当前位置:文档之家› 三角函数辅助角公式化简

三角函数辅助角公式化简

三角函数辅助角公式化简
三角函数辅助角公式化简

三角函数辅助角公式化简

一、解答题

1.已知函数()22sin cos 3f x x x π??

=-+ ???, x R ∈

(1)求()f x 的对称中心;

(2)讨论()f x 在区间,34ππ??

-????上的单调性.

2.已知函数(

)4sin cos 3f x x x π??

=++ ???(1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期;

(2)求()f x 在区间,46π

π??

-????上的最大值和最小值及取得最值时x 的值.

3.已知函数(

)4tan sin cos 23f x x x x ππ????

=-- ? ?????

(1)求()f x 的最小正周期;

(2)求()f x 在区间,44ππ??

-????上的单调递增区间及最大值与最小值.

4.设函数(

)2sin cos 2f x x x x =+-. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=-+-+ ? ? ??????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122??-????上的值域. 6.已知函数(

)21cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π??=+- ???,求

(1)求()f x 的最小正周期;

(2)求函数()f x 的单调递增区间

(3)求()f x 在区间,64ππ

??

-????上的最大值和最小值.

8.设函数()()sin 3cos ?cos 2tan x x x f x x π??+- ?

??

=.

(1)求()f x 的最小正周期;

(2)讨论()f x 在区间0,2π??

???上的单调性.

9.已知函数()223sin cos 2cos 1f x x x x =-+,

(I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π??=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ??= ???, 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数的单调增区间;

(2)的内角,,所对的边分别是,,,若,,且的面积为,求的值.

13.设函数.

(1)求的最大值,并写出使取最大值时的集合;

(2)已知中,角的边分别为,若,求的最小值.

14.已知()()13sin cos cos 2f x x x x ωωω=+-,其中0ω>,若()f x 的最小正周期为4π.

(1)求函数()f x 的单调递增区间;

(2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围.

15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数

f (x )=a r ?b r 且f (3π

-x )=f (x ).

(Ⅰ)求f (x )的解析式及单调递增区间;

(Ⅱ)将f (x )的图象向右平移3π

单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0,

4π]上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2f x A x A πω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα??- ???的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若且,求的值。

19.已知()22cos sin 3sin cos sin 6f x x x x x x π??=?++?- ???, (1)求函数()y f x =的单调递增区间;

(2)设△ABC 的内角A 满足()2f A =,而3AB AC ?=u u u v u u u v ,求边BC 的最小值.

20.已知函数()cos 3cos cos 2f x x x x π

??

??=-- ???????

(1)求()f x 的最小正周期和最大值;

(2)讨论()f x 在3,44ππ??

????上的单调性.

21.已知()223cos sin231f x x x =+-+ ()x R ∈,求:

(1)()f x 的单调增区间;

(2)当,44x ππ

??

∈-????时,求()f x 的值域.

22.已知函数为偶函数,且函数图象的两相邻对称轴间的距离为. (1)求的值; (2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间. 23.已知函数()44cos sin2sin f x x x x =--. (1)求函数()f x 的递减区间; (2)当0,2x π??∈????时,求函数()f x 的最小值以及取最小值时x 的值. 24.已知函数()223sin cos 2sin 1f x x x x =+-. (1)求函数()f x 的对称中心和单调递减区间; (2)若将函数()f x 图象上每一点的横坐标都缩短到原来的12(纵坐标不变),然后把所得图象向左平移6π个单位长度,得到函数()g x 的图象,求函数()g x 的表达式.

参考答案

1.(1)对称中心为,0212k ππ??+ ???, k Z ∈;(2)增区间为,64ππ??-????,减区间为,36ππ??--????

. 【解析】试题分析:利用降幂公式和辅助角公式将已知函数解析式转化为正弦型函数,根据正弦函数的性质来求对称中心,其对称中心能使函数值为0,从而角的终边在x 轴上;(2)首先求出函数的单调区间,再根据自变量的取值范围来求落在给定范围上的的单调区间. 试题解析:1)由已知

(

)21cos 21cos2113cos2sin 222426x x f x x x x ππ??++ ?-????=-=-=- ???

令26x k π

π-=,得,212k x k Z ππ=+∈,对称中心为,0212k ππ??+ ??

?, k Z ∈. (2)令222262k x k πππππ-

≤-≤+, k Z ∈ 得63k x k π

πππ-≤≤+

, k Z ∈,增区间为,,63k k k Z ππππ??-+∈???? 令3222262k x k πππππ+

≤-≤+, k Z ∈ 得536k x k π

πππ+≤≤+, k Z ∈,增区间为5,,36k k k Z ππππ??++∈???

? ,34ππ??-????上的增区间为,64ππ??-????,减区间为,36ππ??--????

. 2.(1)()f x 2sin 23x π?

?=+ ???, T π=;(2)4x π

=-时, ()min 1f x =-, 12x π=时,

()max 2f x =.

【解析】试题分析:(1)由三角函数的公式化简可得()2sin 23f x x π??=+

???,由周期公式可得答案;(2)由x 的范围可得22633

x π

π

π-≤+≤的范围,可得f (x )的范围,结合三角函数在该区间的单调性,可得最值及对应的x 值.

试题解析:

(1)(

)24sin cos cos sin sin 2sin cos 33f x x x x x x x ππ?

?=-+=- ???

sin22sin 23x x x π??=+=+ ??

? 所以22

T ππ==. (2)因为46x ππ-

≤≤,所以22633x πππ-≤+≤ 所以1sin 2123x π??-≤+≤ ??

?,所以()12f x -≤≤, 当236x ππ+

=-,即4x π=-时, ()min 1f x =-, 当232x π

π+=,即12x π

=时, ()min 2f x =.

3.(1) π (2) ()f x 最大值为-2,最小值为1.

【解析】试题分析:(1)化简函数的解析式得()2sin 23f x x π?

?=- ???,根据22

T ππ==求周期;(2)先求出函数()f x 的单调递增区间,再求其与区间,44ππ??-????的交集即可;根据23x π

-的取值范围确定函数在,44ππ??-????

上的最大值与最小值。 试题解析:

(1)()4tan cos cos 3f x x x x π?

?=- ???4sin cos 3x x π??=- ??

?

1

4sin cos 2x x x ??= ? ???22sin cos x x x =+ )

sin21cos2x x =-sin22sin 23x x x π??=-=- ??

?. 所以()f x 的最小正周期22T ππ=

=. (2)令23z x π

=-,函数2sin y z =的单调递增区间是2,222k k ππππ??-++????

, k Z ∈. 由222232k x k π

π

π

ππ-+≤-≤+,得51212k x k π

πππ-+≤≤

+, k Z ∈. 设,44A ππ??=-????, 5{|,}1212B x k x k k Z ππππ=-+≤≤+∈,易知,124A B ππ???=-????

所以,当,44x ππ??∈-

????时, ()f x 在区间,124ππ??-????上单调递增。 ∵44x ππ-

≤≤, ∴52636x πππ-

≤-≤, ∴1sin 2123x π??-≤-≤ ??

?, ∴12sin 223x π?

?-≤-≤ ???

∴()f x 最大值为2,最小值为-1.

点睛:解题的关键是将函数化成f (x )=A sin(ωx +φ)的形式后,把ωx +φ看成一个整体去处理,特别是在求单调区间的时候,要注意复合函数单调性规律“同增异减”, 如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.

4.(1)T π=,最大值为1(2)()5,Z 1212k k k ππππ??-++∈????

【解析】试题分析:(1)先根据二倍角公式以及辅助角公式将函数化为基本三角函数形式,再根据正弦函数性质求最小正周期T 及最大值;(2)根据正弦函数性质列不等式()222Z 232k x k k π

ππππ-+≤+

≤+∈,解得函数()f x 的单调递增区间.

试题解析:解: ())

1cos21sin222x f x x +=+

1sin2sin 2223x x x π??=+=+ ??

? (1)T π= 当2232x k πππ+

=+ 即()Z 12x k k π

π=+∈时

()f x 取最大值为1

(2)令()222Z 232k x k k π

π

π

ππ-+≤+≤+∈

∴()f x 的单调增区间为()5,Z 1212k k k ππππ??-++∈????

5.(1)答案见解析;(2) ,12?

?-????

. 【解析】试题分析:

(1)整理函数的解析式可得()26f x sin x π??=- ???

,则函数的最小正周期为T π=;对称轴方程为()3x k k Z π

π=+∈;

(2)结合函数的定义域和(1)中整理的函数的解析式可得函数的值域为??????

.

试题解析:

(1)()22344f x cos x sin x sin x πππ??????=-+-+ ? ? ????

???Q

()()1222cos x sin x sinx cosx sinx cosx =++-+

221222cos x x sin x cos x =++-

122222cos x sin x cos x =+- 26sin x π??=- ??

? 22T ππ∴=

=周期 由()()2,6223

k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z π

π=+∈

(2)5,,2,122636x x πππππ????∈-∴-∈-??????

??Q 因为()26f x sin x π??=- ???在区间,123ππ??-????上单调递增,在区间,32ππ??????

上单调递减,

所以 当3x π

=时, ()f x 取最大值 1

又 11222f f ππ????-=<= ? ?????

Q ,当12x π=-时, ()f x 取最小值

所以 函数 ()f x 在区间,122ππ??-????上的值域为2??-????

6.(1) ,1,212k k Z ππ??+-∈ ??? (2) 50,,36πππ?????????????

【解析】试题分析:(1) ()21cos cos sin 2126f x x x x x π??=--

=-- ???,令26x k π

π-=解得x 即可(Ⅱ) 求()f x 在[]0,π上的单调区间,则令222262k x k ππ

π

ππ-≤-≤+解得x,对k 赋值得结果.

试题解析:

(Ⅰ) ()1cos21sin 21226x f x x x π+??=

--=-- ??? 令26x k ππ-=,得212k x ππ=

+, 故所求对称中心为,1,212k k Z ππ??+-∈

??? (Ⅱ)令222262k x k π

π

π

ππ-≤-≤+,解得,63k x k k Z π

π

ππ-≤≤+∈

又由于[]0,x π∈,所以50,,36x πππ????∈?????????

故所求单调区间为50,,36πππ?????????????

. 点睛:三角函数的大题关键是对f(x)的化简,主要是三角恒等变换的考查,化简成()sin y A wx ?=+ 类型,把wx+ ? 看成整体进行分析.

7.(1)T π=;(2)单调递增区间为,,36k k k Z ππππ?

?-+∈????

;(3)()min 1f x =-, ()2miax f x =.

【解析】试题分析:(1)由和差角公式及二倍角公式化简得: ()

2sin 26f x x π??+ ???,进而得最小正周期;

(2)由2k 22,62x k k Z π

π

ππ≤+≤+∈可得增区间;

(3)由64x π

π

-≤≤得22663

x π

π

π∴-≤+≤,根据正弦函数的图象可得最值. 试题解析:

(1)

()

214cos sin 14cos cos 1cos 2cos 162f x x x x x x x x x π???=+-=+-=+-? ??????

Q

cos2x x =+ 2sin 26x π??=+ ??

?. ()f x ∴的最小正周期T π=.

(2)由2k 22,62x k k Z ππππ≤+

≤+∈ 解得k ,36x k k Z π

π

ππ-≤≤+∈

∴函数()f x 的单调递增区间为,,36k k k Z ππππ??-+∈???

? (3) 64

x π

π

-≤≤Q 232x ππ∴-

≤≤ 22663

x π

ππ∴-≤+≤ ∴当266x ππ+

=-时, x 6π=-, ()min 1f x =- 当262x π

π+=时, x 6π

=, ()2miax f x =.

点睛:三角函数式的化简要遵循“三看”原则

(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;

(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;

(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.

8.(1)T π=(2)()f x 在区间0,12π?? ???上单调递增,在区间,122ππ?? ???

上单调递减. 【解析】试题分析:(1)先根据诱导公式、二倍角公式以及辅助角公式将函数化为基本三角函数,再根据正弦函数性质得()f x 的最小正周期;(2)根据正弦函数性质求0,)2π上单调区间,即得()f x 在区间0,2π?

? ???

上的单调性.

试题解析:(1)()()

2sin 3cos ?cos sin cos 3cos f x x x x x x x =+=+ 11cos232sin23sin 22232x x x T πππ+??=+=++?== ??

? (2)令222232k x k πππππ-

+<+<+,解得51212k x k ππππ-+<<+(k Z ∈) ∵0,2x π?

?∈ ???,∴ ()f x 在区间0,12π?? ???上单调递增,在区间,122ππ?? ???

上单调递减. 9.(Ⅰ) 最大值为2,对称中心为: (),0212k k Z ππ??+∈

???;(Ⅱ) 递增区间: 0,3π??????和5,6ππ??????;递减区间: 5,36ππ??????

. 【解析】试题分析:(1)由正弦的倍角公式和降幂公式,f(x)可化简为()2sin 26f x x π??=- ???,可知最大值为2,对称中心由26x k π

π-=,解得x 可求。

(2)先求得f(x)最大增区间与减区间,再与[]0,π做交,即可求得单调性。

试题解析:(Ⅰ) ()2sin 26f x x π?

?=- ???,所以最大值为2,由26x k π

π-=,解得

x=2,12k ππ+,r 所以对称中心为: (),0212k k Z ππ??+∈ ???

; (Ⅱ)先求f(x)的单调增区间,由222,262k x k k Z π

π

π

ππ-+≤-≤+∈,解得

,,63k k k Z ππππ??-++∈????,在[]0,π上的增区间有0,3π??????和5,6ππ??????

。 同理可求得f(x)的单调减区间5,,36k k k Z ππππ??++∈????

,,在[]0,π上的减速区间有5,36ππ?????

?. 递增区间: 0,

3π??????和5,6ππ??????;递减区间: 5,36ππ??????. 10.(1) ;(2) 的取值范围为

【解析】试题分析:

(1)由题意结合诱导公式和同角三角函数基本关系整理函数的解析式为:f (x )=2sin ,结合三角函数的周期公式可知T =π.

(2)原问题等价于,结合函数的图象可得或,求解不等式可得a 的取值范围为

. 试题解析:

(1)f (x )=2cosxcos (x - )- sin 2x +sinxcosx = cos 2x +sinxcosx - sin 2x +sinxcosx = cos 2x +sin 2x

=2sin

, ∴T =π. (2) 画出函数在x ∈的图像,由图可知或 故a 的取值范围为

. 11.(1)(),44k k k Z ππππ??-++∈????

(2)31b c += 【解析】试题分析:(1)由三角恒等变换化简得()1sin22f x x =-

,由222,22k x k k Z π

πππ-+≤≤+∈可解得增区间(2) 由02A f ??= ???

得sin A , cos A ,由余2231bc b c =+-,即

()32bc = ()2

b c + 1-即得b c + 试题解析: (1)由题意知()1cos 2sin2222x x f x π??++ ???=- sin21sin21sin2222

x x x -=-=-,

由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z π

π

ππ-+≤≤+∈

所以函数()f x 的单调递增区间是(),44k k k Z ππππ??-++∈???? (2)由02A f ??= ???得1sin 2A =,又A 为锐角,所以3cos A =. 由余弦定理得: 2223cos 22b c a A bc

+-==,即2231bc b c =+-, 即()32bc + = ()2

b c + 1-,而3bc =,所以31b c +=+ 12.(1) 函数的单调增区间为 ;(2) .

【解析】试题分析:(1)由化一公式得,

,得结果;

(2)

,∴,再由余弦定理得.

化简可得: .

(1)由,.

得:.

∴函数的单调增区间为,.

(2)∵,即.

∴.

可得,.

∵,

∴.

由,且的面积为,即.

∴.

由余弦定理可得:.

∴.

13.(1), (2)a最小值为1.

【解析】试题分析:(1)利用二倍角公式和两角和差公式将原式子化一;(2)由得到,;由余弦定理得最小为1;

(1)

=

的最大值为2.

要使取最大值,

故的集合为.

(2),

化简得 , ,只有 在 中,由余弦定理, , 由 当 时等号成立, 最小为1.

点睛:(1)要求三角函数的最值,就要化成,一次一角一函数的形式;

(2)巧妙利用三角函数值求得角A ,再利余弦定理得边的关系,得到最值;

14.(1)424,4,33k k k Z ππππ?

?-+∈????

(2()262f A +<<【解析】试题分析:(1)先根据二倍角公式以及辅助角公式将函数化为基本三角函数:

()sin 26f x x πω??=+ ??

?,再根据正弦函数周期性质求ω,并根据单调性性质求单调增区间(2)先根据正弦定理将边化为角,由诱导公式及两角和正弦公式化简得1cos 2B =,即得3B π

=,根据锐角三角形得A 取值范围,根据正弦函数性质求()f A 的取值范围.

试题解析:(1)()31cos2sin 226f x x x x πωωω??=+=+ ??

?,最小正周期为4π, ∴()1sin 26f x x π??=+ ???,令1222262k x k π

ππππ-≤+≤+,即

4244,33

k x k k Z ππππ-≤≤+∈, ∴()f x 的单调递增区间为424,4,33k k k Z ππππ?

?-

+∈????. (2)∵()2cos cos a c B b C -=,∴()2sin sin cos sin cos A C B B C -=,

整理得: 2sin cos sin A B A =, 1cos 2B =

, 3B π=,∵锐角三角形ABC ,∴02A π<<且2032

A ππ<-<, ∴62A π

π

<<,∴1542612

A π

ππ<+<,∴()262f A +<<

15.(Ⅰ)f (x )=sin (x +3π),52,2,66k k k Z ππππ??-+∈???

?;(Ⅱ) 4a π≥. 【解析】试题分析:(1)利用向量的坐标运算得到f x sin x ?=+()()

,再由f (-x )=f (x )可知函数f (x )的图象关于直线x =对称,所以+φ=+k π,进而得到φ=

,利用三角函数的性质求解单调区间即可;

(2)将f (x )的图象向右平移3

π单位得g (x )= sinx ,即sinx +1≤ax +cosx 在x ∈[0,]上恒成立,利用数形结合分别研究h (x )=sinx -cosx 和φ(x )= ax —1即可. 试题解析:

(Ⅰ)∵f (x )=?=sinxcos φ+cosxsin φ=sin (x +φ),

再由f (-x )=f (x )可知函数f (x )的图象关于直线x =对称,

∴+φ=+k π,k ∈Z ,又|φ|<,∴φ=

∴f (x )=sin (x +3

π), 由2k π-≤ x +≤2k π+可得2k π-≤x ≤ 2k π+,

∴函数的递增区间为[2k π-,2k π+],k ∈Z ;

(Ⅱ)由图象平移易知g (x )=sinx ,即sinx +1≤ax +cosx 在x ∈[0,]上恒成立. 也即sinx -cosx ≤ax -1在x ∈[0,]上恒成立.

令h (x )=sinx -cosx =sin (x -),x ∈[0,];

φ(x )= ax -1

如下图:h (x )的图象在φ(x )图象的下方,

则: a ≥k AB ==,故4a π≥. 16.(1)f (x )=2sin (2x+π6)+1;(2)单调递增区间为[﹣π3 +kπ, π6

+kπ],k ∈Z . 【解析】试题分析:(1)先根据向量数量积得函数关系式,再根据二倍角公式以及配角公式将函数化为基本三角函数,最后根据正弦函数性质求ω (2)根据正弦函数性质列不等式: πππ2π22π262

k x k -+≤+≤+ ,再解不等式可得增区间 试题解析:解:(1)向量=(2cos ,

sin ),=(cos ,2cos ),(ω>0), 则函数f (x )=?=2cos 2+2

sin ?cos =cosωx+1+sinωx=2sin (ωx+)+1, ∵f (x )的最小正周期为π,

∴π=.解得ω=2,

∴f (x )=2sin (2x+)+1;

(2)令﹣

+2kπ≤2x+≤+2kπ,k ∈Z , 即﹣+kπ≤x≤+kπ,k ∈Z ,

∴f (x )的单调递增区间为[﹣

+kπ,+kπ],k ∈Z . 17.(1)()2sin 26f x x π?

?=+ ???(2)见解析(3)78

【解析】试题分析:(1)直接由函数图象求得A 和周期,再由周期公式求得ω,由五点作图的第三点求?;

(2)由先平移后改变周期和先改变周期后平移两种方法给出答案;

(3)由142f α??=

???求出1sin 264

απ??+= ???,然后把sin 6πα??- ???转化为余弦利用倍角公式得答案.

试题解析:

解:(1)()2sin 26f x x π??=+ ???. (2)法1:先将2sin y x =的图象向左平移6π个单位,再将所得图象纵坐标不变,横坐标压缩为原来的12倍,所得图象即为()2sin 26f x x π??=+ ??

?的图象. 法2:先将2sin y x =的图象纵坐标不变,横坐标压缩为原来的

倍,再将所得图象向左平移12π个单位,,所得图象即为()2sin 26f x x π??=+ ??

?的图象. (3)由12sin 22sin 446262f ααπαπ??????=?+=+=

? ? ???????, 得: 1sin 264απ??+= ??

?, 而217sin cos 12sin 1632688ππαπαα??????-=+=-+=-= ? ? ???????

. 点睛:图象变换 (1)

振幅变

(2)周期变

(3)相位变

(4)复合变

18.(1)和。(2).

【解析】试题分析: 整理函数的解析式为.

(1)利用正弦函数的单调性可得函数在上的单调递增区间是和

。 (2)由题意可得,则.

试题解析:

.

(1)令 得 所以函数在上的单调递增区间为和。

(2)因为,所以 因为,所以

所以 =

19.(1)(),36k k k z ππ

ππ??

-+∈????;(2)min 42331a =-=-

【解析】试题分析:利用和差角及二倍角公式对函数化简可得()2sin 26f x x π?

?

=+ ???

(1)令,解不等式可得答案;(2)由

三角函数式的化简与求值

三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场 已知 2π<β<α<43π,cos(α-β)=13 12,sin(α+β)=-53 ,求sin2α的值_________. ● 案例探究 [例1] 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错. 技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会. 解法一:sin 220°+cos 280°+3sin 220°cos80° = 21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21 cos160°+3sin20°cos(60°+20°) =1-21cos40°+2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20° -sin60°sin20°) =1- 21cos40°-41cos40°-43sin40°+43sin40°-2 3sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°= 2 1 ,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y = 41,即x =sin 220°+cos 280°+3sin20°cos80°=4 1.

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

三角函数辅助角公式化简(1)

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π??=-+ ???, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34π π?? -????上的单调性. 2.已知函数()4sin cos 33f x x x π? ? =++ ???. (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数()4tan sin cos 323f x x x x π π???? =--- ? ?????. (1)求()f x 的最小正周期; (2)求()f x 在区间,44π π?? -????上的单调递增区间及最大值与最小值. 4.设函数()23 3cos sin cos 2f x x x x =+-. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ?? ?? ?? =-+-+ ? ? ??????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -????上的值域. 6.已知函数()21 3sin cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π??=+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ??-????上的最大值和最小值. 8.设函数()()sin 3cos ?cos 2tan x x x f x x π??+- ???=. (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ???上的单调性. 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π??=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ??= ???, 1a =, 3bc =,求b c +的值. 12.已知函数.

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

三角函数式化简

三角函数式化简 孙小龙 所谓三角函数化简,就是灵活运用公式,对复杂的三角函数式进行变形,从而得到较为简单的三角函数式以便于进行问题讨论,所以三角函数式的化简是研究复杂三角函数式的基础。下面我们一起深入探究如何进行三角函数式化简。 方法引导 三角函数式化简通常是最让人头疼的一类题型,因为化简没有明确的方向,很难继续进行。其实化简只要遵守“三看”原则,即能顺利化简。一是看角,二是看名,三是看式子的结构和特征。 (1) 看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建待求角; 如倍角关系、半角关系、互余关系、互补关系等; (2) 看函数名的特点,向同名函数转化,弦切互化; (3) 看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。另外,根据式 子的特点,还可以使用辅助角公式。 了解了化简原则之后,下面我们开始化简了。 例一 化简f(x)=2cosxsin(x+3 π )-3sin 2x+sinxcosx 分析:首先先看角,式子中的角度不统一,所以首要任务是统一角度,根据式子的结构特点和π 3的特殊性,可以运用两角和的正弦公式将式子展开 f (x )=2cos x sin(x +3 π)-3sin 2 x +sin x cos x ?????→用三角公式展开2cos x (sin x cos 3 π +cos x sin 3 π)-3sin 2 x +sin x cos x = 2sin x cos x +3cos 2 x -3sin 2 x 第一步化简完成后,再次观察式子的结构特点,每一个单项式都是二次的,所以再运用降幂公式把式子变为一次式 2sin x cos x + 3cos 2 x -3sin 2 x ???? →降幂公式 sin2x +3cos2x 继续运用辅助角公式进行彻底化简 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). 例二 化简: 42212cos 2cos 2.2tan()sin () 44 x x x x ππ-+ -+ 分析:我们还是先从角度入手,分子上角度统一,分母角度不统一,但仔细观察发现分母中两个角 呈互余关系,再看函数名的特点,我们可以运用诱导公式进行化简;分子上仔细观察结构,提出1 2, 可以得到完全平方式 42212cos 2cos 2.2tan()sin ()44 x x x x ππ-+ -+诱导公式及完全平方式 → 12(4cos x?4cos x+1)242cot(π4+x)sin (π4 +x )2=(2cos x?12)24sin(π4+x)cos(π4+x) 统一角度后,分析式子的结构特点,运用降幂公式进行化简 (2cos x?12) 2 4sin(π4+x)cos(π 4+x) 降幂公式 → 2cos 2x 22sin(π+2x)= 2cos 2x 22cos 2x = 12 cos 2x 我们可以通过两个例题发现化简题目中透露出来的隐藏信息,这就是三角函数式化简要求 最终形式:正弦型函数(通常情况) 化简方法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 任何三角函数式化简只要掌握了化简的原则和要求,遇到化简题就能轻而易举的攻破了,但首先有个前提:熟练掌握常见三角函数变换公式,如同角三角函数变换公式、诱导公式、两角和与差的余弦正弦正切公式、倍角与半角公式、辅助角公式等。同时还要了解其他三角函数变换公式,如三角函数积化和差和和差化积公式、三倍角公式和万能置换公式等。 小试牛刀 1. 化简βαβαβα2cos 2cos 2 1 cos cos sin sin 2222-+。 2. 化简x x x x x x f 2sin 2cos sin cos sin )(2244-++=

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

三角函数辅助角公式化简

实用文档 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

实用文档 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v , 且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

3知识讲解_任意角的三角函数_基础

任意角的三角函数 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题。 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α= ≠. 要点诠释: 三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=。 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。 要点三:诱导公式一 终边相同的角的同一三角函数的值相等 sin(2)sin k απα+?=,其中k Z ∈ cos(2)cos k απα+?=,其中k Z ∈ tan(2)tan k απα+?=,其中k Z ∈ 要点诠释: 该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应. 要点四:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段. 要点诠释: 三条有向线段的位置: 正弦线为α的终边与单位圆的交点到x 轴的垂直线段; 余弦线在x 轴上; 正切线在过单位圆与x 轴的正方向的交点的切线上; 三条有向线段中两条在单位圆内,一条在单位圆外. 【典型例题】 类型一:三角函数的定义 例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。 【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34 - 【解析】 5||r a ==。 若a >0,则r=5a ,α是第二象限角,则 33sin 55 y a r a α= ==, 44cos 55 x a r a α-===-, 33tan 44 y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则 3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。 举一反三: 【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。 【答案】1221,22 --

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

三角函数辅助角公式化简

三角函数辅助角公式化简

8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? + - ? ?? = . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2 π?? ?? ? 上的单调性. 9.已知函数()22 3sin cos 2cos 1 f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数 . (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求 实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π? ?=-+ ? ? ?. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02 A f ?? = ??? , 1a =, 3 bc =b c +的值.

12.已知函数. (1)求函数的单调增区间; (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的边分别为,若,求的最小值. 14.已知()()1 3sin cos cos 2 f x x x x ωωω =+-,其中0 ω>,若() f x的最小正周期为4π. (1)求函数() f x的单调递增区间; (2)锐角三角形ABC中,() 2cos cos a c B b C -=,求() f A的取值范围. 15.已知a r=(sinx,cosx),b r=(cosφ,sinφ)(|φ|<).函数 f(x)=a r ?b r 且f( 3 π -x)=f(x). (Ⅰ)求f(x)的解析式及单调递增区间;

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

三角函数化简技巧

三角函数化简技巧 一、化简要求: 将一个三角函数式化简,最终结果一般都是出现两种形式:1、一元一次(即类似 B x A y ++=)sin(?ω)的标准形式;2、一元二次(即类似y=A(cosx+B)2 +C )的标准形式。 二、三角化简的通性通法: 1、切割化弦; 2、降幂公式; 3、用三角公式转化出现特殊角; 4、 异角化同角; 5、异名化同名; 6、高次化低次; 7、辅助角公式; 8、分解因式。 三、例题讲解: (例1)f(x)=2cosxsinx+ x x x x cos sin 1sin 2cos 22 +--=_y=A(cosx+B)2+C B x A y ++=)sin(?ω (三角函数化简技巧)-3sin 2 x+sinxcosx 解:f (x )=2cos x sin(x +3 π)-3sin 2x +sin x cos x ?????→用三角公式展开 2cos x (sin x cos 3 π +cos x sin 3 π )- 3sin 2x +sin x cos x ????→降幂公式 sin2x + 3cos2x ????→辅助角公式 2sin(2x + 3 π ). (例2)y =2cos 2 x -2a cos x -(2a +1) 解:y =2cos 2 x -2a cos x -(2a +1) ???→配方 2(cos x -2 a )2-22 42+-a a . (例3)若tan x =2,则 x x x x cos sin 1sin 2cos 22 +--=_______. (例4)sin 4α+cos 4α=_______. 解:sin 4α+cos 4α?? →(sin 2α+cos 2α)2-2sin 2αcos 2α??→1-2 1 sin 22α?? →1-11-cos222α ? =13cos 244 α+. (例5)函数y =5sin x +cos2x 的最大值是_______. (例6)函数y =sin (3 π -2x )+sin2x 的最小正周期是 (例7)f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,2 π ]上的最小值为-4,那么a 的值等于

相关主题
文本预览
相关文档 最新文档