当前位置:文档之家› 波动方程或称波方程

波动方程或称波方程

波动方程或称波方程
波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。

历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。

波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:

这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。

在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替:

实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程:

另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。

三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波:

式中:

?和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamé moduli),是描述各向同性固体弹性性质的参数;

?表示密度;

?是源函数(即外界施加的激振力);

?表示位移;

注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。

其他形式的波动方程还能在量子力学和广义相对论理论中用到。

目录

[隐藏]

? 1 标量形式的一维波动方程

o 1.1 波动方程的推导

o 1.2 初值问题的解

? 2 标量形式的三维波动方程

o 2.1 球面波

2.1.1 时间箭头的讨论

o 2.2 广义初值问题的解

? 3 标量形式的二维波动方程

? 4 边值问题

o 4.1 一维情形

o 4.2 多维情形

? 5 注释

? 6 参考文献

?7 参看

?8 外部链接

标量形式的一维波动方程[编辑]

波动方程的推导[编辑]

一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:

其中u(x) 表示位于x的质点偏离平衡位置的距离。施加在位于x+h处的质点m 上的力为:

其中代表根据牛顿第二定律计算的质点惯性力,代表根据胡克定律计算的弹簧作用力。所以根据分析力学中的达朗贝尔原理,位于x+h处质点的运动方程为:

式中已注明u(x) 是时间t的显函数。

若N个质点间隔均匀地固定在长度L = N h的弹簧链上,总质量M = N m,链的总体劲度系数为K = k/N,我们可以将上面的方程写为:

取极限N, h就得到这个系统的波动方程:

在这个例子中,波速。

初值问题的解[编辑]

一维标量形式波动方程的一般解是由达朗贝尔给出的。原方程可以写成如下的算子作用形式:

从上面的形式可以看出,若F和G为任意函数,那么它们以下形式的组合

必然满足原方程。上面两项分别对应两列行波("行"与在"行动"中同音)——F表示经过该点(x点)的右行波,G表示经过该点的左行波。为完全确定F和G的最终形式还需考虑如下初始条件:

经带入运算,就得到了波动方程著名的达朗贝尔行波解,又称达朗贝尔公式:

在经典的意义下,如果并且则。但是,行波函数F和G也可以是广义函数,比如狄拉克δ函数。在这种情况下,行波解应被视作左行或右行的一个脉冲。

基本波动方程是一个线性微分方程,也就是说同时受到两列波作用的点的振幅就是两列波振幅的相加。这意味着可以通过把一列波分解成它的许求解中很有效。

标量形式的三维波动方程[编辑]

三维波动方程初值问题的解可以通过求解球面波波动方程得到。求解结果可用于推导二维情况的解。

球面波[编辑]

球面波方程的形式不随空间坐标系统的转动而变化,所以可以将它写成仅与距源点距离r相关的函数。方程的三维形式为:

将方程变形为:

此时,因变量ru满足一维波动方程,于是可以利用达朗贝尔行波法将解写成:

其中F和G为任意函数,可以理解为以速度c从中心向外传播的波和从外面向中心传播的波。这类从点源传出的波强度随距点源距离r衰减,并且属于无后效波,可以清晰地搭载信号。这种波仅在奇数维空间中存在(原因将在下一小节中详细解释)。幸运的是,我们生活的空间是三维的,所以我们可以清晰地通过声波和电磁波(都属于球面波)来互相交流。

时间箭头的讨论[编辑]

上面方程的解里面,分成了两部分,一部分表示向外传播的波,一部分则是向内。很明显,只要将t换成-t,就可以在这两部分之间转换。这体现了原始方程对于时间是对称的,任意的一个解在时间轴上倒过来看仍然是一个解。

然而,我们所观察到的实际的波,都是属于向外传播的。除非精心地加以调整,我们无法在自然界观察到向内的波,尽管它们也是波动方程的合法的解。

关于这个现象,引起了不少讨论。有人认为,实际上它们即使存在,也无法加以观察。想想如果四周的光向一个物体集中,则因为没有光到达我们的眼睛,我们不可能看见这个物体或者发现这个现象(见参考文献[2])。

广义初值问题的解[编辑]

波动方程中u是线性函数,并且不随时间和空间坐标的平移而改变。所以我们可以通过平移与叠加球面波获得方程各种类型的解。令φ(ξ,ε,δ) 为任意具有三个自变量的函数,球面波形F为狄拉克δ函数(数学语言是:F是一个在全空间积分等于1且非零区间收缩至原点的连续函数的弱极限)。设(ξ,ε,δ)位一族球面波的源点,r为距源点的径向距离,即:

可定义

称为三维波动方程的影响函数,其意义为(ξ,ε,δ)点在t=0 时刻受到短促脉冲δ函数作用后向空间中传出的波的影响,系数分母 4πc 是为方便后续处理而加上的。

若u是这一族波函数的加权叠加,且权函数为φ,则

从δ函数的定义可知,u还能写成

式中α、β和γ是单位球面S上点的坐标,dω为S上的面积微元。该结果的意义为:u(t,x,y,z) 是以(x,y,z) 为圆心,ct为半径的球面上φ的平均值的t倍:

从上式易得

平均值是关于t的偶函数,所以若

那么

以上得出的便是波动方程初值问题的解。从中可以看出,任意点P在t时刻受到的波扰动只来自以P为圆心,ct为半径的球面上,而这个球的内部点在这一时刻对P点的状态完全没有影响(因为它们的影响之前就已经传过P点了)。

换一个角度分析,假设三维空间中任意点P'在t=0 时刻受到一个脉冲扰动δ,那么由此发出的球面波在传过空间中的任意其它点Q后,便再也不会对Q的运动状态产生影响,这就是在物理学中也非常著名的惠更斯原理(Huygens' principle),也称为无后效现象,表示传过的球面波不会留下任何后续效应。

下面我们便可以解释上一小节中留下的问题了。事实上,前面所得到的球面波解仅在奇数维空间中存在。偶数维空间中波动方程的解是弥散的,也就是说波阵面掠过区域仍然会受其影响。以下面的二维波动方程(极坐标形式,注意和上一小节三维形式的差别)为例:

可以从三维形式的解通过降维法得到二维波动方程的影响函数:

其中

设点M(x,y) 到点(ξ,ε) 距离为d,那么从影响函数中可以看出,当t>d/c即初始扰动已传过M点后,M仍在受到它的影响。二维球面波(柱面波)的这一性质决定了它不能作为传递信号的工具,因为这种波(事实上包括所有偶数维空间中的球面波)经过的点受到的是交织在一起的各个不同时刻的扰动。

标量形式的二维波动方程[编辑]

二维波动方程的直角坐标形式为:

如前所述,我们可以从三维波动方程的解中将u视为与其中一个自变量无关(降维法)来得到二维形式的解。将初始条件改写为

则三维形式的解就变成

其中α和β是单位球面上点的头两个坐标分量,dω是球面上的面积微元。此积分可变换为在(x,y) 为中心,ct为半径的圆域D上的积分:

从这个结果也能得到上一小节最后的结论。

二维波动方程解的一个例子是紧绷的鼓面的运动。

边值问题[编辑]

一维情形[编辑]

一根自身绷紧,两端分别固定于x=0和x=L的弹性弦在t>0 时刻,0 < x< L上运动满足波动方程。在边界点处,可以要求u满足各种边界条件。通常遇到的边界条件都可归纳成下列形式:

其中a、b非负。若要弦的两端固定不动,对应上面式子中a、b趋于无穷大。求解偏微分方程的分离变量法要求寻找以下形式的解:

将上述假设形式代入原方程中可以得到:

为使边值问题有非平凡解,本征值λ须满足

这是固有值问题的斯图姆-刘维尔理论的一个特例。若a、b为正数,则对应的所有本征值均为正数,方程的解为三角函数。使u和u t满足平方可积条件的解可以通过适当选取u和u t三角级数展开来求得。

多维情形[编辑]

一维初始值-边值理论可以拓展至任意维空间中。考虑m维空间(坐标简写为x)中的域D,B为D的边界。当0

其中n是B上指向域外的法向矢量,a是定义在B上的非负函数。要求u在B 上始终为0的边界条件相当于令a趋于无穷。初始条件为

其中f和g是定义在D内的函数。这个问题可以通过将f和g展开成域D内拉普拉斯算子满足边界条件的本征函数系的叠加来求解(这是分离变量法的一般步骤)。也就是求解在域D内满足

在边界B上满足

的本征函数系v。

在二维情形下,上述本征函数系可以理解成绷紧地张在边界B上的鼓面的自由振动模态。若B是一个圆,则这些本征函数是关于极角自变量θ的三角函数与关于极轴自变量r的整阶贝塞尔函数的乘积。更详细的说明参见英文版条目亥姆霍兹方程。

在三维形式下,若边界是空间中的球面,那么本征函数是关于球坐标下两个极角自变量的球面调和函数,乘以关于径向自变量ρ的半奇数阶贝塞尔函数。

注释[编辑]

参考文献[编辑]

?[1] 严镇军编,《数学物理方程》,第二版,中国科学技术大学出版社,合肥,2002,第210页~第224页,ISBN 7-312-00799-6/O·177 ?[2] [英]胡·普赖斯著,肖巍译,《时间之矢与阿基米德之点—物理学时间的新方向》,上海科学技术出版社,上海,2001,ISBN 7-5323-5737-6?[3] M. F. Atiyah, R. Bott, L. Garding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math.,

124 (1970), 109–189.

?[4] M.F. Atiyah, R. Bott, and L. Garding, Lacunas for hyperbolic differential operators with constant coefficients II, Acta Math., 131 (1973), 145–206.

?[5] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol II. Interscience (Wiley) New York, 1962.

波动方程的简谐平面波解

波动方程的简谐平面波解 在建立了波动方程之后,我们来讨论其解的形式及其特性。 1、 简谐平面波 (1)波动方程的简谐平面波解 声波在空间中传播,其传播方向和波阵面垂直。平面波是波阵面是平面的声波,而简谐平面波是波阵面(对简谐波而言,波阵面也是等相位面)是平面的简谐声波。具有任意波形的声波可以通过付里叶变换分解为多个具有不同频率的简谐平面波的叠加。因此,简谐波传播是波动传播的基础。 一般简谐平面波的声压幅值在等相面上有一定的分布。这里只讨论声压幅值在等相面上处处相同(均匀平面波)的简单情况,较为复杂的非等声压幅值平面波(非均匀平面波)在后面的学习中会遇到。 对一维均匀简谐平面波,声压幅值可以只用一个坐标来描述。若取平面波的传播方向为x 轴正方向,假设波动方程中c 为常数,则波动方程的均匀简谐平面波解可以分离变量有如下形式: (,)()()p x t p x T t =, (2-23) 其中,()p x 和()T t 分别为(,)p x t 的空间坐标相关因子和时间相关因子。将(2-23)式代入到 (2-15)中,并分离变量,得 222222 1()() ()()d T t c d p x T t dt p x dt ω==-, (2-24) 其中,2ω-为分离常数。由(2-24)式可得两个方程: 22 2 ()()0d T t T t dt ω+=, (2-25) 222 () ()0d p x k p x dt +=。 (2-26) 其中,222k c ω=,为常数。 (2-25)式的两个特解为j t e ω和()j t e ω-,后者描述具有“负频率”的振动,无实际意义,只保留j t e ω;(2-26) 式的两个特解为jkx e 和jkx e -。由此得到波动方程的简谐平面波解为 j[t-kx] j[t+kx] (,)(,)(,) =Ae e p x t p x t p x t B ωω+-=++ 。 (2-27) 对推导过程中几个量物理意义的讨论: ① 由(2-25)的解j t e ω可以看出,ω是简谐波的圆频率,也可以理解为:在简谐波

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

麦克斯韦方程组的平面波解

【麦克斯韦方程组的平面波解】 令0ρ=,0J = ,可得自由空间(真空)中的Maxwell 方程组 0,E ??= (1) 0,B ??= (2) ,B E t ???=-? (3) 00,E B t με???=? (4) 其中真空介电常数(Permittivity constant )1208.8510F m ε-=?,真空磁导率(Permeability constant )60 1.2610H m μ-=?由实验测定。按照现行计量方案,确保光在真空中的传播速度 299 792 458 m/s.c = = 利用矢量分析公式 ()() 2 ,A A A ????=???-? 可以推导出电磁场的波动方程 2222 2222 01100.E B E B c t c t ???-=?-=?? , (5) 这是6个独立的线性齐次微分方程;即电场强度矢量E 或磁感应强度矢量B 的任意分量都 满足微分方程 22222222210.A A A A x y z c t ????++-=???? 若以平面电磁波传播方向为x 轴,波阵面平行于yz 平面,则场分量(,)A A x t =与位置坐标y 和z 无关,并满足如下简单微分方程 2222210,A A x c t ??-=?? (6) 作为练习,读者可以证明任何形如 (,)(),A x t A t kx ω=- 的函数都是波动方程(6)的解,只要其中的参数ω和k 满足

.c k ω =± 显然,简谐平面波 ()0(,),i t kx A x t A e ω-= (7) 是波动方程(6)的特殊解,其中2ωπ=和2k π λ=分别是简谐平面波的园频率和波矢量。 值得指出的是,电场强度矢量E 或磁感应强度矢量B 的6个分量必须同时满足Maxwell 方程组(1.15-18)四个微分方程。这就要求简谐平面波 ()() 00(,),(,)i t k r i t k r E r t E e B r t B e ωω-?-?== , 还必须满足一些附加条件,即 000000000,0,,,k E k B k E B k B E ωμεω?=?=?=?=- (8) 从而自由空间中沿x 轴正方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω--==e e , (9) 并且 0.E B c = (10) 类似地,沿x 轴负方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω++==-e e . 简谐平面电磁波具有显著的横波特性,即 () 0.k E B ??=

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

波函数和薛定谔方程-力学量算符

波函数和薛定谔方程-力学量算符 1.一维运动的粒子处在 的状态,其中,求: (1)粒子动量的几率分布函数; (2)粒子动量的平均值。 [解]首先将归一化,求归一化系数A。 (1)动量的几率分布函数是 注意到中的时间只起参数作用,对几率分布无影响,因此可有 令 代入上式得 (2) 动量p的平均值的结果从物理上看是显然的,因为对本题说来,粒子动量是和是的几率是相同的。讨论: ①一维的傅里叶变换的系数是而不是。 ②傅里叶变换式中的t可看成参变量。因此,当原来坐标空间的波函数不含时间变量时, 即相当于的情况,变换式的形式保持不变。

③不难证明,若是归一化的,则经傅里叶变换得到也是归一化的。 2.设在时,粒子的状态为 求粒子动量的平均值和粒子动能的平均值。 [解]方法一:根据态迭加原理和波函数的统计解释。任意状态总可以分解为单色平面波的线性和,即,展开式的系数表示粒子的动量为p时的几率。知道了几率分布函数后,就可按照 求平均值。 在时,动量有一定值的函数,即单色德布罗意平面波为,与的展开式比较可知,处在状态的粒子动量可以取 ,而,粒子动量的平均值为 A可由归一化条件确定 故 粒子动能的平均值为 。 方法二:直接积分法

根据函数的性质,只有当函数的宗量等于零时,函数方不为零,故的可能值有 而 则有及。 讨论:①由于单色德布罗意平面波当时不趋于零,因此的归一化积分是发散的,故采用动量几率分布的概念来求归一化系数。 ②本题的不是平方可积的函数,因此不能作傅氏积分展开,只能作傅氏级数展开,即 这时对应于波函数的是分立谱而不是连续谱,因此计算积分,得到函数。 ③在连续谱函数还未熟练以前,建议教学时只引导学生按方法一做,在第三章函数讲 授后再用函数做一遍,对比一下,熟悉一下函数的运算。 3.一维谐振子处在 的状态,求: (1)势能的平均值; (2)动量的几率分布函数; (3)动能的平均值 [解]先检验是否归一化。 是归一化的。 (1) . 其中应用及 (2)由于是平方可积的,因此可作傅氏变换求动量几率分布函数

大学物理平面简谐波波动方程

§4-2平面简谐波的波动方程 振动与波动 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。任何复杂的波都可看成是若干个简谐波的叠加。 对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。需要定量地描述出每个质点的振动状态。 波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。 一、平面简谐波的波动方程 设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点 参考点原点的振动方程为 x 区别 联系 振动研究一个质点的运动。 波动研究大量有联系的质点振动的集体表现。 振动是波动的根源。 波动是振动的传播。

()00cos y A t ω?=+ 任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢? 沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π 现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x π πλ λ = P 点的振动方程为 02cos P y A t x πω?λ? ?=+- ?? ? 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉 02cos y A t x πω?λ? ?=+- ?? ? 就是沿 x 轴正向传播的平面简谐波的波动方程。 如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π λ 沿 x 轴负向传播的波动方程为 x

02cos y A t x πω?λ??=++ ??? 利用 2ωπν=, u λν= 沿 x 轴正向传播的平面简谐波的波动方程又可写为 02cos y A t x πω?λ??=-+ ??? 02cos A t x u πνω??? =-+ ??? 0cos x A t u ω??? ??=-+ ??????? 即 0cos x y A t u ω??? ??=-+ ??????? 原点的振动状态传到 P 点所需要的时间 x t u ?= P 点在 t 时刻重复原点在 x t u ?? - ??? 时刻的振动状态 波动方程也常写为 02cos y A t x πω?λ??=-+ ??? ()0cos A t kx ω?=-+ 其中 2k π λ = 波数,物理意义为 2π 长度所具有完整波的数目。 ☆ 波动方程的三个要素:参考点,参考点振动方程,传播方向 二、波动方程的物理意义 1、固定x ,如令0x x = ()002cos y t A t x πω?λ? ?=+- ?? ? 振动方程

电磁波动方程和平面电磁波

电磁波动方程和平面电磁波 电工基础教研室周学

本节的研究目的 掌握无源空间线性各向同性均匀介质中波动方程的推导; 掌握等相面,平面波,均匀平面波概念;掌握均匀平面电磁波的基本特征。 本节的研究内容 一、电磁波动方程 二、均匀平面电磁波

波动是电磁场的基本属性当时,电场和磁场相耦合,相互为源,可以脱离电荷、电流,以波的形式存在于空间中。 0/≠??t 0≠??t B 0≠??t E E B 电磁波 ???????=??-?=??-?010******* 22t E c E t H c H

电磁波的波段划分及其应用名称频率范围波长范围典型业务 甚低频VLF[超长波] 3~30KHz100~10km导航,声纳低频LF[长波,LW] 30~300KHz10~1km导航,频标中频MF[中波, MW] 300~3000KHz1km~100m AM, 海上通信高频HF[短波, SW] 3~30MHz100m~10m AM, 通信 甚高频VHF[超短波] 30~300MHz10~1m TV, FM, MC 特高频UHF[微波] 300~3000MHz100~10cm TV, MC, GPS 超高频SHF[微波] 3~30GHz10~1cm通信,雷达 极高频EHF[微波] 30~300GHz10~1mm通信, 雷达 光频[光波] 1~50THz300~0.006 m光纤通信

研究电磁波在空间的传播规律和特性,就是讨论由电磁场基本方程组导出的电磁波动方程在给定条件下的解。

00E H E t H E t H E γεμ????=+???????=-?????=????=?D E B H J E εμγ?=?=??=?在无源空间中,假设媒质是各向同性、线性、均匀的,则 2 2222200H H H t t E E E t t μγμεμγμε????--=?????????--=????无源空间的电磁波动方程,研究电磁波问题的基础

波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中:

波函数和薛定谔方程

波函数和薛定谔方程 一、波函数的统计解释、叠加原理和双缝干涉实验 微观粒子具有波粒二象性(德布罗意假设); 德布罗意关系(将描述粒子和波的物理量联系在一起) k n h p h E ====λ ων 物质波(微观粒子—实物粒子) 引入波函数(概率波幅)—描述微观粒子运动状态 对于微观粒子来说,如果不考虑“自旋”一类的“内禀”态,单值波函数是其物理状态的最详尽描述。至少在目前量子力学框架中,我们不能获得比波函数更多的物理信息。 微观粒子的状态用波函数完全描述 ——量子力学中的一条基本原理 该原理包含三方面内容:粒子的状态用波函数表示、波函数的统计解释和对波函数性质的要求。 要明确“完全”的含义是什么。按着波函数的统计解释,波函数统计性的描述体系的量子态,若已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如动量等粒子的其它力学量的概率分布也均可通过波函数而完全确定。由此可见,只要已知体系的波函数,便可获得该体系的一切物理信息。从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒子的状态用波函数完全描述。

必须强调指出,波函数给出的有关粒子的“信息”本质上是统计性质的。例如,在适当条件下制备动量为p 的粒子,然后测量其空间位置,我们根本无法预言测量的结果,我们只能知道获得各种可能结果的概率。 很自然,人们会提出这样的疑问:既然量子力学只能给出统计结果,那就只需引入一个概率分布函数(象经典统计力学那样),何必假定一个复值波函数呢? 事实上,引入复值波函数的物理基础,乃是量子力学中的又一条基本原理——叠加原理。 这条原理告诉我们,两种状态的叠加,绝不是概率相加, 数学求和)。正因如此,在双缝干涉实验中,我们才能看见屏上的干涉花纹。 实物粒子双缝干涉实验分析 我们首先只打开一条狭缝,根据粒子的波动性,可以预言屏上将显示波长p / =λ(p 为粒子动量)的单缝衍射花纹。但是,根据粒子的微粒性,它们将是一个一个打上去的,怎样将这两种性质的描述调和起来呢?为此,我们想象将入射粒子束强度降低,直到只一个粒子通过狭缝,这时屏上会出现很微弱的衍射花纹吗?当然不会!单个粒子只能作为一个不可分割的整体打到屏上的一个点,从而出现一个小斑点。如果让这种微弱的粒子束(几乎让粒子一个一个地通过狭缝)长时间照射狭缝(相当于一个粒子的多次行为),结果发现,屏上一个一个斑点逐渐增加,最后形成一种接近连续的分布,它恰恰就是单缝衍射花纹!(单个粒子具有波动性的有力证明)

第二章波函数和薛定谔方程

第二章波函数和薛定谔方程 ●§2.1 波函数的统计解释 ●§2.2 态叠加原理 ●§2.3 薛定谔方程 ●§2.4 粒子流密度和粒子数守恒定律●§2.5 定态薛定谔方程 ●§2.6 一维无限深势阱 ●§2.7 线性谐振子 ●§2.8势垒贯穿

本章主要介绍了波函数的统计解释、薛定谔方程的建立过程、用定态薛定方程处理势阱问题和线性谐振子问题。

§2.1 波函数的统计解释(一)波函数 (二)波函数的解释 (三)波函数的性质

?? ????-?=ψ)(exp Et r p i A ?3个问题? 描写自由粒子的 平面波 ),(t r ψ?如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为: 描写粒子状态的 波函数,它通常 是一个复函数。 称为de Broglie 波。此式称为自由粒子的 波函数。 (1) ψ是怎样描述粒子的状态呢? (2) ψ如何体现波粒二象性的? (3) ψ描写的是什么样的波呢? (一)波函数

电子源感 光 屏(1)两种错误的看法 1. 波由粒子组成 如水波,声波,由分子密度疏密变化而形成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。 P P O Q Q O 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。

电动力学复习总结第四章 电磁波的传播2012答案

电动力学复习总结第四章电磁波的传播2012答案 第四章电磁波的传播 一、填空题 1、色散现象是指介质的( )是频率的函数. 答案:?,? ???s2、平面电磁波能流密度和能量密度w的关系为( )。答案:S?wv ???3、平面电磁波在导体中传播时,其振幅为( )。答案:E0e???x 4、电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案:???1, 0, ?? 6、波导管尺寸为0.7cm×0.4cm,频率为30×109HZ的微波在 该波导中能以 ( )波模传播。答案:TE10波 ?E7、线性介质中平面电磁波的电磁场的能量密度(用电场表示)为 ( ),它对时间的平均值为( )。答案:?E2, 12?E0 2 8、平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。答案:E?vB,相等 9、在研究导体中的电磁波传播时,引入复介电常数???( ),

其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 ???????????xi(??x??t)答案:?????i,传导电流,E(x,t)?E0ee, ? ??10、矩形波导中,能够传播的电磁波的截止频率 c,m,n( ),当电磁 波的频率?满足( )时,该波不能在其中传播。若b>a,则最低截止频率为( ),该波的模式为( )。 答案:?c,m,n?? ??mn?()2?()2,?<?c,m,n,,TE01 abb?? 1 11、全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、自然光从介质1(?1,?1)入射至介质2(?2,?2),当入射角等于( ) 时,反射波是完全偏振波.答案:i0?arctgn2 n1 13、迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:???0e?t? ? 二、选择题 ??22??1?E1?B1、电磁波波动方程?2E?22?0,?2B?22?0,只有在下列那种情况下c?tc?t

电动力学_郭芳侠_电磁波的传播 (1)

第四章 电磁波的传播 1. 真空中的波动方程,均匀介质中的定态波动方程和亥姆霍兹方程所描述的物 理过程是什么?从形式到内容上试述它们之间的区别和联系。 解:真空中的波动方程:22210E E c t →??- =?,2 22 10B B c t → ??-=?。 表明:①在0=ρ,0=→ J 的自由空间,电场与磁场相互激发形成电磁波, 电磁波可以脱离场源而存在。 ②真空中一切电磁波都以光速c 传播。 ③适用于任何频率的电磁波,无色散. 均匀介质中定态波动方程:22 222 22210 10E E v t B B v t ??-?=???-?=?,其中()v ω=。 当电磁场在介质内传播时,其ε与μ一般随ω变化,存在色散,在单色波情况下才有此波动方程。 亥姆霍兹方程:(2 2 0,0E k E k E i B E ωω??+==?? ??=???=-??? 表示以一定频率按正弦规律变化的单色电磁波的基本方程,其每个解都代表一种可能存在的波模。 2. 什么是定态电磁波、平面电磁波、平面单色波?分别写出它们的电场表示式。从形式到内容上试述它们之间的区别和联系。 解:(1)定态电磁波:以一定频率作正弦振荡的波称为定态电磁波,即单色简谐 波。(,)()i t E x t E x e ω-= (2)平面电磁波:等相位面与波传播方向垂直且沿波矢量→ K 传播的电磁波。 0()ik r E x E e ?=

(3)平面单色波:以一定频率作正弦振荡的平面波称为平面单色波。 ()0(,)i k r t E x t E e ω?-= 3. 在0ω≠的定态电磁波情形麦氏方程组的形式如何?为什么说它不是独立的,怎样证明?不是独立的,是否等于说有的方程是多余的呢?试解释之。 解:定态电磁波情形麦氏方程组的形式为: 00E i B B i E E B ωωμε???=? ??=-?? ??=????=? ......(1) (2) ……(3)……(4) 对(1)和(2)取散度可得(3)(4)两式,所以它不独立。不独立不表示方程多余,定态电磁波只是一种特殊情形,在更普遍的情况下,麦氏方程组四个方程分别描述了场的不同方面。 4. 设有一电磁波其电场强度可以表示为 ())(t i t x E E 00exp ,ω-= 。试问它是否是平面时谐波(平面单色波)?为什么? 答;不是。因为E 做傅立叶展开后,可以看成是无数个平面单色波的叠加。如令 )2()2(0000000002 1 2)2cos(),(t x k i t x k i x ik e e E t e E t x E ωωω-++== 则 )(0)3(0000022t x k i t x k i e E e E E ωω-++= 是两个单色波的叠加。 5.试述平面单色波在均匀介质中具有哪些传播特性?并且一一加以证明。 解:特性: ①是横波,且E B ,,k 有右手螺旋关系 证:()0(,)i k r t E x t E e ω?-= 0B ,B ,E i i 1 B E ik E k E k E k E ik E k E ω ω ω ??=?=⊥? ?⊥⊥⊥?=- ??=- ?= ?? 即即电波为横波,得证。 ②()p B v c E 与同相位,振幅比为真空中为 ()() ()i k x t o i k x t o p E x,t E e 1 1B k E n E e V ωωω?-?-==?=?

电动力学复习总结第四章电磁波的传播答案

电动力学复习总结第四章电 磁波的传播答案 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为( ), 它对时间的平均值为( )。答案:2E ε, 202 1 E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部是 ( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,) (0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁波的 频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω, με π b ,01TE

电磁波在不同介质中的传播

摘 要 电磁波在不同介质中传播特性不同。本文从麦克斯韦方程组出发,求解了平面电磁波在线性介质中的波动方程及其解。对于线性介质,D 与E 、B 与H 成线性关系,求解了平面电磁波在线性介质中的波动方程及其解;对于非线性介质, D 与 E 、B 与H 成非线性关系,所求出的波动方程与线性介质中的波动方程完 全不同。对于电磁波在介质面上的传播,从电磁场边值关系出发分析反射和折射的规律,结果表明:(1)入、反、折三波同频共面,即ωωω''='=;(2).入射角等于反射角,即θθ'=;(3).入射角与反射角的关系为: 1 1222 1sin sin εμεμθθ= =' 'v v 。 关 键 词:电磁波,线性介质,非线性介质,铁磁介质,非铁磁介质,介质面,反射,折射

abstract Electromagnetic wave transmission characteristic in different medium is different . Starting from maxwell's equations, solve wave equation and solutions of Plane Electromagnetic Wave in linear medium . For the linear medium, D and E is a linear relationship .The same to the relationship of B and H .And then solve wave equation and solutions of Plane Electromagnetic Wave in linear medium ; For the nonlinear medium, D and E is a nonlinear relationship . The same to the relationship of B and H .Therefore , the wave equation in nonlinear medium and in linear medium is completely different . For the transmission of Electromagnetic wave in medium surface ,starting from electromagnetic field boundary value relations analyse reflection and refraction law and conclude that (1) The incident wave 、reflex wave and refraction wave are the same frequency and coplanar, namely ωωω''='=;(2) the incident angle equals to the reflection angle,namely θθ'=;(3)the relations of the incident angle and the reflection angle is 1 1222 1sin sin εμεμθθ= =' 'v v . Key words: electromagnetic wave, linear medium, nonlinear medium, ferromagnetic, nonferromagnetic ,Medium surface ,reflection,reflaction

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。 2 电磁波基本原理 2.1建立麦克斯韦方程组的历史背景 麦克斯韦首先从论述力线着手,初步建立起电与磁之间的基本关系。1855年,他发表了第一篇电磁学论文《论法拉第的力线》。在这篇论文中,用数学语言表述了法拉第

电动力学第四章电磁波的传播

第四章 电磁波的传播 讨论电磁场产生后在空间传播的情形和特性。 分三类情形讨论: 一:平面电磁波在无界空间的传播问题 二. 平面电磁波在分界面上的反射与透射问题; 三.在有界空间传播-导行电磁波 第一部分 平面电磁波在无界空间的传播问题 讨论一般均匀平面电磁波和时谐电磁波在无界空间的传播问题 1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。 2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。 3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。 4 最简单的电磁波是平面波。等相面(波阵面)为无限大平面电磁波称为平面波。如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。 5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。 § 4.1 波动方程 ................................................................................................................................................. 1 § 4.2 无界空间理想介质中的均匀平面电磁波 ............................................................................................. 4 § 4.3正弦均匀平面波在无限大均匀媒质中的传播 ...................................................................................... 7 4.1-4.3总结 .................................................................................................................................................... 13 § 4.4电磁波的极化 ........................................................................................................................................ 14 § 4.5电磁波的色散与波速 ............................................................................................................................ 16 4.4-4.5总结 . (18) § 4.1 波动方程 本节主要内容:研究各种介质情形下的电磁波波动方程。 学习要求:1.明确介质分类;2.理解和掌握波动方程推到思路3.分清楚、记清楚无界无源区理想介 质和导电介质区波动方程和时谐场情形下理想介质和导电介质区波动方程 电磁波在介质中传播,所以其波动方程一定要知道介质的电磁性质方程。一般情况下,皆知的电磁性质方程很复杂,因为反应介质电磁性质的介电参数是张量。研究中常把介质分成几类研究: 介质分类:理想介质:μεσ、,0=都是实常数; 理想导体:∞→σ,内电场和磁场都为0; 导电介质:关。是复数,而且和频率有、μεσ,0> 各向同性线性均匀介质:?? ?==H B με

波动方程

5.1 已知一波的波动方程为y = 5×10-2sin(10πt –0.6x) (m). (1)求波长、频率、波速及传播方向; (2)说明x = 0时波动方程的意义,并作图表示. 5.2 一平面简谐波在媒质中以速度为u = 0.2m·s-1沿x轴正向传播,已知波线上A点(xA = 0.05m)的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m处质点P处的振动方程. 5.3 已知平面波波源的振动表达式为(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s-1. 5.4 有一沿x轴正向传播的平面波,其波速为u = 1m·s-1,波长λ= 0.04m,振幅A = 0.03m.若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求: (1)此平面波的波动方程; (2)与波源相距x = 0.01m处质点的振动方程,该点初相是多少? 5.5 一列简谐波沿x轴正向传播,在t1 = 0s,t2 = 0.25s时刻的波形如图所示.试求:(1)P点的振动表达式; (2)波动方程; (3)画出O点的振动曲线. 5.6 如图所示为一列沿x负向传播的平面谐波在t = T/4时的波形图,振幅A、波长λ以及周期T均已知. (1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线 (3)图中波线上a和b两点的位相差φa –φb为多少? 5.7 已知波的波动方程为y = Acosπ(4t –2x)(SI).(1)写出t = 4.2s时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线. 5.8 一简谐波沿x轴正向传播,波长λ= 4m,周期T = 4s,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程 (2)写出波的表达式; (3)画出t = 1s时刻的波形曲线 5.9 在波的传播路程上有A和B两点,都做简谐振动,B点的位相比A点落后π/6,已知A和B之间的距离为2.0cm,振动周期为2.0s.求波速u和波长λ. 5.10 一平面波在介质中以速度u = 20m·s-1沿x轴负方向传播.已知在传播路径上的某点A的振动方程为y = 3cos4πt. (1)如以A点为坐标原点,写出波动方程; (2)如以距A点5m处的B点为坐标原点,写出波动方程; (3)写出传播方向上B,C,D点的振动方程. 5.11 一弹性波在媒质中传播的速度u = 1×103m·s-1,振幅A = 1.0×10-4m,频率ν= 103Hz.若该媒质的密度为800kg·m-3,求: (1)该波的平均能流密度; (2)1分钟内垂直通过面积S = 4×10-4m2的总能量. 5.12 一平面简谐声波在空气中传播,波速u = 340m·s-1,频率为500Hz.到达人耳时,振幅A = 1×10-4cm,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ= 1.29kg·m-3. 5.14.一声源的频率为1080Hz,相对地面以30m·s-1速率向右运动.在其右方有一反射

相关主题
文本预览
相关文档 最新文档