当前位置:文档之家› 高炉冶炼工艺

高炉冶炼工艺

高炉冶炼工艺
高炉冶炼工艺

第四章高炉冶炼工艺

课时:2学时

授课内容:

第三节热风炉操作

目的要求:

1.了解热风炉燃料;

2.知道影响热风的因素;

3.掌握热风炉的操作特点、燃烧制度;

4.掌握送风制度和换炉操作。

重、难点:

1.影响热风的因素、热风炉的燃烧制度、送风制度和换炉操作。

教学方法:

利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。

讲授重点内容提要

第三节热风炉操作

一.热风炉燃料

1.燃料品种及其化学成分、发热量

热风炉的燃料为煤气。

表4—15分别列出几种热风炉常用煤气的成分和发热值。

表4—15 热风炉常用煤气成分及发热值

2.煤气及助燃空气的质量

含尘量:煤气含尘量低于10mg/m3。助燃空气含尘量尽量减少。

煤气含水量:在热风炉附近的净煤气管道上设置脱水器或,使用干法除尘。

净煤气压力:净煤气支管处的煤气应有一定的压力,见表4—16。

表4—16 热风炉净煤气吉管处的煤气压力

3.气体燃料可燃成分的热效应

气体燃料可燃成分的热效应(见表4—17)

表4—17 1 m3气体燃料中各可燃成分l%体积的热效应

二.影响热风温度的因素

1.拱顶温度

◆限制拱顶温度的因素:

①耐火材料理化性能。实际拱顶温度控制在比拱顶耐火砖平均荷重软化点低l00℃左右(也有按拱顶耐火材料最低荷重软化温度低40~50℃控制)。

②煤气含尘量。不同含尘量允许的拱顶温度不同(见表4—18)。

表4—18 不同含尘量允许的拱顶温度

③燃烧产物中腐蚀性介质。为避免发生拱顶钢板的晶间应力腐蚀,必须将拱顶温度控制在不超过l400℃或采取防止晶间应力腐蚀的措施。

◆热风炉实际拱顶温度低于理论燃烧温度70~90℃。

◆大、中型高炉热风炉拱顶温度比平均风温高120~220℃。小型高炉拱顶温度比平均风温高l50~300℃。

2.废气温度

允许的废气温度范围:大型高炉废气温度不超过350~400℃,小型高炉不得超过400~450℃。

废气温度与热风温度的关系:提高废气温度可以增加热风温度。在废气温度为200~400℃范围内,每提高废气温度100℃约可提高风温40℃。

影响废气温度的因素:单位时间燃烧煤气量、燃烧时间、蓄热面积。

3.热风炉工作周期

热风炉一个工作周期:燃烧、送风、换炉三个过程自始至终所需的时间。

送风时间与热风温度的关系:随着送风时间的延长,风温逐渐降低。

合适的工作周期:合适的送风时间最终取决于保证热风炉获得足够的温度水平(表现为拱顶温度)和蓄热量(表现为废气温度)所必要的燃烧时间。

4.蓄热面积与格子砖重量

当格子砖重量相同并采用相同工作制度时,蓄热面积大的供热能力大。

格子砖重量大,周期风温降小,利于保持较高风温。

单位风量的格子砖重量增大时,热风炉送风期拱顶温度降减少,即能提高风温水平。

单位风量的格子砖重量相同时,蓄热面积大的拱顶温度降小。

5.其他因素

◆燃烧器形式和能力

陶瓷燃烧器的煤气和空气、混合较好,燃烧能力大,完全可以满足要求。

◆煤气量(煤气压力)

煤气量不足或煤气压力波动,拱顶温度不能迅速稳定地升高,热风炉蓄热量减少。

◆高炉操作

高炉顺行、热风炉工作稳定,能最大限度地保持较高风温水平。

三.热风炉的操作

1.蓄热式热风炉的传热特点

热风炉内的传热主要是指蓄热室格子砖的热交换。

高炉热风温度的高低,取决于蓄热室贮藏的热量及拱顶温度。

2.热风炉的操作特点

◆热风炉操作是在高温、高压、煤气的环境中进行。

◆热风炉的工艺流程:

①送风通路:热风炉除冷风阀、热风阀保持开启状态外,其他阀门一律关闭;

②燃烧通路:热风炉冷风阀和热风阀关闭外,其他阀门全部打开;

③休风:所有热风炉的全部阀门都关闭。

◆蓄热式热风炉要储备足够的热量。

◆热风炉各阀门的开启和关闭必须在均压下进行。

◆高炉热风炉燃烧可以使用低热值煤气,提供较高的风温。

◆高炉生产不允许有断风现象发生,换炉操作必须“先送后撤”。

3.热风炉的燃烧制度

热风炉的燃烧制度的种类:固定煤气量,调节空气量;固定空气量,调节煤气量;空气量、煤气量都不固定。

各种燃烧制度的操作特点和各种燃烧制度的比较见表4—l9和表4—20。

表4—19 各种燃烧制度的特点

表4—20 各种燃烧制度比

燃烧制度的选择的原则:

◆结合热风炉设备的具体情况,充分发挥助燃风机、煤气管网的能力;

◆在允许范围内最大限度地增加热风炉的蓄热量;

◆燃烧完全、热损少,效率高,降低能耗。

较优的燃烧制度:固定煤气量调节空气量的快速烧炉法。

合理燃烧的判断方法:

◆废气分析法。根据分析结果,判断成分是否合理(见表4—21)。

表4—21合理的烟道废气成分

热风炉操作主要以废气分析法进行控制燃烧。

◆火焰观察法。采用金属套筒燃烧器时,操作人员可观察燃烧器火焰颜色来判断燃烧情况。

过剩空气量的调整:

过剩空气量主要是依据废气中的残氧量(通过氧化锆实测)来调节,通过调节助燃空气量获得最佳的空煤比,获得更高的拱顶温度和热效率。一般认为废气成分中O2保持在

0.2%~0.8%、CO保持在0.2%~0.4%的范围比较合理。

4.送风制度

送风制度有:

◆单炉送风。单炉送风是在热风炉组中只有一座热风炉处于送风状态的操作制度。

◆并联送风。并联送风操作是热风炉组中经常有两座热风炉同时送风的操作制度。

交错并联送风操作是两座热风炉,其送风时间错开半个周期。对于4座热风炉的高炉来说,各个热风炉的内部状态均错开整个周期的l/4。

交错并联送风操作时,在两座送风的热风炉中,其中一座“后行炉”处于高温送风期,另一座“先行炉”处于低温送风期。

交错并联送风又分为冷并联送风和热并联送风。冷并联送风时的热风温度主要依靠“先行炉”的低温热风与“后行炉”的高温热风在热风主管内混合,由于混合后的温度仍高于规定的热风温度,需要通过混风阀混入少量的冷风,才能达到规定的风温。冷并联送风操作的特点是:送风热风炉的冷风调节阀始终保持全开状态,不必调节通过热风炉的风量;风温主要依靠混风调节阀调节混入的冷风量来控制;热并联送风操作时,热风温度的控制主要是依靠各送风炉的冷风调节阀调节进入“先行炉”和“后行炉”的风量,使“先行炉”的低温热风与“后行炉”的高温热风在热风主管中混合后的热风温度符合规定的风温。

5.热风炉换炉操作

基本换炉程序见表4—22:

表4—22 热风炉的基本换炉程序

换炉操作的注意事项:

◆换炉应先送后撤。

◆尽量减少换炉时高炉风温、风压的波动。

◆使用混合煤气的热风炉,应严格按照规定混入高发热量煤气量,控制好拱顶和

废气温度。

◆热风炉停止燃烧时先关高发热量煤气后关高炉煤气;热风炉点炉时先给高炉煤

气,后给高发热量煤气。

◆使用引射器混入高发热量煤气时,全热风炉组停止燃烧时,应事先切断高发热

量煤气。

6.高炉休风、送风时的热风炉操作

倒流休风及送风:

高炉休风(短期、长期、特殊)时,用专设的倒流休风管来抽除高炉炉缸内的残余煤气,谓之倒流休风,其热风炉的操作程序见表4—23。

表4—23 倒流休风、送风热风炉操作程序

不倒流的休风及送风:

高炉休风不需要倒流时,将倒流休风、透风程序中的开、关倒流阀的程序取消即可。

7.热风炉全自动闭环控制操作

热风炉的工作制度:

◆基本工作制度:“两烧两送交叉并联”工作制。

◆辅助工作制:“两烧一送”工作制,有一座热风炉检修时用。

热风炉闭环控制指令:

◆时间指令:根据先行热风炉的送风时间指挥换炉,对热风炉进行闭环控制。

◆温度指令:根据送风温度指挥换炉,对热风炉进行闭环控制。

热风炉的基本操作方式:

连锁自动操作和连锁半自动操作。

操作系统还需要备有单炉自动、半自动操作、手动操作和机旁操作等方式。

连锁自动控制操作:按预先选定的送风制度和时间进行热风炉状态的转换,换炉过程全自动控制。

连锁半自动控制操作:按预先选定的送风制度,由操作人员指令进行热风炉状态的转换,换炉由人工指令。

单炉自动控制操作:根据换炉工艺顺序,一座热风炉单独自动控制完成状态转换的操作。

手动非常控制操作:通过热风炉集中控制台上的操作按钮进行单独操作,用于热风炉从停炉转换成正常操作状态时或检修时的操作。

机旁操作:在设备现场,可以单独操作一切设备,用于设备的维护和调试。

自动控制要点:

◆燃烧控制:根据高炉使用的风量、需要的风温、煤气的热值、冷风温度,热风炉废气温度,经热平衡计算,计算出设定煤气量和空气量。燃烧过程中随煤气量的变化来调节助燃空气量,采用最佳空燃比,尽快使炉顶温度达到设定值,并保持稳定,以逐步地增加蓄热室的储热量,当废温度达到规定值时(350℃)热风炉准备换炉。采用废气含氧量分析作为系统的反馈环节,参加闭环控制,随时校正空燃比。

◆高炉热风温度的控制:当热风炉采用“两烧两送交叉并联”送风制度时,靠调节两座送风炉的冷风调节阀的开度,来控制先行(凉)炉、后行(热)炉的冷风流量,保持高炉热风温度的稳定。当热风炉采用“两烧一送”的送风制度时,需靠调节风温调节阀的开度,兑入冷风量的多少来稳定高炉的热风温度。

◆换炉控制:按时间指令进行换炉的自动控制;按温度指令进行换炉的自动控制。

◆休风控制:一般休风控制为半自动操作,分为倒流休风和正常休风。

镍铁冶炼工艺介绍

1、?镍铁冶炼工艺介绍?、镍冶炼工艺流程研究含镍红土矿是由含镍橄榄岩在热带或亚热带地区经长期风化淋滤变质 而成的矿床一般形成几层顶部是一层崩积层铁帽含镍较低 一般弃置堆存下面是褐铁矿层含铁多、硅镁少镍低、钴较 高一般采用湿法工艺回收金属再下层是混有脉石的残积 层矿含硅镁高铁较低、钴较低、镍较高这类矿一般采用火 法工艺处理。具体情况见表12—1 表11-1 矿石范围与冶炼工艺矿石分矿石分层冶炼常矿石品位冶炼方法冶炼工 艺层名称规产品顶层崩积层含镍低弃置堆存含镍低、铁高、硅镁低、1.还原焙烧氨浸工艺钴较高。2.高压酸浸工艺 3.强化高压酸浸工艺电解镍中间层褐铁矿层湿法 冶炼Fe35-50 4.常压酸浸工艺氧化镍 5.硫酸堆浸工艺 6. 氯化浸出工艺。含镍较高、铁较低、硅 1.回转窑电炉工艺镁高、钴较低。 2.多米尼加鹰桥竖炉—电炉工艺下层残积 层火法冶炼镍铁Fe10-25 3.日本大江山回转窑MgO15-35 直接还原法。、湿法工艺流程介绍目前成熟的湿法工艺流程有还原焙烧氨浸流程、高压酸浸流程和常压酸浸流程。、还原焙烧氨浸流程还原焙烧氨浸流程处理褐铁矿 或褐铁矿和残积层矿的混合矿矿石先干燥然后矿石中的镍 在700℃时选择性还原成金属镍钴和一部分铁被一起还原 还原的金属镍经过氨浸回收。还原焙烧氨浸流程的缺点有矿石处理采用干燥、还原、焙烧等工序消耗能量大消耗多

种化学试剂镍和钴的回收率比火法流程和高压酸浸流程低。、高压酸浸流程高压酸浸流程主要处理褐铁矿和一 部分绿脱石或蒙脱石。加压酸浸一般在衬钛的高压釜中进 行浸出温度245℃260℃通过液固分离、镍钴分离生产电镍、氧化镍或镍冠有些工厂生产中间产品如混合硫化镍钴或混 合镍钴氢氧化物。高压酸浸流程处理的红土矿要求含 MgO/Al O 低通常含Mglt4含Mg 越高耗酸越高含Al 低的矿石。、其他湿法工艺流程有些湿法工艺流程正在进行试验和进一步评估如强化高压酸浸工艺、常压酸浸工艺、硫酸堆浸工艺和氯化浸出工艺。、火法工艺流程介绍现有的火法工艺处理红土矿工艺流程有传统的回转窑—电炉工艺 多米尼加鹰桥竖炉—电炉工艺日本大江山回转窑直接还原法。、回转窑—电炉工艺回转窑—电炉工艺是目前红土矿冶炼厂普遍采用的一种火法冶炼工艺流程该工艺主要分为 几个工序干燥、焙烧—预还原、电炉熔炼、精炼等工序简述如下1干燥采用回转干燥窑主要脱出矿石中的部分自由水。2焙烧——预还原采用回转窑主要是脱出矿石中剩余的自由 水和结晶水预热矿石选择性还原部分镍和铁。3电炉熔炼还原金属镍和部分铁将渣和镍铁分开生产粗镍铁。4精炼一般采用钢包精炼脱出粗镍铁中的杂质如硫、磷等满足市场要求。如果生产镍锍需要在焙烧回转窑的出料口喷入硫磺将镍转 变成低铁的镍锍。、多米尼加鹰桥竖炉—电炉工艺多米尼

浅谈高炉操作

浅谈高炉操作 摘要:高炉操作是一项生产实践与理论性很强的工艺流程。本文介绍了高炉冶炼对原燃料(精料)的要求和高炉冶炼的四大基本操作制度(装料制度、送风制度、热制度、造渣制度)以及冷却制度的内容与选择;也介绍了高炉的炉前操作对高炉冶炼的影响,高炉操作的出铁口维护等内容;同时,还阐述了高炉冶炼的强化冶炼技术操作如高炉的高压操作,富氧喷煤操作(富氧操作、喷煤粉操作、富氧喷煤操作),高风温操作(风温对高炉的影响和风温降焦比等)等操作细节。本文介绍的内容对高炉冶炼都很重要,望与高炉的实际情况结合,减少高炉操作失误,从而使高炉冶炼取得更好的经济技术指标。 关键词:基本操作制度、冷却制度、炉前操作、强化冶炼 绪论:中国是世界炼铁大国,2007年产铁4.894亿吨,占世界49.5%,有力地支撑我国钢铁工业的健康发展。进入21世纪以来,我国钢铁工业高速发展,新建了大批大、中现代化高炉。在当前国内外市场经济竞争更加激烈的情况下,各企业都面临如何进一步降低生产成本的问题。在高炉炼铁过程中,如何操作,改善操作,保持炉况稳定进行,降低消耗,提高经济效益是高炉工作者的一项重要任务。在遵循高炉冶炼基本规则的基础上,根据冶炼条件的变化,及时准确地采取调节措施。 一.高炉炼铁以精料为基础 高炉炼铁应当认真贯彻精料方针,这是高炉炼铁的基础.,精料技术水平对高炉炼铁技术指标的影响率在70%,高炉操作为10%,企业现代化管理为10%,设备运行状态为5%,外界因素(动力,原燃料供应,上下工序生产状态等)为5%.。高炉炼铁生产条件水平决定了生产指标好坏。因此可见精料的重要性。 1.精料方针的内容: ·高入炉料含铁品位要高(这是精料技术的核心),入炉矿含铁品位提高1%,炼铁燃料比降低1.5%,产量提高2.5%,渣量减少30kg/t,允许多喷煤15 kg/t。 原燃料转鼓强度要高。大高炉对原燃料的质量要求是高于中小高炉。如宝钢要求焦炭M40为大于88%,M10为小于6.5%,CRI小于26%,CSR大于66%。一般高炉M40要求为大于

有关镍铁冶炼的工艺

有关镍铁冶炼的工艺: 虽然红土镍矿处理工艺主要分为湿法冶炼工艺和火法冶炼工艺,但目前世界范围内比较成熟的利用红土镍矿冶炼镍铁合金的工艺方法仍旧以火法冶炼为主。 火法冶炼镍铁是在高温条件下,以C(或Si)作还原剂,对氧化镍矿中的NiO及其他氧化物(如FeO)进行还原而得。同时采用选择性还原工艺,合理使用还原剂,按还原顺序NiO、FeO、Cr2O3、SiO2进行还原反应。 NiO+C→Ni+CO↑ T=420℃(1) FeO+C→Fe+CO↑ T=650℃(2) Cr2O3+C→Cr+ CO↑ SiO2+C→Si+CO↑ 因不同产地的镍矿成分不同,NiO及各种氧化物之间组成的化合物也有所不同,因而,在镍铁冶炼过程中,其实际反应较复杂。反应生成的Ni和Fe能在不同比例下互溶,生成镍铁。 从上述(1)、(2)反应式中可看出:NiO、FeO还原反应开始温度较低,而且,NiO的开始反应温度比FeO约低200℃;因而,火法冶炼镍铁过程中,尽管所采用的镍矿NiO含量较低,但NiO 90%以上被还原,而且,在Ni/Fe很低的情况下,可通过不同的工艺操作,使产品含Ni 量提高到较高水平,与铁合金其他产品(如高碳铬铁、锰硅合金等)相比,电炉粗镍冶炼难度相对较低。 目前我国镍铁冶炼主要采用高炉法和电炉法两种: 1、高炉法: 镍矿→脱水、烧结、造块→配入焦炭、熔剂→高炉冶炼→粗镍铁→精炼降Si、C、P、S→镍铁。在国内,近年采用的火法冶炼镍铁较为普遍,主要是借用于现有炼铁小高炉直接转产,具体操作与小高炉生产生铁操作相似,特别适合于使用低Ni、高Fe镍矿生产低Ni镍铁(含镍生铁)。该工艺仍以焦炭燃烧放热作为冶炼热能,入炉镍矿中FeO可被焦炭中的C充分还原,故粗镍铁中的Ni含量高低基本受限于入炉镍矿Ni/Fe的比值大小。 由于国家限制400 立方米以下小高炉的使用,而使用矿热电炉,利用低镍高铁镍矿,直接生产低Ni镍铁,其工艺的合理性和易操作性,似乎不及高炉法,因而采用大容量高炉冶炼低Ni镍铁值得关注和研究。 2、电炉法 镍矿→脱水、造块→配入焦炭、熔剂→电炉冶炼→粗镍铁→降C、Si、P、S精炼→镍铁。 电炉法是以C作还原剂,在电能高温条件下,对镍矿中的NiO、FeO等氧化物进行还原,冶炼出镍铁,因而,在电炉冶炼过程中,调整合适的配炭量,限制FeO还原,可生产出Ni含量较高的电炉镍铁。 国外火法冶炼镍铁主要采用此工艺,国内厂家生产含Ni大于10%的产品时亦普遍采用。主要冶炼设备为矿热电炉,国内个别厂家也有使用与电弧炉结构相似的电炉生产(其设备最大容量为9 MVA),其镍矿预处理方式,冶炼工艺的具体操作,精炼工艺设备配套情况及精炼效果均不尽相同,各项指标对比也存在一定差异。 电炉镍铁冶炼技术措施 https://www.doczj.com/doc/4f2232238.html, 2009年02月11日08:42 生意社 生意社02月11日讯

镍铁合金

国内外红土镍矿处理技术及进展 王成彦尹飞陈永强王忠王军 【摘要】:综述了国内外红土镍矿的处理现状。指出红土镍矿的开发要综合考虑矿石镍、钴含量和矿石类型的差异, 以及当地燃料、水、电和化学试剂等的供应状况。现阶段回转窑干燥预还原-电炉还原熔炼工艺在红土镍矿的开发中仍占主导地位,加压酸 浸法随着大型压力釜制造技术的成熟也越来越受到重视和应用。我国在红土镍矿的工程化方面很欠缺,元江贫红土镍矿的开发必须综合考虑镁的产品结构和经济利用,元石山镍矿的开发必须考虑铁的综合利用。 【作者单位】:北京矿冶研究总院北京矿冶研究总院北京矿冶研究总院北京矿冶研究总院北京矿冶研究总院 【关键词】:红土镍矿加压浸出镍 【基金】:国家重点基础研究发展计划资助项目(2007CB613505)国家高技术发展计划资助项目(2006AA06Z131)国家自然科学基金(50674014) 【分类号】:TF815 【正文快照】: 20世纪80年代以来,中国经济取得了高速的发展,有色金属消费需求旺盛,1993一2003年的10年间,中国精镍的消费量年平均增长率高达12%。2003年国内矿山生产镍约6万t,

消费量约12.3万t,供需缺口约6.3万t;2004年国内精炼镍产量近8万t,消费量达到14.6万t;2005年中国的镍 回转窑预还原焙烧红土矿工艺模拟研究 李仲恺袁熙志林重春 【摘要】:以红土矿为实验原料,采用还原炉一热天平减重法,研究预还原温度、时间、气氛及石灰加入量对红土矿预还原焙烧过程中镍预还原率的影响。并用原子吸收光谱法分析得出红土矿中镍的预还原率。结果表明,在回转窑预还原焙烧工艺中最佳的工艺条件为:预还原温度为950℃、预还原时间为80min、预配焦炭为红土矿量的2.3%、石灰加入量为理论计算所需量的35%~50%。【作者单位】:四川大学化学工程学院; 【关键词】:红土镍矿预还原焙烧磁选

高炉强化冶炼详解

高炉强化冶炼技术及其进步 高炉炼铁生产的原则 高炉冶炼生产的目标是在较长的一代炉龄(例如5年或更长)内生产出尽可能多的生铁,而且消耗要低,生铁质量要好,经济效益要高,概括起来就是“优质,低耗,高产,长寿,高效益”。长期以来,我国乃至世界各国的炼铁工作者对如何处理这五者间的关系进行过,而且还在进行着讨论,讨论的焦点是如何提高产量及焦比与产量的关系。 众所周知,表明高炉冶炼产量与消耗的三个重要指标—有效容积利用系数(ηY)、冶炼强度(I)和焦比(K)之间有着如下的关系:ηY=I/K 显然,利用系数的提高,也即高炉产量的增加,存在着四种途径: (1)冶炼强度保持不变,不断地降低焦比; (2)焦比保持不变,冶炼强度逐步提高; (3)随着冶炼强度的逐步提高,焦比有所降低; (4)随着冶炼强度的提高,焦比也有所上升,但焦比上升的幅度不如冶炼强度增长的幅度大。 在高炉炼铁的发展史上,这四种途径都被应用过,应当指出在最后一种情况下,产量增长很少,而且是在牺牲昂贵的焦炭的消耗中取得的,一旦在冶炼强度提高的过程中,焦比升高的速率超过冶炼强度提高的速率,则产量不但得不到增加,反而会降低。因此,

冶炼强度对焦比的影响,成为高炉冶炼增产的关键。 在高炉冶炼的技术发展过程中,人们通过研究总结出冶炼强度与焦比的关系如图1所示。 图1 冶炼强度与产量(I)和焦比(K)的关系 a一美国资料,b一原西德资料,c一前苏联资料

在一定的冶炼条件下,存在着一个与最低焦比相对应的最适宜的冶炼强度I适。当冶炼强度低于或高于I适时,焦比将升高,而产量稍迟后,开始逐渐降低。这种规律反映了高炉内煤气和炉料两流股间的复杂传热、传质现象。在冶炼强度很低时,风量及相应产生的煤气量均小,流速低,动压头很小,造成煤气沿炉子截面分布极不均匀,表现为边缘气流过分发展,煤气与矿石不能很好地接触,结果煤气的热能和化学能不能得到充分利用,炉顶煤气中CO,含量低,温度高,而进入高温区的炉料因还原不充分,直接还原发展,消耗了大量宝贵的高温热量,因此焦比很高。随着冶炼强度的提高,风量、煤气量相应增加,煤气的速度也增大,从而改变了煤气流的流动状态,由层流转为湍流,风口前循环区的出现,大大改善了煤气流分布和煤气与炉料之间的接触,煤气流的热能和化学能利用改善,间接还原的发展减少了下部高温区热量的消耗,从而焦比明显下降,直到与最适宜冶炼强度儿相对应的最低焦比值。之后冶炼强度继续提高,煤气量的增加进一步提高了煤气流速,这将带来叠加性的煤气流分布,导致中心过吹或管道行程,在煤气流速过大时,它的压头损失可变得与炉料的有效质量相等或超过有效质量,炉料就停止下降而出现悬料。所有这些将引起还原过程恶化,炉顶煤气温度升高,炉况恶化,最终表现为焦比升高。 高炉炼铁工作者应该掌握这种客观规律,并应用它来指导生产,即针对具体生产条件,确定与最低焦比相适应的冶炼强度,使高炉顺行,稳定地高产。然而高炉的冶炼条件是可以改变的,随着技术的进步,例如加强原料准备,采取合理的炉料结构,提高炉顶

浅谈矿热炉冶炼镍铁工艺

浅谈矿热炉冶炼镍铁工艺 摘要:本文介绍了从红土镍矿提炼镍铁几种不同的冶炼工艺,并着重分析了矿热炉冶炼镍铁工艺RKEF法,此工艺成为当前我国红土镍矿处理的主要方法。采用高效、流程短、低耗能、环保等镍铁冶炼新工艺已经成为发展的趋势。 关键词:镍铁;矿热炉;RKEF法 1 前言 金属镍具有良好的机械强度、延展性和化学稳定性,耐腐蚀,能磁化等一系列特性,广泛用于不锈钢、高温合金、电镀和化工等行业,在国民经济的发展中具有极其重要的地位。全球约2/3的镍用于生产不锈钢,镍原料的成本占奥氏体不锈钢生产成本的70%左右。 2 镍铁冶炼工艺分类 镍铁冶炼工艺主要有火法理、湿法两种。对于含镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解得金属镍。对于氧化矿主要是含镍红土矿,其品位低,适于湿法处理;主要方法有氨浸法和硫酸法两种。氧化矿的火法处理是镍铁法。 2.1 高炉法 高炉生产生铁历史悠久,但普遍使用高炉生产镍铁还是中国人发明(刘光火)和研究的结果。 高炉生产镍铁的流程主要是:矿石干燥筛分(大块破碎)——配料——烧结——烧结矿加焦炭块及熔剂入高炉熔炼——镍铁水铸锭和熔渣水淬——产出镍铁锭和水淬渣。 2.2 电炉(矿热炉)法 这里的电炉指被称作矿热炉的电弧炉的一种,矿热炉冶炼镍铁工艺流程是:原矿干燥及大块破碎——配煤及熔剂进回转窑彻底干燥及预还原——矿热炉还原熔炼——镍铁铁水铸锭及熔渣水淬——产出镍铁锭(或水淬成镍铁粒)和水淬渣。 该工艺通常是指回转窑加矿热炉工艺,在国外已有几十年的生产历史,有一套较成熟的技术和理论,国内也有少数厂家有几年的生产历史,但都是小设备生产,技术问题很多,效益也不好,近期有数家企业陆续投产和正在建设上规模的生产线。

高炉高压操作详解

高炉高压操作 20世纪50年代以前,高炉都是在炉顶煤气剩余压力低于30kPa 的情况下生产的,通常称为常压操作。1944-1946年美国在克利夫兰厂的高路上将炉顶煤气压力提高到70kPa,试验获得成功(产量提高12.3%,焦比降低2.7%,炉煤量大幅度降低),从这时起将炉顶煤气压力超过30kPa的高炉操作称为高压操作。在此后十年中,美国采用高压操作的高炉座数增加很多。苏联于1940年开始在彼得罗夫斯基工厂进行提高炉顶煤气压力操作的试验,它比美国的试验稍早一点,但初次试验并未成功,后来改进了提高炉顶煤气压力的设施后才取得进展,但其发展速度却很快,到1977年高压操作高炉冶炼的生铁占全部产量的97.3%。我国从50年代后期开始,也先后将1000m3级高炉改为高压操作,同样取得较好的效果,但是炉顶压力均维持在50-80kPa,而宝钢1号高炉(4063m3)的炉顶压力已达到250 kPa,进入世界先进行列。 一、高压操作系统 高炉炉顶煤气剩余压力的提高是由煤气系统中的高压调节阀组 控制阀门的开闭度来实现的。前苏联早期试验时,曾将这一阀组设置在煤气导出管上,它很快被煤气所带炉尘所磨坏,因而试验未获成功。后来改进阀组结构并将其安装在洗涤塔之后,才能取得成功(见图1)。我国1000m3级高炉的调压阀组是由三个φ700mm电动蝶式调节阀,一个设有自动控制的φ400mm蝶阀和一个φ200mm常通管道所组成。高压时,φ700mm阀常闭,炉顶煤气压力由φ400mm阀自动控

制在规定的剩余压力,这样自风机到调压阀组的整个管路和高炉炉内均处于高压之下,只有将所有阀门都打开,系统才转为常压,长期以来,由于炉顶装料设备系统中广泛使用着双钟马基式布料器,它既起着封闭炉顶,又起着旋转布料的作用,布料器旋转部位的密封一直阻碍着炉顶压力的进一步提高。只有到70年代实现了“布料与封顶分离”的原则,即采用双钟四阀,无钟炉顶等以后,炉顶煤气压力才大幅度提高到150kPa,甚至到200-300 kPa。 图1 高压操作工艺流程图 图2 余热发电工艺流程图

中国镍铁冶炼技术发展

中国镍铁冶炼技术发展之路
中国镍铁冶炼技术发展之路
中国恩菲
卢笠渔 2014.11

中国镍铁冶炼技术发展之路
主要内容
1
一、中国镍铁冶炼技术现状 二、中国镍铁冶炼的开拓创新 三、中国镍铁冶炼存在的问题 四、中国镍铁冶炼的发展前景 五、小结
2
3
4
5

中国镍铁冶炼技术发展之路
中国镍铁冶炼技术现状
一、中国镍铁冶炼技术现状
? 中国缺乏红土矿资源,镍铁冶炼行业起步晚,国际上火法冶炼 镍铁从鼓风炉开始始于130多年前,而我国的镍铁冶炼至今不足10 年时间。我国镍铁从无到有,快速发展,成为镍铁生产大国是举 世瞩目的,是绝无仅有的。
不锈钢 镍
Source: antaike

中国镍铁冶炼技术发展之路
中国镍铁冶炼技术现状
一、中国镍铁冶炼技术现状
? 10年中,我国镍铁发展的道路十分曲折,有春天也有严冬,从2005年到 2010年受镍价高位和不锈钢快速发展的影响,我国镍铁含镍短短几年就达到了 20万吨,但在世界范围内工艺最落后而产能最大。 ? 2010年之后,中国恩菲经几年的研究,在中国实现了RKEF工艺,2010年到 2013年的3年间生产镍铁含镍由20万吨达到了47.8万吨。其中RKEF法的产量近 50%,这是技术进步的体现。 ? RKEF的出现使中国镍铁生产在镍价低位的时候仍能持续生产并发展下去, 而且节约了大量的能源。22万吨镍铁由RKEF生,每年节电初估50亿度电以上, 相当于一个600MW的电厂。
Source: antaike

镍铁冶炼的RKEF工艺

镍铁冶炼的RKEF工艺 在世界范围,以廉价的红土镍矿为原料,采用RKEF火法冶炼镍铁的工艺技术具有很强的适用性和经济性。 (三)RKEF工艺介绍 1、对原料的要求 对于“回转窑(RK)-矿热炉(EF)”流程,矿石成分很重要,有3个指标是采用RKEF工艺应该关心的: (1) Ni品位,希望在1.5以上,最好 2.0以上。 (2) Fe,Ni,希望在6,10,最好接近6,中Ni品位高;如果Fe,Ni>10,则很难冶炼出含20,的镍铁,因为原料中Fe过高,很难在回转窑中控制氧化铁的还原度。 (3) MgO/SiO2,在0.55,0(65较合适,少量加入熔剂就可以得到低熔点的炉渣结构。 以上3个条件只是合适的条件,而不是必须的条件,在矿石条件不符合上述要求时,可以生产品位较低的镍铁,技术经济指标将受到影响。 还原剂(烟煤或无烟煤均可)和石灰石也是RKEF工艺所必需的,这两种原料在我国资源丰富,容易得到。 2、典型工艺流程、主体设备结构 (1) 生产流程 原料场?筛分、破碎和混匀配料?回转窑?矿热炉?铁包脱硫?精炼转炉?浇铸。在这个基础上,发展了对原料预干燥、原料制球、回转窑节能和余热发电、矿热炉高效冶炼和低熔点渣系配料、采用底吹或侧吹精炼转炉替代顶吹转炉、镍铁粒化等技术,适用于不同条件的工厂。

(2) 典型工艺装备组成 2台5.0×100m回转窑、2台63MVA的密闭矿热炉、40t的底吹精炼转炉,造粒和铸块设备。年产镍铁10.12万t(镍金属2,2.2万t)。鉴于国产设备的成熟度和运输条件制约,为降低投资,国内的在建工厂采用4座回转窑、2台48MVA矿热炉的方案将可以缩短建设周期,收到好的经济效益。 (3) 工艺概述 矿石、石灰石、还原剂在原料场、备料间加以筛分破碎后,混匀配料送入回转窑。 在回转窑中,原料经干燥、焙烧、预还原,制成约1000?的镍渣,回转窑烟气经余热锅炉、除尘、脱硫化后排放,粉尘与原料混合后再次入窑。

高炉炼铁设备操作

喷煤操作规程及管理制度 1. 岗位职责 1.1. 煤粉喷吹操作。 2. 工作内容 2.1. 准备工作 2.1.1. 将直吹管装配好经检查合格的弹子阀。 2.1.2. 检查喷枪长度,确保喷枪位置适宜。 2.1. 3. 插枪时准备好管钳,大锤等工具。 2.2. 喷煤 2.2.1. 将喷枪插入风口直吹管时,喷枪阀门应关闭,调整好喷枪角度,连接好胶皮管或金属软管。 2.2.2. 检查分煤器各阀门,直通阀及旁通阀应关闭。 2.2. 3. 打开分煤器下部放散阀。 2.2.4. 联系喷吹工送风,确认管道送风正常后关闭放散阀,打开分煤器各直通阀及喷枪阀门。 2.2.5. 通知工长,具备送煤条件,由工长通知喷吹工送煤后,检查煤粉枪喷吹情况。 2.3. 风口停喷条件 2.3.1. 风口损坏漏水时。 2.3.2. 风口向凉,升降多,挂渣,涌渣,灌渣。 2.3.3. 风口未全开时。 2.3.4. 直吹管内有异物时。

2.3.5. 喷枪烧坏磨风口时。 2.3.6. 直吹管不严,跑风,吹管前端发红时。 2.4. 喷煤突然停风,停电的处理 喷煤突然停风停电,配管工应立即关闭喷枪阀门,防止热风倒流造成事故,同时打开分煤器放散阀,然后更换烧坏的喷枪或喷煤管,待喷吹正常后再按正常程序送煤。 2.5. 休复风时的喷煤操作 2.5.1. 休风后应关闭喷枪阀门,分煤器直通阀,打开放散阀。 2.5.2. 复风时应先通知喷吹工送风,然后按正常程序送煤。 2.6. 喷枪故障检查与排除 2.6.1. 喷枪堵塞时,应先关闭分煤器直通阀,打开分煤器上旁通,利用炉内热风压力进行倒冲,若倒冲无效,可关闭旁通阀,打开压缩空气或氮气吹扫阀门进行吹扫。 2.6.2. 若分煤器至喷枪部分管路堵塞经吹扫无效后,可打开喷枪连接软管进行吹扫处理。 2.6. 3. 若分煤器出口至分煤器直通阀部分堵塞可打开分煤器下部旁通阀进行处理。 2.6.4. 若喷枪堵塞清扫无效经确认管路畅通,应更换喷枪。 2.6.5. 若分煤器主管堵塞应关闭分煤器所有直通阀,打开放散阀,进行放散,正常后关闭放散阀,打开分煤器直通阀,必要时联系喷吹工进行处理。 2.6.6. 若喷枪全堵,经检查主管畅通,应分别清理至正常。

RKEF火法冶炼镍铁工艺介绍王群红整理

国内红土镍矿冶炼镍铁主流工艺技术 RKEF火法冶炼镍铁介绍 1 镍、镍铁和镍矿 1.1镍 镍是略带黄色银白色金属,是一种具有磁性的过渡金属。镍的应用在于镍的抗腐蚀性,合金中添加镍可增强合金的抗腐蚀性。不锈钢与合金生产领域是镍最广泛应用领域。全球约2/3的镍用于不锈钢生产,因此不锈钢行业对镍消费的影响居第一位。捏镍不锈钢中的主要作用在于它改变了钢的晶体结构。在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢属性,所以,镍被称为奥氏体形成元素。目前全球有色金属中,镍的消费仅次于铜、铝、铅、锌,居有色金属第五位。因此,镍被称为战略物资,一直被各国所重视。 1.2镍铁 镍铁主要成分为镍与铁,同时还含有Gr、Si、S、P、C等杂质元素。根据国际标准(ISO)镍铁按含镍量分为FeNi20(Ni15~25%)、FeNi30(Ni25~35%)、FeNi40(Ni35~45%)、FeNi50(Ni45~60%),又再分为高碳(1.0~2.5%)、中碳(0.030~1.0%)和低碳(1<0.030%);低磷(P<0.02%)与高磷(P<0.02%)镍铁。目前国内生产厂家生产的镍铁品位10~15%,也有部分厂家生产20%或25%以上的镍铁。 1.3 镍矿 世界上可开采的镍资源主要有两类,一类是流化矿床,另一类是氧化矿床。由于硫化镍矿资源品质好,工艺技术成熟,现约60~70%的镍来源于硫化镍

矿。而世界上镍的储量80%为氧化镍矿,矿物组成主要是含水镍镁硅酸盐(xNi.yMgO)2Si2n H2O,以及针铁矿Fe2O3.H2O、赤铁矿Fe2O3和磁铁矿Fe3O4,由于铁的氧化,矿石呈红色,所以通称红土镍矿。 世界上的红土镍矿分布在赤道线南北纬30°以内的热带国家,其可开采部分一般由三层组成:褐铁矿层、过渡层和腐殖土层。其化学成分组成见表1. 褐铁矿层,含铁多、硅镁少、镍低、钴较高,一般采用湿法工艺回收金属;再下层是混有脉石的残积层(过渡层和腐殖土层)矿,含硅镁高、铁较低、钴较低、镍较高,这类矿一般采用火法工艺处理。具体情况见表2?。 2镍的冶炼工艺 现代生产镍的方法主要有火法和湿法两种。根据世界上主要两类含镍矿物(含镍的硫化物和氧化物)的不同,冶炼方法各异。 镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解的金属镍。氧化矿主要是含镍红土矿,其褐铁矿层,含铁多、硅镁少,镍低、钴较高,一般采用湿法工艺处理,主要方法有氨浸法和硫酸法两种。下层是混有脉石的腐植土层(包括硅镁性镍矿),含硅镁高、低铁、镍较高、钴较低,这类矿一般采用火法工艺处理。 2.1湿法工艺流程介绍 ? 目前成熟的湿法工艺流程有还原焙烧氨浸流程、高压酸浸流程和常压酸浸流程。 2.1.1还原焙烧氨浸流程 ? 还原焙烧氨浸流程处理褐铁矿或褐铁矿和残积层矿的混合矿矿石先干

rkef冶炼工艺概述

rkef冶炼工艺概述 RKEF法冶炼工艺概述前言 目前,国内外红土镍矿的处理方法主要有火法和湿法两种冶炼工艺,湿法工艺是使用硫酸、盐酸或者氨水溶液作为浸出剂,浸出红土镍矿中的镍和钴金属离子,常见的湿法处理工艺有高压酸浸工艺(HPAL)、常压酸浸工艺(PAL)和氨浸工艺(Caron)。火法工艺是在高温条件下,以C作还原剂,对氧化镍矿中的NiO及其他氧化物进行还原而得。火法冶炼因具有流程短、三废排放量少、工艺成熟等特点,已成为红土镍矿冶炼的主要工艺。 目前国内外主要有4种火法工艺:烧结—高炉流程(BF法);回转窑—电炉熔炼流程(RKEF法);多米尼加鹰桥竖炉—电炉工艺;日本大江山回转窑直接还原法。其中,RKEF法是当今世界上火法处理红土镍矿的先进及成熟工艺,广泛地应用于各国冶炼厂家。 RKEF(Rotary Kiln-Electric Furnace)法始于上世纪50年代,由Elkem公司在新喀里多尼亚的多尼安博厂开发成功,具有产品质量好、生产效率高、节能环保等优点。 在不锈钢产量大幅增幅的驱动下,RKEF法镍铁的生产能力急剧增加。我国冶炼镍铁电炉炉容在不断地扩大。额定容量25 MVA的炉型已经逐步退出主体炉型,进而33 MVA、36 MVA、48 MVA、51 MVA成为主体炉型。与此同时,我国矿热炉生产镍铁的工艺流程更加合理,矿热电炉的总体装备水平大幅度提高,冶炼工艺技术更加成熟。下面将概括介绍和讨论矿热电炉利用红土镍矿采用RKEF法冶炼镍铁的工艺技术。 1 工艺流程概述 利用红土镍矿生产镍铁的RKEF冶炼工艺流程如图1.1:

图1.1 RKEF工艺流程图 工艺流程主要包含以下几个阶段: (1)在露天料场进行红土矿的晾晒;大块红土矿的破碎、筛分、混匀。 (2)应用干燥窑对红土矿进行干燥;应用回转窑进行红土矿的焙烧预还原。以此获得焙砂。 (3)矿热电炉熔炼焙砂生产含镍生铁。 (4)回转窑与电炉余热的利用。 (5)粉尘的收集与再利用。 对RKEF法工艺的流程,矿石内部的成分尤为重要,其中有至少3个指标,在生产时需要关注: (1)Ni品位,控制在1.5以上,最好2.0以上。 (2)Fe/Ni,在6~10之间,最好接近6,因而矿中Ni品位高;如果Fe/Ni>10,则很难冶炼出含Ni=20%的镍铁,因为原料中Fe过高,很难在回转窑中控制氧化铁的还原度。 (3)MgO/SiO,在0.55~0.65较合适,少量加入熔剂就可以得到低熔点的炉渣结构。 2

镍的冶炼工艺

镍的冶炼工艺 现代生产镍的方法主要有火法和湿法两种。根据世界上主要两类含镍矿物(含镍的硫化物和氧化物)的不同,冶炼方法各异。 镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解的金属镍。氧化矿主要是含镍红土矿,其褐铁矿层,含铁多、硅镁少,镍低、钴较高,一般采用湿法工艺处理,主要方法有氨浸法和硫酸法两种。下层是混有脉石的腐植土层(包括硅镁性镍矿),含硅镁高、低铁、镍较高、钴较低,这类矿一般采用火法工艺处理。 2.1湿法工艺流程介绍 目前成熟的湿法工艺流程有还原焙烧氨浸流程、高压酸浸流程和常压酸浸流程。 2.1.1还原焙烧氨浸流程 还原焙烧氨浸流程处理褐铁矿或褐铁矿和残积层矿的混合矿矿石先干燥然后矿石中的镍在700℃时选择性还原成金属镍钴和一部分铁被一起还原还原的金属镍经过氨浸回收。还原焙烧氨浸流程的缺点有矿石处理采用干燥、还原、焙烧等工序消耗能量大消耗多种化学试剂镍和钴的回收率比火法流程和高压酸浸流程低。 2.1.2高压酸浸流程

高压酸浸流程主要处理褐铁矿和一部分绿脱石或蒙脱石。加压酸浸一般在衬钛的高压釜中进行浸出,温度245℃-260℃,通过液固分离、镍钴分离,生产电解镍、氧化镍或镍冠,有些工厂生产中间产品,如混合硫化镍钴或混合镍钴氢氧化物。 高压酸浸流程处理的红土矿要求含MgO/Al2O3低,通常含MgO<4%(含MgO越高,耗酸越高),含Al 低的矿石。 2.1.3其他湿法工艺流程有些湿法工艺流程正在进行试验和进一步评估如强化高压酸浸工艺、常压酸浸工艺、硫酸堆浸工艺和氯化浸出工艺。 2.2火法工艺流程 现有的火法工艺处理红土矿工艺流程有传统的回转窑—电炉工艺;多米尼加鹰桥竖炉—电炉工艺;日本大江山回转窑直接还原法。 多米尼加鹰桥竖炉——电炉工艺流程是红土矿经过干燥脱水、制团、采用竖炉煅烧生产部分还原煅烧团矿、电炉熔炼生产粗镍铁,粗镍铁在钢包炉中精炼。 日本大江山回转窑直接还原法生产镍铁,该流程分为三个步骤:(1)物料预处理:磨矿、混合与制团,以提高回转窑操作效果;(2)冶炼工艺:回转窑煅烧、金属氧化物还原与还原金属的聚集;(3)分离处理:回转窑产出的熟料采用重选与磁选分离出镍铁合金。这是世界上唯一采用回转窑直

镍铁冶炼

镍铁冶炼 根据红土镍矿成分的不同,镍生产厂可以选择不同的冶炼工艺。中国目前还没有一座大型镍铁生产工厂,为了少走弯路可以引进国外成熟的先进技术,在中国国内制造全部设备,以较少的投资,在最短的时间内,选择适宜的沿海地区建设一座大型镍铁生产厂。为此,比较详细的介绍了乌克兰帕布什镍厂的火法冶炼镍铁的工艺流程和生产指标。文章还介绍了在镍铁精炼车间,直接冶炼300系列不锈钢工艺的开发。 1. 开发利用海外镍资源满足中国日益增长的镍需求: 尽管中国镍资源的开发与利用近年来得到了快速的发展,但是,发展的速度远远跟不上冶金等行业对镍需求增长的速度。近几年,中国精炼镍产量在8万吨左右,受到资源的限制,短时间内不大可能快速增长。合资在国外开发镍矿、建设镍生产厂的几个项目虽然已经签约,但是项目产能有限、实施还需要时间。目前中国镍的年消费量已经快速的增加到14.6万吨,中国已经成为仅次于日本的世界第二大镍消费国,是近年来全球镍消费增长最快的国家。随着国民经济的快速发展,人民生活水平的提高,不锈钢的消费量将上升,这将导致镍的需求量增长的速度大大超过目前可以预期的镍的产出量的增长速度。有色金属工业协会预计到2010年,中国镍消费量将达到24万吨。 近年来,为了保证国民经济发展对镍的需求,中冶、五矿、太钢、宝钢等大企业实施“走出去”的发展战略,参与海外镍矿资源的开发,这将对中国镍的稳定供应发挥重要作用。中国的一些民营企业,也积极进行开发利用海外镍资源的探索,取得进展。利用红土镍矿生产的低镍含量的生铁已经广泛的用于200系列不锈钢的冶炼。 目前中国镍冶炼工艺基本上处于以电解镍为主的单一产品的局面。研究开发利用红土型镍矿,生产镍铁的技术是必要的。红土型镍矿用来生产镍铁在经济上合理,没有必要一定要生产电解镍。这项技术的开发有利于中国企业参与海外镍矿资源开发,占有更多优势矿产资源。 2. 建设火法冶炼镍铁的工厂的条件分析: 目前中国还没有大型的镍铁生产厂。中国金川镍厂以中国产的硫化镍矿为原料,适合于湿法冶金工艺。吉恩镍业和元江镍业镍虽然以红土镍矿为原料,但是都采用了高压酸浸工艺生产镍。中国目前有小的炼铁厂,采用传统的烧结技术处理进口红土镍矿,生产镍渣,再加入高炉生产含镍量为1%-3%的低镍生铁,用于冶炼200系列的不锈钢。 建设镍的冶炼工厂投资大,限制了中国镍业发展。有报道,国外采用湿法冶金生产镍,每一公斤镍的投资在20-24美元。如果引进设备,在中国建设火法冶炼镍铁的工厂,投资也相似。所以本文主要想探讨利用国际先进的技术和设计,在中国制造设备,建设镍的生产工厂的可行性。这样可以规避风险,收到高利润、低风险的效果。通过与乌克兰的专家近一年的讨论,利用原苏联的技术和设计,采用国产设备建设一座年产镍1.0万吨(镍铁5万吨) 的工厂,每一公斤镍的技资大约为6美元。 生产镍铁,能源消耗大。生产一吨含镍20%的镍铁,大约需要80Nm3氧气和4000-6000kwh(矿石含镍为1.2%-2.0% 时)电力。所以厂区周边的电力供应状况很重要。在建设工厂以前必须落实矿石的来源。理论上讲,所有的红土镍矿石都可以用火法冶金生产镍铁,但是由于矿石的性质不同,为了降低生产成本,火法工艺优先选择以硅镁镍矿做原料。而碱性镍矿可以选择还原焙烧一氨浸法处理;褐镁矿型红土矿可以选择加压(或常压)酸浸处理工艺。有报道:约有40亿吨红土镍矿适于高温冶炼,平均纯度为1.55%, 含量约为6200万吨, 约占红土镍矿总数的38%:约有86亿吨的红土镍矿适于湿法冶金,平均纯度为1.15%, 含量约为9900万吨,占红土镍矿总数的62%。但是,乌克兰国家冶金学院的专家怀疑这组数据, 根据

高炉冶炼工艺

第四章高炉冶炼工艺 课时:2学时 授课内容: 第三节热风炉操作 目的要求: 1.了解热风炉燃料; 2.知道影响热风的因素; 3.掌握热风炉的操作特点、燃烧制度; 4.掌握送风制度和换炉操作。 重、难点: 1.影响热风的因素、热风炉的燃烧制度、送风制度和换炉操作。 教学方法: 利用多媒体以课堂讲授为主,结合实际范例进行课堂讨论。 讲授重点内容提要 第三节热风炉操作 一.热风炉燃料 1.燃料品种及其化学成分、发热量 热风炉的燃料为煤气。 表4—15分别列出几种热风炉常用煤气的成分和发热值。 表4—15 热风炉常用煤气成分及发热值 2.煤气及助燃空气的质量 含尘量:煤气含尘量低于10mg/m3。助燃空气含尘量尽量减少。 煤气含水量:在热风炉附近的净煤气管道上设置脱水器或,使用干法除尘。 净煤气压力:净煤气支管处的煤气应有一定的压力,见表4—16。 表4—16 热风炉净煤气吉管处的煤气压力 3.气体燃料可燃成分的热效应 气体燃料可燃成分的热效应(见表4—17) 表4—17 1 m3气体燃料中各可燃成分l%体积的热效应 二.影响热风温度的因素 1.拱顶温度 ◆限制拱顶温度的因素:

①耐火材料理化性能。实际拱顶温度控制在比拱顶耐火砖平均荷重软化点低l00℃左右(也有按拱顶耐火材料最低荷重软化温度低40~50℃控制)。 ②煤气含尘量。不同含尘量允许的拱顶温度不同(见表4—18)。 表4—18 不同含尘量允许的拱顶温度 ③燃烧产物中腐蚀性介质。为避免发生拱顶钢板的晶间应力腐蚀,必须将拱顶温度控制在不超过l400℃或采取防止晶间应力腐蚀的措施。 ◆热风炉实际拱顶温度低于理论燃烧温度70~90℃。 ◆大、中型高炉热风炉拱顶温度比平均风温高120~220℃。小型高炉拱顶温度比平均风温高l50~300℃。 2.废气温度 允许的废气温度范围:大型高炉废气温度不超过350~400℃,小型高炉不得超过400~450℃。 废气温度与热风温度的关系:提高废气温度可以增加热风温度。在废气温度为200~400℃范围内,每提高废气温度100℃约可提高风温40℃。 影响废气温度的因素:单位时间燃烧煤气量、燃烧时间、蓄热面积。 3.热风炉工作周期 热风炉一个工作周期:燃烧、送风、换炉三个过程自始至终所需的时间。 送风时间与热风温度的关系:随着送风时间的延长,风温逐渐降低。 合适的工作周期:合适的送风时间最终取决于保证热风炉获得足够的温度水平(表现为拱顶温度)和蓄热量(表现为废气温度)所必要的燃烧时间。 4.蓄热面积与格子砖重量 当格子砖重量相同并采用相同工作制度时,蓄热面积大的供热能力大。 格子砖重量大,周期风温降小,利于保持较高风温。 单位风量的格子砖重量增大时,热风炉送风期拱顶温度降减少,即能提高风温水平。 单位风量的格子砖重量相同时,蓄热面积大的拱顶温度降小。 5.其他因素 ◆燃烧器形式和能力 陶瓷燃烧器的煤气和空气、混合较好,燃烧能力大,完全可以满足要求。 ◆煤气量(煤气压力) 煤气量不足或煤气压力波动,拱顶温度不能迅速稳定地升高,热风炉蓄热量减少。 ◆高炉操作 高炉顺行、热风炉工作稳定,能最大限度地保持较高风温水平。 三.热风炉的操作 1.蓄热式热风炉的传热特点 热风炉内的传热主要是指蓄热室格子砖的热交换。 高炉热风温度的高低,取决于蓄热室贮藏的热量及拱顶温度。 2.热风炉的操作特点 ◆热风炉操作是在高温、高压、煤气的环境中进行。 ◆热风炉的工艺流程: ①送风通路:热风炉除冷风阀、热风阀保持开启状态外,其他阀门一律关闭; ②燃烧通路:热风炉冷风阀和热风阀关闭外,其他阀门全部打开; ③休风:所有热风炉的全部阀门都关闭。 ◆蓄热式热风炉要储备足够的热量。 ◆热风炉各阀门的开启和关闭必须在均压下进行。 ◆高炉热风炉燃烧可以使用低热值煤气,提供较高的风温。

国内外最新镍铁生产工艺介绍

国内外最新镍铁生产工艺介绍 根据红土镍矿成分的不同,镍生产厂可以选择不同的冶炼工艺。中国目前还没有一座大型镍铁生产工厂,为了少走弯路可以引进国外成熟的先进技术,在中国国内制造全部设备,以较少的投资,在最短的时间内,选择适宜的沿海地区建设一座大型镍铁生产厂。为此,比较详细的介绍了乌克兰帕布什镍厂的火法冶炼镍铁的工艺流程和生产指标。文章还介绍了在镍铁精炼车间,直接冶炼300系列不锈钢工艺的开发。 1. 开发利用海外镍资源满足中国日益增长的镍需求: 尽管中国镍资源的开发与利用近年来得到了快速的发展,但是,发展的速度远远跟不上冶金等行业对镍需求增长的速度。近几年,中国精炼镍产量在8万吨左右,受到资源的限制,短时间内不大可能快速增长。合资在国外开发镍矿、建设镍生产厂的几个项目虽然已经签约,但是项目产能有限、实施还需要时间。目前中国镍的年消费量已经快速的增加到1 4.6万吨,中国已经成为仅次于日本的世界第二大镍消费国,是近年来全球镍消费增长最快的国家。随着国民经济的快速发展,人民生活水平的提高,不锈钢的消费量将上升,这将导致镍的需求量增长的速度大大超过目前可以预期的镍的产出量的增长速度。有色金属工业协会预计到2010年,中国镍消费量将达到24万吨。 近年来,为了保证国民经济发展对镍的需求,中冶、五矿、太钢、宝钢等大企业实施“走出去”的发展战略,参与海外镍矿资源的开发,这将对中国镍的稳定供应发挥重要作用。中国的一些民营企业,也积极进行开发利用海外镍资源的探索,取得进展。利用红土镍矿生产的低镍含量的生铁已经广泛的用于200系列不锈钢的冶炼。 目前中国镍冶炼工艺基本上处于以电解镍为主的单一产品的局面。研究开发利用红土型镍矿,生产镍铁的技术是必要的。红土型镍矿用来生产镍铁在经济上合理,没有必要一定要

高炉炼铁仿真操作系统操作规程

高炉炼铁仿真操作系统实训指导书 绪论 高炉炼铁仿真操作系统功能 实训项目 实训目标

实训项目1 高炉炼铁工艺流程实训 任务按照要求熟练打开仿真操作系统的操作界面 任务熟练说出高炉炼铁车间构筑物的名称及作用 任务熟练说出高炉炼铁车间主要设备的名称及作用 知识链接 高炉内型尺寸

实训项目2 高炉上料实训 仿真实训条件: (一)高炉槽下筛分、称量、运输系统的组成 高炉槽下系统由矿槽、焦槽以及皮带机三部分组成,矿槽采用双排,设有大小矿槽12个,大矿槽测为6个烧结矿槽,小矿槽侧由2个普通球团矿槽、2个块矿槽、2个熔剂或锰矿槽构成设有5个焦槽,各矿槽下均设给料机、振动筛、称量漏斗等设备。配置一个矿石中间称量漏斗与一个焦炭中间称量漏斗,矿焦通过中间称量漏斗、经皮带上炉顶。同时拥有小块焦回收系统,1A-6A按烧结矿考虑,1B-6B按球团矿、锰矿熔剂、生矿考虑。 4.1.1 各高炉矿槽、焦槽配备(见表4—1) 表4—1 各高炉矿槽配备情况 项目 炉别矿槽数(个)焦槽数(个) 烧结矿槽球团矿槽块矿槽焦丁槽 1、2号高炉6×m3 2×m3 2×m3

1×m3 4×m3 储存时间(h):焦炭:8h;烧结矿:12h;球团矿:12h;碎焦:8h;碎矿:8h。 槽下筛分、秤量设备(见表4—2,表4—3) 表4—2 筛分设备表4—3 秤量 类别 规格焦炭筛烧结矿筛类别 名称矿焦 型式BTS-150-330 BTS-150-330 称量物烧结矿 球团矿 块矿焦炭 能力(t/h) 200 250 筛面尺寸(mm) 筛分效率秤容积(m3) 装料制度OC或C OL(大粒度矿)、OS(小粒度矿) (二)主要控制功能 矿焦槽所有入炉原料采用分散筛分、分散称量+集中称量流程。按预先设定的排料程序,

浅谈矿热炉冶炼镍铁工艺

浅谈矿热炉冶炼镍铁工艺 中冶华天南京工程技术有限公司王刚 摘要:本文介绍了从红土镍矿提炼镍铁几种不同的冶炼工艺,并着重分析了矿热炉冶炼镍铁工艺RKEF法,此工艺成为当前我国红土镍矿处理的主要方法。研究开发高效、流程短、低耗能、环保等镍铁冶炼新工艺已经成为未来开发的趋势。 关键词:镍铁;矿热炉;RKEF法 1 前言 金属镍具有良好的机械强度、延展性和化学稳定性,耐腐蚀,能磁化等一系列特性,广泛用于不锈钢、高温合金、电镀和化工等行业,在国民经济的发展中具有极其重要的地位。全球约2/3的镍用于生产不锈钢,镍原料的成本占奥氏体不锈钢生产成本的70%左右。 镍原料多数源自红土镍矿,红土镍矿资源为硫化镍矿岩体风化―淋滤―沉积形成的地表风化壳性矿床,世界上红土镍矿分布在赤道线南北30度以内的热带国家。我国镍矿资源储量中70%集中在甘肃。 红土型镍矿可以生产出氧化镍、硫镍、铁镍等中间产品,其中硫镍,氧化镍可供镍精炼厂使用,以解决硫化镍原料不足的问题。至于镍铁更是便于用于制造不锈钢,降低不锈钢的生产成本。 2 镍铁火法冶炼工艺分类 含镍硫化矿目前主要采用火法处理,通过精矿焙烧反射炉(电炉或鼓风炉)冶炼铜镍硫吹炼镍精矿电解得金属镍。氧化矿主要是含镍红土矿,其品位低,适于湿法处理;主要方法有氨浸法和硫酸法两种。氧化矿的火法处理是镍铁法。 2.1 高炉法 高炉生产生铁历史悠久,但普遍使用高炉生产镍铁还是中国人发明(刘光火)和研究的结果。 高炉生产镍铁的流程主要是:矿石干燥筛分(大块破碎)——配料——烧结——烧结矿加焦炭块及熔剂入高炉熔炼——镍铁水铸锭和熔渣水淬——产出镍铁锭和水淬渣。

工艺流程当中的高炉熔炼有很大的缺点: (1)要用优质的焦炭作为熔炼的燃料,焦炭的耗能量很大,能耗高; (2)产品镍含量通常在2~8%,大多在5%以下,镍品位低,杂质含量高,一 般用于200系的不锈钢生产。 (3)在冶炼的过程中有害气体的排放量大,比如为了增加炉渣的流动性而添加萤石,萤石加入量占炉料总量的8~15%,然而在国内,镍铁小高炉没有设置脱氟设备,全部放散,从而导致排放的高炉烟气中含有大量有害的含氟气体。 (4)红土镍矿可分为高铁低镁(低镍)、低铁高镁(高镍)红土镍矿,两种不同类型原料。而当红土矿含镍1.5%、含铁35%时比较适合小高炉熔炼,可产出含镍约4%的低镍生铁。但如果是低铁高镁(高镍)矿用小高炉熔炼,那么就会导致高炉的产渣量大、粘度大情况,从而难以保证炉况顺行。 (5)由于炉料强度低,所以只能采用小型高炉(矮高炉)生产镍铁,而无法进行大规模的生产。 (6)小型高炉生产镍铁的成本较高。 2.2 电炉(矿热炉)法 这里的电炉指被称作矿热炉的电弧炉的一种,矿热炉冶炼镍铁工艺流程是:原矿干燥及大块破碎——配煤及熔剂进回转窑彻底干燥及预还原——矿热炉还原熔炼——镍铁铁水铸锭及熔渣水淬——产出镍铁锭(或水淬成镍铁粒)和水淬渣。 该工艺通常是指回转窑加矿热炉工艺,在国外已有几十年的生产历史,有一套较成熟的技术和理论,国内也有少数厂家有几年的生产历史,但都是小设备生产,技术问题很多,效益也不好,近期有数家企业陆续投产和正在建设上规模的生产线。 该工艺可以用任何铁镍品位的矿石生产任何含镍量的镍铁,技术上是在回转窑阶段控制铁的还原率来实现的(镍全部还原成金属、铁部分还原成金属和低价氧化物),这是该种工艺的最大特点,也是其具有生命力的原因,但由于矿热炉耗电巨大致使其生产成本偏高,另外缺电地区也无法建厂。 2.3 回转窑直接还原熔炼法 回转窑直接还原熔炼工艺几乎称得上是一项古老的工艺,日本采用该工艺生产镍铁(粒状镍铁,直接用于冶炼不锈钢)已有60余年的历史。 该工艺基本流程是:原矿干燥(大块破碎和磨矿——配加还原煤和熔剂——入回转窑还原和熔炼——熔块水淬——水淬渣和镍铁粒破碎、磨矿、磁选——产出镍粒铁和细

相关主题
文本预览
相关文档 最新文档