专业学生应职应岗能力的重要实践性教学环节,它要求学生能全面综合地运用所学的理论和实践知识,进行零件机械加工工艺规程和工艺装备的设计。其基本目的是: (1)培养工程意识。 (2)训练基本技能。 (3)培养质量意识。 (4)培养规范意识。 2设计的基本任务与要求 2、1、设计任务 (1)设计一个中等复杂的零件的加工工艺规程; (2)设计一个专用夹具; (3)编写设计说明书。 2、2、设计基本要求 (1)内容完整,步骤齐全。 (2)设计内容与说明书的数据和结论应一致,内容表达清楚,图纸准确规范,简图应简洁明了,正确易懂。 (3)正确处理继承与创新的关系。 (4)正确使用标准和规范。 (5)尽量采用先进设计手段。 3设计说明书的编写 说明书要求系统性好、条理清楚、语言简练、文字通顺、字迹工整、图例清晰、图文并茂,充分表达自己的见解,力求避免抄书。

第一章工艺设计与工装设计 1.基本任务: (1)绘制零件工件图一张; (2)绘制毛坯—零件合图一张; (3)编制机械加工工艺规程卡片一套; (4)编写设计说明书一份; (5)收集和研究原始资料,为夹具结构设计做好技术准备。 (6)初步拟定夹具结构方案,绘制夹具结构草图,进行必要的理论计算和分析。选择最佳的夹具结构方案,确定夹具精度和夹具总图尺寸、公差配合与技术要求。 (7)绘制夹具总图和主要非标准件零件图,编写设计说明书。 (8)编制夹具特殊使用维护、操作、制造方面的说明或技术要求。 2.设计要求: (1)应保证零件的加工质量,达到设计图纸的技术要求; (2)在保证加工质量的前提下,尽可能提高生产效率; (3)要尽量减轻工人劳动强度,必须考虑生产安全、工业卫生等措施; (4)在立足本企业的生产条件基础上,尽可能采用国内外新技术、新工艺、新装备; (5)工艺规程应正确、完整、简洁、清晰; (6)工艺规程应满足规范化、标准化要求; (7)夹具设计保证工件的加工精度; (8)提高生产效率; (9)工艺性好; (10)使用性好; (11)经济性好。 3.方法和步骤: 3.1生产纲领的计算与生产类型的确定 生产类型生产纲领(件/年) 大批生产小型零件(4KG)2800

成型零件设计

成型零件的设计 成型零件的结构设计主要是指构成模具型腔的零件,通常有凹模、型芯、各种成形杆和成形环。 模具的成型零件主要是凹模型腔和底板厚度的计算,塑料模具型腔在成型过程中受到熔体的高压作用,应具有足够的强度和刚度,如果型腔侧壁和底板厚度过小,可能因强度不够而产生塑性变形甚至破坏;也可能因刚度不足而产生挠曲变形,导致溢料飞边,降低塑件尺寸精度并影响顺利脱模。因此,应通过强度和刚度计算来确定型腔壁厚,尤其对于重要的精度要求高的或大型模具的型腔,更不能单纯凭经验来确定型腔壁厚和底板厚度。 注射模具的成型零件是指构成模具型腔的零件,通常包括了凹模、型芯、成型杆等。凹模用以形成制品的外表面,型芯用以形成制品的内表面,成型杆用以形成制品的局部细节。成形零件作为高压容器,其内部尺寸、强度、刚度,材料和热处理以及加工工艺性,是影响模具质量和寿命的重要因素。 设计时应首先根据塑料的性能、制件的使用要求确定型腔的总体结构、进浇点、分型面、排气部位、脱模方式等,然后根据制件尺寸,计算成型零件的工作尺寸,从机加工工艺角度决定型腔各零件的结构和其他细节尺寸,以及机加工工艺要求等。此外由于塑件融体有很高的压力,因此还应该对关键成型零件进行强度和刚度的校核。 在工作状态中,成型零件承受高温高压塑件熔体的冲击和摩擦。在冷却固化中形成了塑件的形体、尺寸和表面。在开模和脱模时需要克服于塑件的粘着力。在上万次、甚至上几十万次的注射周期,成型零件的形状和尺寸精度、表面质量及其稳定性,决定了塑件制品的相对质量。成型零件在充模保压阶段承受很高的型腔压力,作为高压容器,它的强度和刚度必须在容许范围内。成型零件的结构,材料和热处理的选择及加工工艺性,是影响模具工作寿命的主要因素。 一、成型零件的选材 对于模具钢的选用,必需要符合以下几点要求: 1、机械加工性能良好。要选用易于切削,且在加工以后能得到高精度零件的钢种。 2、抛光性能优良。注射模成型零件工作表面,多需要抛光达到镜面,Ra≤0.05μm。要求钢材硬度在HRC35~40为宜。过硬表面会使抛光困难。钢材的显微组织应均匀致密,极少杂质,无疵斑和针点。 3、耐磨性和抗疲劳性能好。注射模型腔不仅受高压塑料熔体冲刷,而且还受冷热温度交变应力作用。一般的高碳合金钢可经热处理获得高硬度,但韧性差易形成表面裂纹,不以采用。所选钢种应使注塑模能减少抛光修模次数,能长期保持型腔的尺寸精度,达到所计划批量生产的使用寿命期限。 4、具有耐腐蚀性。对有些塑料品种,如聚氯乙稀和阻燃性的塑料,必须考虑选用有耐腐蚀性能的钢种。

成型零部件结构设计

成型零部件结构设计 成型零部件的结构设计包括凹模结构设计、凸模结构设计以及螺纹型芯和螺纹型环的结构设计等。 1 .凹模结构设计 凹模用于成型塑件的外表面,又称为阴模、型腔。按其结构的不同可分为整体式、整体嵌人式、局部镶嵌式、大面积镶嵌式和因壁镶嵌式五种。总体来说,整体式强度、刚度好,但不适用于复杂的型腔。镶嵌式采用组合的模具结构,使复杂的型腔加工相对容易,可避免采用同一材料,可利用拼接间隙排气,但易在塑件表面留下镶嵌块的拼接痕迹。 对凹模的各种结构类型分别介绍如下。 ( 1 )整体式。由整块金属材料直接加工而成,如图4 一55 所示,用于形状简单的中小模具。特点是强度高、刚性好。 ( 2 )整体嵌人式。将整体式凹模作为一种凹模块直接嵌人到固定板中,或嵌人模框中,模框再嵌人到固定板中。适用于塑件尺寸不大的多腔模。特点是加工方便,易损件便于更换,凹模可用冷挤压或其他方法单独加工,型腔形状与尺寸一致性好。图4 一56 ( a ) 所示为凹模从凹模固定板下部嵌人,用支承板、螺钉将其固定;图4 一56 ( b )所示为凹模从凹模固定板上部嵌人。

( 3 )局部镶嵌式。当凹模局部形状复杂,或某一部分容易损坏需要经常更换,常采用局部镶嵌式结构。如图4 一57 所示,其中,图4 一57 ( a )所示为嵌入圆销成型塑件表面直纹;图4 一57 ( b )所示为镶件成型塑件的沟槽;图4 一57 (。)所示为镶件构成塑件圆环形筋槽;图4 一57 ( d )所示为镶件成型塑件底部复杂的构形。 ( 4 )大面积镶嵌式。对于底部或侧壁形状复杂的凹模,为了便于加工,保证精度,将凹模做成通孔式的,再镶上底,或将凹模壁做成镶嵌块。适用于深腔或底部、侧壁难于加工的组合型模具型腔,但各个结合面的研磨、抛光增加了工时.图4 一58 ( a )所示为侧壁和底部大面积镶拼的凹模结构;图4 一58 ( b )所示为底部大面积镶嵌的结构,采用圆柱面配合。

注塑成型的塑料连接件设计

文章编号:100523360(2004)0420010205 注塑成型的塑料连接件设计 李 树1,揣成智1,刘风芝2 (1.天津科技大学,天津300222;2.太原市物产集团,山西太原030002) 摘 要: 介绍常用注塑成型连接件的材料选择、连接原理、基本类型、尺寸和形状设计要点及实际使用情况等。 关键词: 塑料连接件;连接原理;连接类型 中图分类号:T Q320.662;T Q320.74 文献标识码:B 收稿日期:2004203216 1 前言 注射成型连接件的设计是塑料制品设计中不可缺 少的内容。它和大多数塑料注塑件一样,都是产品的组成部分,它们既可以互相组装成一个制品,也可以与其他材料的零部件组装成制品。如果不采用塑料连接件连接,而采用金属的螺钉、销钉等连接件会使塑料制品尺寸变大且结构不合理;用带螺纹的金属嵌件作为塑料件的连接件,会给制品的成型带来困难,也不能自动化的生产制品,特别是用注塑成型的方法生产制品,此缺点更为突出,它使注塑模具的结构更为复杂,产品的成本也相应提高[1]。而利用塑料的良好弹性,柔软性、优良的抗疲劳等特性可设计出各种实用可靠的连接件。它们具有结构简单,安装牢固、装配容易、加工方便、不附加紧固件、价格便宜等优点,可用于仪表、仪器、家用电器等行业。通常使用的注塑成型塑料连接件可分为两种结构形式[2]:一种为可拆卸连接;另一种为不可拆卸连接。现主要讨论这两种连接的连接原理、连接尺寸及制品的形状设计。 2 可拆卸连接 可拆卸连接是指拆开连接件时,构成连接的所有 零件都不发生破坏。同时要求可拆卸连接的结构在使用期的工作条件下,在多次拆卸2连接后零件的相应位 置和相关尺寸仍保持一定的精度。利用塑料材料本身具有的良好弹性、韧性等特点,可设计出多种实用的可拆卸连接的塑料件。 2.1 搭接连接 搭接连接是一种允许有较大弹性形变的紧密连接方式[3]。全部连接基本上都是在一个制品上模塑出凸台、凸耳或倒钩臂,将其插入到另一个模塑制件上相应的凹口、倒陷或孔中。它是塑料制品中最廉价、最方便的连接方式之一,用于可拆卸连接。下面介绍几种常用的搭接连接。2.1.1 夹环连接 图1为夹环连接,夹环提供了柔软的没有轴向装配的连接,它允许连接处多方向自由弯折。用于盖和底的夹环连接可在塑料件上设计凸起或沟槽来辅助准确定位。它可以用任何柔性塑料制造,如聚乙烯、聚丙烯、软聚氯乙烯等 。 图1 盖和底成一体的夹环连接   2.1.2 搭扣连接 图2为搭扣连接,图中有三种不同的搭扣和孔眼形状。主要用于塑料布和片材的搭接,所有用于注塑成型的塑料材料都可以采用这种连接方式。 2.2 卡夹连接 卡夹连接是利用塑料的弹性变形,实现两个零件 1 塑料科技 P LASTICS SCI.&TECH NO LOGY № 4(Sum.162) August 2004

零件结构设计的基本要求和内容

零件结构设计的基本要 求和内容 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

零件结构设计的基本要求摘要:本文介绍零件结构设计的基本要求,限于篇幅,主要介绍零件设计的功能使用要求和为了实现这些要求而采取的一些措施。 关键词:零件结构设计要求措施 正文: 一、功能使用要求 设计机械或零件必须首先满足其功能和使用要求。机械的功能要求,如运动范围和形式要求、速度大小和载荷传递都是由具体的零件来实现的。除传动要求外,机械零件还需要有承载、固定、链接等功能;零件结构设计应满足强度、刚度、精度、耐磨性及防腐等使用要求。 1、提高强度和刚度的结构设计 为了使机械零件能正常工作,在设计的整个过程中都要保证零件的强度和刚度能满足要求。对于重要的零件要进行强度和刚度计算。静强度的计算指危险截面拉压、剪切、弯曲和扭剪应力的计算;静刚度的计算指相对载荷或应力下的变形计算。两者均与零件的材料、受力和结构尺寸密切相关。 通过合理选择机械的总体方案使零件的受力合理,特别是通过正确的结构设计使它所受的应力和产生的变形较小可以提高零件的强度和刚度,满足其工作能力的要求。合理的计算有助于选择最佳方案,但同时也要考虑零件在加工、装拆过程中保证足够的强度和刚度要求。

(1)通过结构设计提高静强度和刚度的措施 1)改变受力 a)改变受力情况,降低零件的最大应力 b)载荷分担将一个零件所受的载荷分给几个零件承受,以减少每个零件的受力。 c)载荷均布:通过改变零件的形状,改善零件的受力;采用挠性均载元件;提高加工精度。 d)其他的载荷抵消或转化措施,采取措施使外载荷全部或部分地相互抵消,有化外力为内力、用拉伸代替弯曲等。 2)改变截面 a)采用合理的断面形状,在零件材料和受力一定的条件下,只能通过结构设计,如增大截面积,增大抗弯、抗扭截面系数来提高其强度。 b)用肋或隔板,采用加强肋或隔板科提高零件、特别是机架零件的刚度 3)利用附加结构措施改变材料内应力状态,通过加强附加结构措施使受力零件产生弹性强化或塑性强化来提高强度。塑性强化又称过载强化,采用塑性强化的结构都是受不均匀应力的零件。其塑性变形产生在零件受最大应力的区域内,并与工作应力方向相反,因而具有降低最大应力、使应力分布均匀化的效果。 (2)提高疲劳强度的结构设计

塑料件结构设计要点说明

产品开发的结构设计原则: a、结构设计要合理:装配间隙合理,所有插入式的结构均应预留间隙;保证有足够的强度和刚度(安规测试),并适当设计合理的安全系数。 b、塑件的结构设计应综合考虑模具的可制造性,尽量简化模具的制造。 c、塑件的结构要考虑其可塑性,即零件注塑生产效率要高,尽量降低注塑的报废率。 d、考虑便于装配生产(尤其和装配不能冲突)。 e、塑件的结构尽可能采用标准、成熟的结构,所谓模块化设计。 f、能通用/公用的,尽量使用已有的零件,不新开模具。 g、兼顾成本 大略的汇总下结构中常见的问题注意点,期抛砖引玉,共同提高。 1、关于塑料零件的脱模斜度: 一般来说,对模塑产品的任何一个侧面,都需有一定量的脱模斜度,以便产品从模具中顺利脱出。脱模斜度的大小一般以0.5度至1度间居多。具体选择脱模斜度注意以下几点: a、塑件表面是光面的,尺寸精度要求高的,收缩率小的,应选用较小的脱模斜度,如0.5°。 b、较高、较大的尺寸,根据实际计算取较小的脱模斜度,比如双筒洗衣机大桶的筋板,计算后取0.15°~0.2°。 c、塑件的收缩率大的,应选用较大的斜度值。 d、塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。 e、透明件脱模斜度应加大,以免引起划伤。一般情况下,PS料脱模斜度应不少于2.5°~3°,ABS及PC料脱模斜度应不小于1.5°~2°。 f、带皮纹、喷砂等外观处理的塑件侧壁应根据具体情况取2°~5°的脱模斜度,视具体的皮纹深度而定。皮纹深度越深,脱模斜度应越大。 g、结构设计成对插时,插穿面斜度一般为1°~3°(见后面的图示意)。 2、关于塑件的壁厚确定以及壁厚处理: 合理的确定塑件的壁厚是很重要的。塑件的壁厚首先决定于塑件的使用要求:包括零件的强度、质量成本、电气性能、尺寸稳定性以及装配等各项要求,一般壁厚都有经验值,参考类似即可确定(如熨斗一般壁厚2mm,吸尘器大体为2.5mm),其中注意点如下: a、塑件壁厚应尽量均匀,避免太薄、太厚及壁厚突变,若塑件要求必须有壁厚变化,应采用渐变或圆弧过渡,否则会因引起收缩不均匀使塑件变形、影响塑件强度、影响注塑时流动性等成型工艺问题。 b、塑件壁厚一般在1—5mm范围内。而最常用的数值为2—3mm。 c、常用塑料塑件的最小壁厚及常用壁厚推荐值:(mm)

齿轮与轴系零件结构设计

机械设计大作业题目齿轮及轴系零件设计 机械工程及自动化学院 机械设计制造及其自动化专业 08 年级 1 班设计者志强 指导教师亮 完成日期 2010年11月24日

一.目的 1、掌握齿轮及轴系零件结构设计的方法 2、培养独立设计能力 3、学会查阅有关手册及设计资料 二.题目及方案 1、题目:齿轮及轴系零件设计 2、设计方案: 项目 输出轴转 速(r/min)输出轴功 率(kW) 大齿轮齿 数Z2 大齿轮模 数m n 大齿轮螺 旋角β (左旋) 大齿轮宽 度B 小齿轮齿 数Z1 设计方案155 4.5 107 3 9°22 80 23 三.结构简图:

(五)初步设计轴的结构 1)为了满足半联轴器的轴向定位要求,I-II 轴段右端需制出一轴肩,由密封圈处轴径标准值系列:25,28,30,32,35,38,40,42,45,48,50,55,60??????可得: 取 d 45mm II III -= 2)II-III 轴段右端的轴肩为非定位轴肩,由轴承标准系列综合考虑, 取50mm III IV d -= 由于两个轴承成对,故尺寸相同, 所以d 50III IV VII VIII d mm --== 因为轴承宽度B=20mm, 所以,VII-VIII L =20mm 3)半联轴器与轴配合的毂孔长度1L 112mm =,为保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故I-II L 长度应比1L 略短一些, 取I-II L 110mm = 4)由齿轮孔轴径及III-IV 轴段右端轴肩考虑,该轴肩为非定位轴肩, 各轴段长度和半径: d 45mm II III -= 50mm III IV d -= d 50III IV VII VIII d mm --== VII-VIII L =20mm I-II L 110mm = IV-V =52d mm 60mm V VI d -=

塑料零件结构设计

塑料零件结构设计知识 在具体设计塑料零件的结构时需要考虑哪些方面的问题?怎样合理地设计塑料零件的结构?如何选择塑料零件的材料?壁厚选择多少合适?等等。本文对这些具体问题进行了详细的总结。希望对大家在今后的设计中有所帮助并希望大家一起来补充完善。 关键词塑料零件、壁厚、脱模斜度、加强筋、材料选择 1、零件的形状应尽量简单、合理、便于成型 1.1 在保证使用要求前提下,力求简单、便于脱模,尽量避免或减少抽芯机构,如采用下图例中(b)的结构,不仅可大大简化模具结构,便于成型,且能提高生产效率。 2、零件的壁厚确定应合理 塑料零件的壁厚取决于塑件的使用要求,太薄会造成制品的强度和刚度不足,受力后容易产生翘曲变形,成型时流动阻力大,大型复杂的零件就难以充满型腔。反之,壁厚过大,不但浪费材料,而且加长成型周期,降低生产率,还容易产生气泡、缩孔、翘曲等疵病。因此制件设计时确定零件壁厚应注意以下几点: 2.1 在满足使用要求的前提下,尽量减小壁厚; 2.2 零件的各部位壁厚尽量均匀,以减小内应力和变形。不均匀的壁厚会造成严重的翘曲及尺寸控制的问题; 2.3 承受紧固力部位必须保证压缩强度; 2.4 避免过厚部位产生缩孔和凹陷; 2.5 成型顶出时能承受冲击力的冲击。3、必须设置必要的脱模斜度为确保制件成型时能顺利脱模,设计时必须在脱模方向设置脱模斜度,其大小与塑料性能、零件件的收缩率和几何形状有关,对于工程塑料的结构件来说,一般应在保证顺利脱模的前提下,尽量减小脱模斜度。 下表为根据不同材料而推荐的脱模斜度: 各种材料推荐的脱模斜度 材料脱模斜度 聚乙烯、聚丙烯、软聚氯乙稀30′~1° ABS、尼龙、聚甲醛、氯化聚醚、聚苯醚、硬聚氯乙稀、聚碳酸酯、聚砜40′~1°30′ 聚苯乙烯、有机玻璃50′~2° 热固性塑料20′~1° 在具体选择时,还应注意以下几个问题: 3.1 凡塑件精度要求高时,应采用较小的脱模斜度; 3.2 凡较高、较大的尺寸,应选用较小的脱模斜度; 3.3 塑件形状复杂的、不易脱模的应选用较大的脱模斜度; 3.4 塑件的收缩率大的应选用较大的斜度值; 3.5 塑件壁较厚时,会使成形收缩增大,脱模斜度应采用较大的数值; 3.6 如果要求脱模后塑件保持在型芯的一边,那么塑件的内表面的脱模斜度可选的比外表面小;反之,要求脱模后塑件留在型腔内,则塑件外表面的脱模斜度应小于内表面;但,当内外表面要求不一致时,往往不能保证壁厚的均匀; 3.7 增强塑件宜取大,含自润滑剂等易脱模塑料可取小; 3.8 取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得。外形以大端为准,符合图样,斜度由缩小方向取得,一般情况下,脱模斜度α不包括在塑件公差范围内。

圆筒件注塑成型工艺及模具设计(一模两件)

圆筒件注塑成型工艺及模具设计(一模两件)

课程设计说明书 目:圆筒件注塑成型工艺及模具设计

目录 第1 章工艺分析 1.1塑件成型工艺性分析 1.1.1 塑件结构的工艺性分析 1.1.2 成型材料性能分析 1.2模具结构形式的确定 第2 章注射机的选择 2.1 注射量的计算 2.2塑件和流道凝料及所需锁模力的计算 2.3选择注射机 第3 章注射模具结构设计 3.1 模架的确定 3.2 各板尺寸的确定 3.3 浇注系统设计 3.3.1 主流道设计 3.3.1.1主流道尺寸 3.3.1.2 定位圈的选取 3.3.1.3主流道衬套形式 3.3.2 分流道设计 3.3.2.1分流道布置形式 3.3.2.2分流道长度 3.3.2.3分流道及浇口的尺寸设计

3.4.1分型面位置的确定 3.4.2成型零件工作尺寸计算 3.4.2.1型腔径向尺寸 3.4.2.2型腔深度尺寸 3.4.2.3型芯径向尺寸 3.4.2.4型芯高度尺寸 3.4.2.5型腔壁厚计算 3.5 导向与定位机构设计 3.5.1 机构的功用 3.5.2 导向机构的设计 3.5.2.1导柱 3.5.2.2导套 3.6 推出机构设计 3.6.1 脱模推出机构的设计原则 3.6.2 塑件的推出方式 3.6.3 塑件的推出机构 3.7 排气系统设计 3.8 冷料穴设计 3.9 冷却系统设计 第4 章注射机的校核 4.1 安装参数的校核 4.1.1 模具外形尺寸校核 4.1.2 喷嘴尺寸及定位圈尺寸校核

第1 章工艺分析 1.1 塑件成型工艺性分析 1.1.1 塑件的结构工艺性分析 1. 如图1.1 所示,该塑件为一小尺寸圆筒件,形状简单;壁厚t=1.5mm,壁厚内径比(t/d)为1/60 小于1/10,该塑件为薄壁塑件,并且各处壁厚均匀。塑件为旋转体结构,结构相对简单,而且塑件质量相对较小。该塑件表面粗糙度全部为Ra0.8mm,材料为聚氯乙烯,该种塑料流动性中等。通过查阅资料该种塑料制件未注公差时应选用MT5 级精度。 2.该模具是圆筒形零件的注射模具。该塑件无侧凹、侧孔等,不需设计侧抽芯装置,相应模具结构简单。从零件图看,制件比较简单,没有苛刻的精度要求和尺寸公差要求,因此对模具的要求也较低。从生产批量考虑,本模具采用一模两腔的结构,模架和模板尺寸均根据标准选取。其中模架从标准中选取A2 型模架。由于塑件比较简单,所以模具采用一次分型,不设有二次分型与侧向分型机构。推出系统采用推杆推出,并设有

注塑模--成型部分(模仁)设计原则

注塑模--成型部分(模仁)设计原则 我是以一个产品结构设计者的角度来介绍,而非专业模具设计者,所论述的知识内容只为产品结构设计工作服务。 上面有讲到注塑模中的标准模架部分,现在来讲成型部分的一些基本原则,也就是模仁设计的注意事项。 一,拔模 1,拔模的必要性 拔模并非模具工作者的口头术语,我们做结构的也经常讲这个东西,它关乎塑件制品能否顺利脱模,关乎制品的成型难度、顶出难度、表面质量等,是我们在设计产品时时时刻刻要考虑到的问题。有人说只要在关键位置给出拔模角度就好了,其他的就叫模具设计者们去自己弄吧,我并不赞同这个说法,拔模在产品结构设计环节就该被完成,为何要拖到下个工序呢,对于一个产品,任何一个面都要考虑拔模问题,并在结构设计环节做出来,这是咱的职业操守。 拔模的定义:为了能够使产品能够顺利脱模,我们把产品的侧壁设置一定角度的做法就叫做拔模,这个角度就叫拔模角度, 为什么设置拔模角度:热塑性塑料在冷却过程中会收缩,从而紧贴在模仁上,很难被顶出。(如下图) 从图中可以看出开模以后,产品从定模脱出,贴在后模上面,此时顶出装置开始把塑件从动模上顶出,但塑件却被卡在了后模上面,当然塑料肯定很有钢铁强,最终会被顶出,可强行顶出会使塑件变形或被破坏。这就是拔模方向错误导致的。 2,拔模角度的选择 拔模会改变原定产品的尺寸,会使直面变成斜面,这是不可避免的。但我们也可以换一个角度来想,只有拔好模的产品外观尺寸才是正确的,未拔模的是错的,那我们就不用去纠结拔模后会改变尺寸的问题了。当然,在保证顺利脱模的情况下,拔模角度越小越好,那么我们从哪些角度来考虑拔模角度的大小呢?之前在产品结构设计基本原则中就有说过,如下: (1),在不影响产品外观和功能下,拔模角尽量大。 (2),尺寸大的产品,拔模角尽量小。 (3),产品结构复杂不易拔模的,采用较大斜度。 (4),塑胶材料收缩率大的,拔模斜度也要大。 (5),增强塑料选大斜度,自润滑塑料选较小斜度。

相关主题
文本预览
相关文档 最新文档