当前位置:文档之家› 遗传病的基因治疗

遗传病的基因治疗

遗传病的基因治疗
遗传病的基因治疗

基因工程综述遗传病的基因治疗

标题:遗传病的基因治疗

姓名:

指导老师:

专业年级:

学号:

二零一一年四月二十一日

目录

摘要 (3)

关键词 (3)

正文 (3)

1.前言................................ 错误!未定义书签。

2.主体................................. 错误!未定义书签。

A.遗传病 (3)

1)定义 (3)

2)遗传病的分类简介 (3)

B基因治疗 (3)

1)定义 (3)

2)基因治疗技术 (4)

C遗传病的基因治疗 (4)

1)基因治疗的方法 (4)

2)基因治疗的基因载体系统 (4)

3)基因治疗的策略 (4)

4)基因治疗的步骤 (5)

3.感想 (6)

4.参考文献 (6)

遗传病的基因治疗

一.摘要:

随着科学技术的进步和发展,人们能有效控制传染病,发病率明显下降,而遗传病患病率则相对上升,现已发现的遗传病有6457多种,绝大多数缺乏有效治疗手段。而随着分子生物学及基因工程技术的迅猛发展,基因治疗已经成为治疗人类疾病的重要方法之一,同时也是维护人类健康最有发展前景的手段之一。近年来, DNA重组技术和基因转移技术的建立,在遗传病的基因治疗研究中,取得突破性的进展,已引起人们的极大兴趣。

二.关键词:

遗传病基因治疗人类健康 In vivo EX-vivo 前景 DNA

三.正文:

1.前言:遗传病的问题相对于其他随着科技发展发病率日益减少的状况来说,显得异常紧张,与此同时,基因治疗的发展和进步让人们对遗传病的基因治疗更加关注。但是,基因治疗仍在进一步的开发与发展中,其安全性和治疗的有效性有待观瞻。

2.主体:

A.遗传病:

1)定义:遗传病是遗传性疾病的简称,是指生殖细胞、受精卵和体细胞中的染色体或位于其上的基因,线粒体DNA等发生畸变(或突变)所引起的疾病。依遗传物质改变的不同,遗传病主要分为基因病,染色体病,体细胞遗传病三大类。

2)遗传病分类的简介

一.基因病:

1.单基因病:单基因病是涉及一对染色体(同源染色体)上单个基因或一对等位基因发生突变所致的疾病。

(1)常染色体显性遗传病:指致病基因位于常染色体上,以显性遗传的方式向后代传递。

(2)常染色体隐性遗传病:指致病基因位于常染色体上,在携带一个隐性致病基因时不表现相应症状,只有获得一对隐性致病基因时才表现疾病。

(3)X连锁隐性遗传病:致病基因位于X染色体上,并随着X染色体传递。由于女性有两条X染色体,当携带一个隐性致病基因时,仅为表型正常的致病基因携带者;而男性只有一条X染色体,只要X染色体上有一个隐性致病基因就会发病。

2.线粒体遗传病:线粒体是细胞质内的一个重要器官,其DNA存在于细胞核外,基因突变可导致线粒体遗传病,突变类型为点突变和缺失。

3.多基因病:由两个以上的异常基因,加上环境因素共同作用,超过阈值而发病,称为多基因病。

二.染色体病:由于染色体数目异常或结构畸变而引起的疾病,称为染色体病。

染色体畸变,指遗传物质的缺失、重复或重排而造成的染色体异常。这种畸变发生在性细胞中可遗传后代。染色体畸变包括数目畸变和结构畸变两大类。数目畸变有整倍体,非整倍

体及嵌合体等畸变;结构畸变有缺失、易位、插入、倒位、重复、等臂染色体、环形染色体等畸变。

三.体细胞遗传病:体细胞中遗传物质改变所致的疾病,称为体细胞遗传病。

B.基因治疗:

1)定义:有正常功能的外源基因(DNA或cDNA)引入遗传病患者的细胞里,取代或补足使其恢复正常功能而达到治疗遗传病的目的。

2)基因治疗的技术:

1.基因转移技术:基因治疗一般采用更换、校正、增补基因等三个基因策略,就目前的治疗水平而言,还做不到更换和校突变基因,可行的策略是通过某种载体,将正常基因移到遗传病患者细胞内使之表达,以达到治疗的目的,此即为基因转移技术。

1)用病毒介导转移的基因

2)直接将功能基因注入体内

2.反基因技术:反基因技术又称三链DNA技术,是指寡聚脱氧核苷酸(ODNs)以双链DNA分子专一序列为靶物,通过与该序列结合形成三链DNA,以阻止基因转录。这是近年来兴起的一种新基因治疗技术,其原理为:通过ODNs在DNA结合蛋白的识别位点处,与靶基因结合形成三链螺旋。该位点专一性地干扰转录作用因子或RNA聚合酶与DNA的结合,从而抑制转录的启动及延长过程。此外,三链DNA结构还可以阻碍DNA聚合酶沿模板DNA的移动,从而抑制DNA 的复制。由于三链DNA能阻止基因的转录与复制,故名“反基因”。

3.反义RNA技术:反义RNA是指碱基序列正好与有意义的mRNA互补,从而可与mRNA配对结合形成双链,最终抑制mRNA作为模板进行翻译。人工合成与某一病毒基因mRNA的一段序列互补的寡聚脱氧核苷酸链或寡核苷酸链即反义寡核苷酸,结合在病毒的mRNA链上,以阻断翻译病毒蛋白质,抑制病毒基因的过度表达,达到治疗的目的;或在反义RNA的磷酸二酯键中以S原子代替O原子,使其不易被细胞核酶内切酶所降解而增加疗效。不过,反义寡核苷酸要能达到治疗遗传病的

目的,必须与靶mRNA序列形成稳定的双链结构,而且应能穿透细胞膜,并能耐核酸酶的降解或修饰。

C.遗传病的基因治疗

1)基因治疗的方法

基因治疗的技术和方式日趋多样化,但按基因导入的形式可归纳为以下两种方法:

一是体外基因导入法该法是在体外细胞培养时用适当的方法将基因导入人体自身或异体细胞,该细胞经培养扩增后再注入人体,其制品形式是外源基因转化的细胞。此法易于操纵且较为有

效,由于受到细胞培养、生长和注入等条件的限制,其制品不利于大规模生产,目前应用于血液、皮肤、肝脏、免疫系统和肿瘤细胞等的治疗。

二是体内基因导入法该法是将外源基因装配于能在人体细胞表达的载体,直接导入人体。其制品形式是基因工程技术改造的病毒、重组DNA或DNA复(混)合物,其制品可进行较大规模生产。但此法的效果相对较差,不易于将治疗基因准确导入体内靶细胞,目前应用于肝脏、脑和呼吸系统等的基因治疗。

2)基因治疗的基因载体系统

基因治疗都必须通过适当的载体将外源基因转移至特定的细胞内。统计表明,以病毒为载体的基因治疗方案居多。病毒对细胞的天然感染能力将外源基因导入细胞中,效率明显高于

非病毒载体系统。目前使用的各种病毒型或非病毒型基因转移载体均各有其独特的机理和优缺点J。理想的基因转移载体具有以下特点:可注射性、对靶细胞或组织有专属性、外源基因的可控的长期表达性、无免疫源性、对人体无毒性、易于大规模生产和纯化。在基因表达的可控性方面取得了一定的进展。

3)基因治疗的策略

基因修复:原位修复是最理想的选择,但目前尚无法做到,因为要在人类基因组的某个特异部位上进行重组是一个非常复杂的过程。即使在不太复杂的模式生物中进行基因定位重组也不容易实现。

基因替代:将有功能的正常基因转移到疾病细胞或个体基因组的某个部位上,尽代替缺陷基因发挥作用,即传统的目前主要开展的基因治疗。

基因开放:开放类似功能的基因,以超过或代替异常基因的表达。比如,通过去甲基化使已关闭的下珠蛋白基因重新开放,合成U出F,以代替Hha用于治疗p地中海贫血症。

基因抑制:导人外源基因以抑制原有的基因,目的在于阻断有害基因的表达。如向肿瘤细胞内导人卢3等肿瘤抑制基因以抑制癌基因的异常表达。

基因封闭:反义RNA能封闭m丑NA,抑制基因的表达。

免疫基因:将免疫因子(如肿瘤坏死因子、干扰素等)基因导人肿瘤浸润淋巴细胞(TllJ),用于提高细胞的免疫力,加强nL杀伤肿瘤细胞的能力。

其它方案:诱导肿瘤细胞分化或凋亡,使肿瘤内的血管阻塞等。

4)基因治疗的步骤

基因治疗的步骤包括目的基因的克隆、目的基因的转移、目的基因的表达、靶细胞的选择和安全性问题等。

(1)目的基因转移:基因治疗的关键和基础是基因转移。实施基因转移的途径有两类:一类是In vivo,即活体直接转移,将带有遗传物质的病毒、脂质体或裸露DNA直接注射到试验动物体内;另一类是EX-vivo,称为在体转移,是将试验对象的细胞取出,体外培养导入基因,而后将这些遗传修饰的细胞重新输回试验动物体内。基因转移的方法分为物理法、化学法和生物法三大类。物理法包括裸露DNA直接注射、DNA颗粒轰击、电穿孔、显微注射等方法;化学法包括磷酸钙沉淀、脂质体包埋、DE-AE一葡聚糖等化学试剂转移方法,通过改变细胞膜的通透性或增加DNA与细胞的吸附而实施基因转移;生物法主要指病毒介导的基因转移,所用病毒包括反转录病毒、腺病毒、腺病毒相关病毒、单纯疤疹病毒、细小病毒等。

(2)目的基因的表达:为了使目的基因良好表达,需在重组病毒上加上调控因子如启动子和增强子等,使整合人宿主的基因得到有效表达,产生所需的基因产物。

(3)靶细胞的选择:靶细胞的选择根据所治疗的遗传病而定,大体可分为二类,即体细胞和生殖细胞。体细胞基因治疗有在体转移和活体直接转移两种途径,目前开展的基因治疗均用体细胞作为靶细胞。遗

传病中常用于基因治疗的靶细胞有骨髓造血干细胞、皮肤成纤维细胞、成肌细胞和肝细胞等;肿瘤基因治疗中常用的靶细胞是肿瘤细胞本身,其次是淋巴细胞和造血干细胞等。生殖细胞基因治疗因涉及敏感的伦理学问题,目前禁止人体试验。

(4)安全性问题:安全性问题是基因治疗临床试验前首先要重视的问题。由于基因治疗尚未发展到定点整合以置换缺陷或有害基因的阶段,目的基因在基因组中随机整合有可能激活原癌基因或使肿瘤抑制基因失活,从而引起细胞癌变。在病毒介导的基因治疗的安全性方面腺病毒对人类影响要小于反转录病毒。

3.感想

遗传病,是现今社会的一个大问题,看着一些孩子们,从出生开始便被划分到了和我们不一样的区域,总是感到些许触动。然而,基因治疗的发展使得他们的“一般性”成为可能。虽然基因治疗的一切还不够完善,还没有推广,但是,相信,不久的将来,在我们的努力下,可以使他们摆脱疾病的折磨,投入大家的怀抱。

四.参考文献

遗传病的基本知识(宋昉首都儿科研究所中国医刊)

人体内的医药工厂---基因治疗(卢大儒)

人类遗传病及其防治(史刚荣甘肃省陇西师范学校)

基因治疗与人类健康(张锐孙美榕张正杨捷黄燕杜慧陈绍湛江海洋大学现代生化中心)

遗传病基因治疗(宋明浩于俊李麓芸湖南医科大学)

浅析人类遗传病的概念和特点(邹美阁陕西礼泉一中)

人类遗传病综合题的解析(赵汉宏河北省丰宁艺术中学)

遗传病的类型_特点及防治(王伟朝阳师专)

基因治疗(白丽荣河北省衡水师范专科学校生物系)

遗传病与性别

遗传病的基因治疗研究(邱信芳薛京伦复旦大学遗传工程国家实验室)

人类与性别有关的遗传病的遗传方式(苑金香潍坊学院生物学系)

遗传病的治疗原则()

人类遗传病与种类(木也沙尔·米吉提新疆维吾尔自治区伊宁卫生学校)

人类遗传病基因治疗的研究进展(顾鸣敏)

人基因治疗研究概况(莫泽乾广西壮族自治区药品检验所)

基因治疗前景光明(秦瑞林杨林静)

基因治疗_科学家研究用人造染色体治疗遗传病

基因治疗概况及其研究进展(蒋雪生物教研室)

遗传病的几种治疗方法

以前,大家都认为遗传病是不治之症。但是,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,已经搞清楚了很多遗传病的发病过程,这就为遗传病的治疗奠定了基础,同时,医学工作者还在不断提出新的治疗措施。 遗传病的治疗主要有以下几种方法: 1、饮食治疗 有一部分的遗传病可通过控制饮食来避免发生,如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,患病了的孩子智商可能会偏低。 如果确诊为此病的话,最好是能够在出生后7-10天的时候就进行防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,多吃这类食物能够让胎儿正常发育。等到孩子长大一些后,再给孩子吃一些多样的食物。 2、药物治疗 药物在遗传病的治疗中能起到一些辅助作用,能够让病情得以改善,减少痛苦。主要是对症治疗,比如服用止痛剂以减轻病员疼痛。有的还能够改善机体代谢,比方说肝豆状核变性,主要是体内铜代谢障碍,造成血内铜的水平升高,从而导致孩子出现畸形的情况。 因此,不妨服用促进铜排泄的药物,并拒绝食用含铜的食物,来保证体内铜的正常水平。还有些病如先天性低免疫球蛋白血症,可以注射免疫球蛋白制剂,同样能够改善病情。 3、手术治疗 手术矫治指采用手术切除某些器官或对某些具有形态缺陷的器官进行手术修补。如球形红细胞增多症,因为遗传缺陷造成病人的红细胞膜渗透脆性明显增高,红细胞呈球形,球形的红细胞在通过脾脏的脾窦时很容易就会被破坏,然后产生溶血性贫血。 医生可以采取脾切除术,脾切除后虽然不能让红细胞的异常形态发生改变,但能够延长红细胞的寿命。对于多指、兔唇及外生殖器畸形等,用手术治疗非常方便。又如,狐臭也是一种遗传病,治疗方式就是把腋下的分泌过旺的腺体剜掉。 4、基因疗法 基因治疗遗传是最切实有效的方式。人类的遗传物质,也可以像“虾子向蚯蚓借眼睛”的故事一样,通过向别的生物借某些东西来治疗。即向基因发生缺陷的细胞注入正常基因。基因治疗看似非常简单,其实是非常复杂的。 一定要从数十万基因中找出缺陷基因,同时还要找到正常基因,并把正常基因转入细胞内替代缺陷基因,让基因能够发生作用。 这种治疗方法目前还处在研究和探索阶段,遗传病中能够用上述几种简单方法进行治疗的,毕竟只是少数,而且这种治疗方法只有治标的作用,即所谓“表现型治疗”,只能消除一代人的病痛,而对致病基因本身却丝毫未触及。那些致病基因将一如即往,按照固有规律传递给患者的子孙后代。 所以说,对于无法根治的遗传病,我们应当采取积极措施来预防,主要通过人为的方法降低或杜绝遗传病的发生和传播。

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

作物基因组学前沿与应用

作物基因组学前沿与应用 Crop genomics: advances and applications 摘要:一些重要作物模式基因组测序的完成和进行高通量重测序的能力为提高对植物驯化历史的理解以及加快作物改良提供机遇。而这些数据以及新一代实验和计算方法正在改变作物比较基因组学。作物改良的未来将集中在个体植物基因组的比较,最好的手段可能在于结合运用新的遗传图谱构建策略与进化分析方法来指导和完善遗传变异的发掘与利用。这里我们回顾这些已然出现的策略与深刻见解。 一些重要作物和模式植物模式基因组测序的完成可能有助于实现长期存在的大大加快作物改良的植物基因组学研究要求(fig.1)。早在上世纪60年代末期,就已实现了对一个植物基因组分子标记的开发,但是最近几十年较易检测的分子标记数目存在分辨率较低的限制,而这些问题可以通过实验遗传学方法或者比较遗传学方法解决。仅仅几年前,高密度的遗传图谱需要对几千个标记进行费时费力地检测。实验群体通常会受限于两个亲本间的简单杂交;更详尽的研究设计可能提供对农学上重要突变遗传分布的评定,但相关种质中突变频率受到标记技术和用于区分多亲本分布的分析方法所限制。对群体间分子标记频率的分析,从而鉴定重要功能突变的比对方法已经提出,但是由于群体间预期的等位基因较高变异频率的存在,使得发掘研究的大量位点间重要功能突变显得相当的困难。 目前,已经报道了一些作物的模式基因组,并且在那些具有较大基因组的作物中引用取得进展。此外,已经报道了其他一些模式植物系统的模式基因组,包括拟南芥和短柄草。比较基因组学——传统上被认为是相关物种间同线性(基因顺序)的分析和序列的比对,目前由于报道的模式基因组数目的急速增加,源于高通量重测序的序列多样性的估计,大量缺失插入以及拷贝数变异(CNVs)基因组分布的鉴别,以及新一代实验和比较方法的出现而被重新定义。从遗传图谱的构建到进化分析,作物改良的未来将主要围绕着个体植物基因组间的比较。如果我们要继续提高作物产量,同时最低程度地减少农业生产对环境的影响,以面对不断增长的人口和变化的气候,那么最大限度地利用这些基因组数据对作物改良就显得至关重要了。 在这篇综述里,首先指出作物比较基因组学的挑战,这些挑战包括植物基因组的复杂结构以及在一些作物品种中发现的高水平核苷酸和结构的多样性。然后讨论了解驯化的重要性,因为一个作物的起源和种群分布影响着农艺性状的遗传基础和全基因组核苷酸多样性的方式。我们对农艺性状遗传学的理解由于基因组数据而发生根本性的变化。高密度的遗传标记正在被用于全基因组关联分析(GWASs),也可以应用到基因组选择中。对农艺性状的了解同样因为新一代的多亲本遗传图谱构建群体而得到提高。正如我们所讨论的那样,更高通量的重测序技术和标记基因型分析将会使新的作物改良方法成为可能,比如对有害突变的鉴别与选择性剔除。 植物基因组学的挑战 应用在植物中的基因组学研究工具通常会开发和测试其在哺乳动物或者其他模式生物中数据,比如果蝇和小鼠,但是植物基因组的规模和动态性增加或者加剧在其他模式生物中面临的挑战。相对于哺乳动物来说,植物倾向于拥有大量

基因诊断与基因治疗

第二十一章基因诊断与基因治疗 基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 第一节基因诊断 一. 基因诊断的含义 传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。基因诊断有时也称为分子诊断或DNA诊断(DNA diagnosis)。基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。 二. 基因诊断的原理及方法

(一)基因诊断的原理 疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。 对表达产物mRNA质和量变化的分析为RNA诊断(RNA diagnosis)。 (二)基因诊断的方法 基因诊断是以核酸分子杂交(nucleic acid molecular hybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。 1.DNA诊断 常用检测致病基因结构异常的方法有下列几种。 ⑴斑点杂交:根据待测DNA 样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。 ⑵等位基因特异的寡核苷酸探针(allele-specific oligonucleotide probe, ASO probe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,

艾滋病最新治疗研究

专业:************ 姓名:****学号:********** 艾滋病最新治疗研究 2012年5月2日

艾滋病治疗研究 自1970年人类出现首例爱滋病感染以来,艾滋病以惊人的速度在全球蔓延传播,人类正受到艾滋病病毒的严峻挑战,对人类构成了严重的威胁。但是,科学家自始至终从没有放弃对艾滋病治疗的研究,并通过各种方法和手段找出治疗爱滋病的有效途径,我相信在不久的将来,人类必将战胜这个“世纪之病”。 一、基因治疗 基因治疗是将抗病毒基因导入患者的细胞内,赋予患者新的抗病机能,它包括目的基因的选择与克隆、载体的构建与包装及受体的选择与转入等。 (1)抗HIV基因 现研究最多的抗-HIV基因是反义核酸和核酶,其中反义核酸反义核酸是互补于mRNA的RNA或DNA,在细胞内形成部分双链,阻碍mRNA的剪接、运送和翻译,降低mRNA的稳定性,从而影响基因的构成。有一些科学家做了相关抑制HIV实验,但由于受调控水平的限制或者由于反义RNA量的不足,而导致失败,但现最需解决的问题是反义核酸的专一性和进入靶细胞之前的降解。核酶是一种具有核酸内切酶活性的RNA分子,可特异性地切割靶RNA序列。它最初由Haseloff 在研究烟草病毒时发现的,迄今,人们发现的核酶有六种类型,但从

结构上看主要分为" 两大类:锤头状核酶和发夹状核酶。核酶的优点是序列特异性;不编码蛋白质,无免疫原性;可以重复使用。使其在基因治疗领域中倍受青睐,其研究进展也相当迅速。但核酶的稳定性较低,生理条件下反应速度缓慢是其用于抗-HIV的不足之处,同时对它在机体内是怎样被转录的和转录后抗RNase的能力还需做进一 步的探索。 (2)基因疫苗 与传统疫苗相比,DNA疫苗具有制备简单、可塑性大、生产工艺简单、成本低等优点。但其最大的优点在于疫苗抗原可以在人体靶细胞内天然表达。科学家曾经用人猿做过试验,方法是肌内接种100μg质粒pm160,产生了高滴度的抗体,该抗体在体外能中和HIV-1的感染。接种后T淋巴细胞明显增殖。证明了类人猿能通过接种质粒pm160产生非常强的特异性CTL应答,所有的类人猿都有不同程度的抗感染能力,其中一组取得了100%的抗感染力。此结果说明DNA疫苗接种技术不仅可预防艾滋病,同时可产生T杀伤细胞清除体内的感染病毒细胞以达到治愈的目的。但目前DNA疫苗的出现才在近几年出现,出现的问题还需进一步观察 二、中医治疗艾滋病 (1)研究发现,一些中药能够以HIV复制生命周期中的不同阶段为靶点而干扰HIV复制,包括吸附、融合、逆转录、整合、转录、翻译、释放、组装、成熟(在蛋白酶作用下将新生成的多肽链切割成组装具

《基因组学与应用生物学》

《基因组学与应用生物学》 论文编写指南 一、栏目设置与文体风格 本刊设置固定栏目和随机栏目。固定栏目常设研究论文(Articles)和研究报告(Research Report),发表最新的原始研究成果。随机栏目根据稿源可能设研究资源(Resources)、数据分析(Analysis)、技术主题(Technology feature)和评述与展望(Reviews and Progress)等栏目,还可能设置刊登有关科学新闻、科技简讯、专利、短评和书评等方面的栏目。本刊在栏目设置和文体格式上参照国际著名周刊《自然》及《自然生物技术》的刊发形式。以下就研究论文(Articles)、研究报告(Research Report)、评述与展望(Reviews and Progress)和研究资源(Resources)的文体格式做出说明,其它类型的详细的文体格式及其定义请向编辑部索取或从本刊网站下载。 1研究论文(An Article) 报道相对比较完整、全面的原始研究工作,其结论代表着一个重要问题的认识上有了实质性进展,并且具有及时而深远的影响。论文篇幅要求在8个印刷页面以上,由作者自由投稿,同行评审。 2研究报告(Research Report) 简洁报道有重要结果的原始研究工作,其重要性意味着本研究结果使其它领域的科学家也有兴趣。论文篇幅要求在6个印刷页面左右,由作者自由投稿,同行评审。 3评述与展望(Review and Progress) 对某一研究领域中最新研究进展进行权威的、公平的、学术上的回顾、鉴定和评述。论文篇幅要求在8个印刷页面以上,由作者自由投稿,同行评审。 4研究资源(A Resource) 对现有数据(如由各种阵列技术或者高通量研究平台所提供的基因组学, 转录组学或蛋白质组学的数据包)进行新分析,或描述由比较分析技术得出引起广大读者注意的重要新结论而获得的新数据。论文篇幅要求在6个印刷页面左右,由作者自由投稿,同行评审。 二、论文写作的基本要求 1题目与标题 论文题目要紧扣主题。务求简明、新颖,有足够的信息,能引起读者的兴趣,不用副标题,一般不超过25个汉字或英文单词。中英文题目应对应一致,顶格书写。避免在题目中使用不常用的缩写词。 2作者与单位 署名应限于参加本工作并能解答论文中有关问题者,必须注明通讯作者及其电子邮箱。中国作者英文名用汉语拼音,姓和名的首字母大写,双名不用连字号隔开;外国作者按其习惯书写,名用缩写,字母间加缩略点。作者下面一行书写作者的工作单位、城市名及邮政编码。工作单位的英文翻译应按照所在单位官方公布的为准。

第二十三章 基因治疗——复习测试题

第二十三章基因治疗——复习测试题 (一)选择题 A型题 1. 全世界第一例基因治疗成功的疾病是 A. β地中海贫血 B. 血友病 C. 重症联合免疫缺陷症 D. 高胆固醇血症 E. 糖尿病 2. 理论上讲,基因治疗最理想的策略是 A. 基因置换 B. 基因替代 C. 基因失活 D. 免疫调节 E. 导入“自杀基因” 3. 目前基因治疗所采用的方法中,最常用的是 A. 基因置换 B. 基因替代 C. 基因失活 D. 免疫调节 E. 导入“自杀基因” 4. 利用反义核酸阻断基因异常表达的基因治疗方法是

A. 基因置换 B. 基因替代 C. 基因矫正 D. 基因失活 E. 免疫调节 5. 将白细胞介素-2基因导入肿瘤病人体内,提高病人IL-2的表达水平,进行抗 肿瘤辅助治疗。这种基因治疗方法是 A. 基因置换 B. 基因替代 C. 基因矫正 D. 基因失活 E. 免疫调节 6. 下列哪种方法不是目前基因治疗所采用的方法 A. 基因缺失 B. 基因置换 C. 基因替代 D. 基因失活 E. 免疫调节 7. 基因治疗的基本程序中不包括 A. 选择治疗基因 B. 选择载体 C. 选择靶细胞 D. 将载体直接注射体内 E. 将治疗基因导入靶细胞

8. 下列哪种方法不属于非病毒介导基因转移的物理方法 A. 电穿孔法 B. 脂质体法 C. DNA直接注射法 D. 显微注射法 E. 基因枪技术 9. 下列哪种方法属于非病毒介导基因转移的化学方法 A. 电穿孔法 B. 基因枪技术 C. DNA直接注射法 D. 显微注射 E. DEAE-葡聚糖法 10. 将外源治疗性基因导入哺乳动物细胞的方法不包括 A. 显微注射法 B. 电穿孔法 C. 脂质体法 D. CaCl2法 E. 病毒介导的基因转移 11. 目前在基因治疗的临床实施中,最常使用的载体是 A. 逆转录病毒载体 B. pBR322 C. λ噬菌体 D. pUC18 E. YAC

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

遗传病基因治疗

遗传病基因治疗 一、遗传病基因治疗技术的原理 1.基因治疗 是把具有正常功能的基因,通过特殊的基因载体(如病毒)或机械性方法 (如微量注射),引入患某种遗传病的患者细胞内,达到根治遗传病的目 的。基因治疗可以分为两类,一是体细胞基因治疗,二是生殖细胞基因 治疗。前者较易于进行,后者则技术上较为复杂,并且关系到伦理问题, 目前基本没有在人体上进行。 2.基因治疗的基本要求 1)在试验动物中证明所插入的基因能正确进入靶细胞中 2)插入的基因能够存留在靶细胞中并且发挥作用 3)基因表达的水平适当,并且受机体控制 4)对细胞无损害 二、遗传病基因治疗技术的产生 1.在70年代初,科学家们提出所谓的治疗由缺陷基因引起的遗传性疾病 “基因手术”。 2.1990年9月14日,四岁的Deserve患有一种罕见的遗传性疾病称为严 重联合免疫缺陷病(SCID),成为在美国第一位接受基因治疗的人。由于 Deserve不能产生腺苷脱氨酶(ADA),因此没有一个健康的免疫系统, 这使她非常容易受到严重威胁生命的感染。医生从她的身体中取出白血 细胞,让细胞在实验室中生长,插入缺失的基因,然后注入患者的血液 中。实验室测试表明,该疗法能够加强Deserve的免疫系统。 3.第一个批准基因治疗的过程中充满着争议。人类基因治疗是非常复杂的, 有许多技术仍然需要开发和实验。公众以及政策对于人体基因工程材料 的可能用途的辩论也是同样的复杂。 三、遗传病基因治疗技术发展历史 1.基因治疗的发展划分为 3 个历史阶段 1)准备期间(1980~1989 年) 这是基因治疗的“禁锢时代”。20 世纪80 年代初,从学术界到宗教、伦理、 法律各界,对基因治疗能否进入临床存在争议很大。直到 1989 年,美国联邦 食品与药品管理局(FDA)才同意将载体导入作为“基因标记”的临床试验, 1990 年才正式批准其临床试验。在此期间,科学家们进行了大量的研究工作, 同时也在舆论上做了很多准备工作。 2)狂热期(1990~1995 年) 1990年9月,美国国立卫生研究院的 Anderson和 Base将腺苷酸脱氨酶 (ADA) 基因用反转录病毒导入人自身 T 淋巴细胞,经体外扩增后输回患者体内 ,成 功治愈一位由于 ADA基因缺陷导致严重免疫异常的4岁女孩。自此,基因治

遗传病的基因治疗

基因工程综述遗传病的基因治疗 标题:遗传病的基因治疗 姓名: 指导老师: 专业年级: 学号: 二零一一年四月二十一日

目录 摘要 (3) 关键词 (3) 正文 (3) 1.前言................................ 错误!未定义书签。 2.主体................................. 错误!未定义书签。 A.遗传病 (3) 1)定义 (3) 2)遗传病的分类简介 (3) B基因治疗 (3) 1)定义 (3) 2)基因治疗技术 (4) C遗传病的基因治疗 (4) 1)基因治疗的方法 (4) 2)基因治疗的基因载体系统 (4) 3)基因治疗的策略 (4) 4)基因治疗的步骤 (5) 3.感想 (6) 4.参考文献 (6)

遗传病的基因治疗 一.摘要: 随着科学技术的进步和发展,人们能有效控制传染病,发病率明显下降,而遗传病患病率则相对上升,现已发现的遗传病有6457多种,绝大多数缺乏有效治疗手段。而随着分子生物学及基因工程技术的迅猛发展,基因治疗已经成为治疗人类疾病的重要方法之一,同时也是维护人类健康最有发展前景的手段之一。近年来, DNA重组技术和基因转移技术的建立,在遗传病的基因治疗研究中,取得突破性的进展,已引起人们的极大兴趣。 二.关键词: 遗传病基因治疗人类健康 In vivo EX-vivo 前景 DNA 三.正文: 1.前言:遗传病的问题相对于其他随着科技发展发病率日益减少的状况来说,显得异常紧张,与此同时,基因治疗的发展和进步让人们对遗传病的基因治疗更加关注。但是,基因治疗仍在进一步的开发与发展中,其安全性和治疗的有效性有待观瞻。 2.主体: A.遗传病: 1)定义:遗传病是遗传性疾病的简称,是指生殖细胞、受精卵和体细胞中的染色体或位于其上的基因,线粒体DNA等发生畸变(或突变)所引起的疾病。依遗传物质改变的不同,遗传病主要分为基因病,染色体病,体细胞遗传病三大类。 2)遗传病分类的简介 一.基因病: 1.单基因病:单基因病是涉及一对染色体(同源染色体)上单个基因或一对等位基因发生突变所致的疾病。 (1)常染色体显性遗传病:指致病基因位于常染色体上,以显性遗传的方式向后代传递。 (2)常染色体隐性遗传病:指致病基因位于常染色体上,在携带一个隐性致病基因时不表现相应症状,只有获得一对隐性致病基因时才表现疾病。 (3)X连锁隐性遗传病:致病基因位于X染色体上,并随着X染色体传递。由于女性有两条X染色体,当携带一个隐性致病基因时,仅为表型正常的致病基因携带者;而男性只有一条X染色体,只要X染色体上有一个隐性致病基因就会发病。 2.线粒体遗传病:线粒体是细胞质内的一个重要器官,其DNA存在于细胞核外,基因突变可导致线粒体遗传病,突变类型为点突变和缺失。 3.多基因病:由两个以上的异常基因,加上环境因素共同作用,超过阈值而发病,称为多基因病。 二.染色体病:由于染色体数目异常或结构畸变而引起的疾病,称为染色体病。 染色体畸变,指遗传物质的缺失、重复或重排而造成的染色体异常。这种畸变发生在性细胞中可遗传后代。染色体畸变包括数目畸变和结构畸变两大类。数目畸变有整倍体,非整倍 体及嵌合体等畸变;结构畸变有缺失、易位、插入、倒位、重复、等臂染色体、环形染色体等畸变。 三.体细胞遗传病:体细胞中遗传物质改变所致的疾病,称为体细胞遗传病。

基因工程之基因治疗

基因治疗 摘要: 生物技术在生命科学领域扮演者重要的角色,基因治疗在治疗方面,将新的遗传物质转移到某个个体的体细胞内使其获得治疗效果;在基因工程方面,将正常的有功能的基因置换或增补缺陷基因。近些年来,已对若干人类单基因遗传病和肿瘤开展了临床的基因治疗。基因治疗作为治疗疾病的一种新手段,正愈来愈受到人们的重视和关注。 关键词:基因工程基因治疗基因 一、基因治疗的历史 随着DNA双螺旋结构的发现和以DNA重组技术为代表的现代分子生物学技术的发展以及人类对疾病认识的不断深入,越来越多的证据证明,多种疾病与基因的结构或功能改变有关,因而萌生了从基因水平治疗疾病的念头和梦想。 早在1968年,美国科学家发表了“改变基因缺损:医疗美好前景”的文章,首次在医学界提出了基因疗法的概念。1989年美国批准了世界上第一个基因治疗临床试验方案。1990年美国NIH的Frenuch Anderson博士开始了世界上第一个基因治疗临床试验,用腺苷酸脱氨酶基因治疗了一位ADA基因缺陷导致的严重免疫缺损的四岁女孩,并获得成功[1]。 1994年美国科学家利用经过修饰的腺病毒为载体,成功地将治疗遗传性囊性纤维化病的正常基因cfdr 转入患者肺组织中。2000年,法国巴黎内克尔儿童医院利用基因治疗,使数名有免疫缺陷的婴儿恢复了正常的免疫功能,取得了基因治疗开展近十年最大的成功[2]。 2004年1月,深圳赛百诺基因技术有限公司将世界第一个基因治疗产品重组人p53抗癌注射液正式推向市场,这是全球基因治疗产业化发展的里程碑[3]。迄今报道已有数千例基因治疗患者,病种主要是恶性肿瘤、艾滋病、血友病B、病毒性肝炎等等。 二、基因治疗的概念 基因治疗是指向有功能缺陷的细胞补充相应的基因,以纠正或补偿其基因缺陷,从而达到治疗的目的。 广义的说,基因治疗就是应用基因或基因产物治疗疾病的一种方法。狭义的说,基因治疗是把外界的正常基因或治疗基因,通过载体转移到人体的靶细胞,进行基因修饰和表达,治疗疾病的一种手段。

环境基因组学的研究进展及其应用

环境基因组学的研究进展及其应用 贾海鹰 张徐祥 孙石磊 赵大勇 程树培* (南京大学,环境学院,南京,210093) E-mail(jhy194@https://www.doczj.com/doc/4f9621330.html,) 摘 要:本文系统地介绍了环境基因组学的基本概念、研究的主流技术平台及其在环境污染控制、健康风险检测与评价等方面地应用,并阐明了环境基因组学与生物信息学两者之间的关系。环境基因组学在分子水平上揭示了环境污染物与生物之间的相互作用,为检测、控制环境污染维护环境健康注入了新的活力。 关键词:环境基因组学 生物信息学 健康风险评价 环境污染 环境健康 1.引言 2003年4月14日,人类基因组计划(Human Genome Project)顺利完成。HGP成功地绘制出了遗传图谱、物理图谱、序列图谱和转录图谱4张图谱。这标志着人类基因组计划的所有目标全部实现。至此,HGP的研究发生了翻天覆地的变化,已从结构基因组学研究时代进入了功能基因组(后基因组)时代[1-2],因此也就有了“人类后基因组计划”。HGP正朝着生物信息科学、计算机生物技术、数据处理、知识产权及社会伦理学研究等多方面发展,对生命科学、环境科学、医疗卫生、食品制药、人文科学各领域产生了广泛而深远的影响。环境基因组学(environmental genomics)是在人类基因组基础上发展的功能基因组内容之一,由基因组学和环境科学交叉融合而成,是一个近期发展起来的新型边缘学科,是基因组学技术和成果在环境污染保护与控制和生态风险评价中的应用,在其发展的短短的几年时间内已渗透到环境科学研究的各个研究领域并发挥着日益重要的作用。 2.环境基因组学的概念与定义 至今,国内外学者对环境基因组学还没有统一明确的定义。但是,大多数学者认为,环境基因组学(environmental genomics)的概念与毒理基因组学(toxicogenomics)密切相关。自从1999年Nuwaysir等[3]首次提出毒理基因组学概念至今,在短短的八年的时间里这一概念不断地发展和完善着。目前人们普遍采纳的定义有两种,一种是美国国家毒理学规划机构给出的定义[3]:毒物基因组学是研究外来化学物对基因活性和基因产物的影响及相互作用的科学;另一种是由世界卫生组织给出的定义[3],认为毒物基因组学是一门与遗传学、基因组水平上RNA表达(转录组学) 、细胞和组织范围的蛋白表达(蛋白质组学)、代谢谱(代谢组学) 、生物信息学和常规毒理学结合,以阐明化学物作用模式和基因-环境相互作用的潜在意义的科学。1998年4月4日,美国国会顾问环境卫生科学委员会正式投资专项基金进行环境基因组计划研究,其目的是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因,鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度方面的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库,把公用的多态性应用于社会、法律和伦理学[4-7]。2001年,Miller 提出环境基因组(Environmental Genomics)是在人类基因组(HGP)基础上发展起来的后 - 1 -

基因组学在人类健康与疾病中的应用

基因组学在人类健康与疾病中的应用 ————094班 2090611412 王国东摘要:在发现DNA双螺旋结构50周年之际,高质量的人类基因组全序列测序工作的完成具有划时代的意义,基因组的新纪元已经到来。 关键词:DNA双螺旋、人类基因组、新纪元 前言:现在广泛公布的人类以及一系列其他生物体的基因组序列为我们描绘出了最基础的生物学以及生物医学信息。这些仍然很难破译的密码包含了细胞的结构和功能的的全部遗传指令信息,而这一信息又是揭开生物系统复杂性所必需的。阐明基因组的结构以及确定大量编码元素的功能可以建立基因组学与生物学的联系,从而加速我们对所有生命科学领域的探索。因此,我们需要新的概念和技术用来发展一种全面的、易于理解的人类基因组的编码目录明确基因编码的产物如何共同作用行使细胞和组织功能理解基因组如何改变和承担新功能。本文主要从以下几个方面来阐述基因组学在人类健康与疾病中的应用。 1.人类基因组的可遗传变异的详细理解 遗传学的主要内容之一是寻找表型的不同(性状)与DNA序列的变异之间的关联。人类遗传学的最大进步是把性状和单个基因联系起来。但是大部分的表型,包括普通疾病和对药物的不同反应,都是由更加复杂的原因所致,包括多种遗传因素(基因及其产物)以及非遗传因素(环境因素)的交互作用。揭示这一复杂体系不仅需要对人类基因组可遗传的变异进行全面描述,还需要开发出一系列用这些信息了解遗传疾病基础的分析方法。 早在几年前,人们已经急于开始建立一套人类基因常见差异的细目,包括单核苷酸多态性(SNPs),小的缺失和插入,以及其他结构上的不同。已经发现了许多SNPs,而且大部分结果已经公开(https://www.doczj.com/doc/4f9621330.html,/SNP)。2002年,一个公共协作项目--国际HapMap计划(https://www.doczj.com/doc/4f9621330.html, /Pages/Research/ HapMap)启动,它的目的是建立人类基因组的不均衡联接模式和单体型,用来鉴定携带大量这些模式的遗传变异信息的SNPs,从而使更广泛的遗传关联性的研究成为可能。这些研究要想成功,就需要用这种新的人类单体型框架来进行更充分的实验以及发展更多的计算方法。对人和其他模式生物遗传变异的全面了解可以推动基因型和生物功能相关性的研究。对特定变异的研究以及研究这些变异对特定蛋白的功能和途径的影响,将为我们认识和理解正常或病理状态下的生理过程提供重要新思路。把基因变异的信息结合到人类遗传学研究中的能力的提高,将为基因水平上的人类疾病的研究开启新的纪元。 2基因组学与人类健康与疾病的应用 2.1把基于基因组的知识转化为人类健康的福祉 人类基因组测序,以及基因组学其他最近及预期的研究成果,极大地有助于我们了解遗传因素在人类健康和疾病中的角色,精确确定非遗传因素,并迅速将新发现用于疾病的预防、诊

最新高中生物(人教版)同步习题:1-2基因诊断与基因治疗(选修2)及答案解析

第2节基因诊断与基因治疗 (时间:30分钟满分:50分) 难度及题号 考查知识点及角度 基础中档稍难 基因诊断 2 1 基因芯片3、7 4 基因治疗5、6 8 一、选择题(共6小题,每小题4分,共24分) 1.用DNA探针诊断疾病的具体方法是()。 A.与被测样品的DNA碱基序列做比较 B.与被测样品的DNA分子重组 C.与被测样品的DNA分子杂交 D.A、B、C三种方法均可 解析基因诊断是指用标记的DNA分子做探针,利用DNA分子杂交原理, 与待测样品DNA杂交,从而推测待测DNA序列。 答案 C 2.对某些传染性疾病(例如SARS)的诊断的困难在于病原体数量在初期极少,因此稳定、可靠而快捷的检测手段是()。 A.病毒的大量培养B.患者体内相关抗体的检测 C.PCR技术扩增D.临床症状确诊 解析对于病原体数量极少的待测样本,可利用PCR技术,对待测核酸进行 PCR技术扩增,获得大量核酸。 答案 C 3.基因芯片()。 A.是计算机上的微处理器 B.只能少量地对DNA分子的碱基序列进行测定和定量分析 C.是将少量DNA片段有序地固定在尼龙膜、玻片或硅片上 D.是一种高密度的DNA阵列 解析基因芯片是将大量特定序列的DNA片段(探针)有序地固定在尼龙膜、

玻片或硅片上,从而能大量、快速、平行地对DNA分子的碱基序列进行测 定和定量分析。基因芯片实际上是一种高密度的DNA阵列。 答案 D 4.下列对基因芯片的叙述中,错误的是()。 A.基因芯片可直接检测样品DNA和RNA B.基因芯片技术依据DNA分子杂交原理 C.基因芯片技术有助于发现不同个体对疾病易感性的差异 D.基因芯片技术不会造成社会负面效应 解析基因芯片技术也会造成负面效应,如基因歧视所引发的社会问题;婚姻、就业、保险等方面受到不公平的待遇;侵犯隐私权;对自己的心理、生活带来许多压力等。 答案 D 5.基因治疗的步骤是()。 ①治疗基因的表达②选择治疗基因③将治疗基因转入患者体内④选择 运输治疗基因的载体 A.②③①④B.②③④① C.③④②①D.②④③① 解析基因治疗的步骤包括选择治疗基因、选择运输治疗基因的载体、将治疗基因转入患者体内、治疗基因的表达。 答案 D 6.对基因治疗安全性的问题叙述不当的是()。 A.基因治疗中最常用的载体是病毒,它们能自我复制 B.在基因治疗中,科学家抑制逆转录病毒的某种活动防止它们引起疾病,使之能被安全地使用 C.使用病毒载体运载基因,它们可能更多地改变目标细胞 D.目的基因插入载体DNA的位置可能出现错误,导致癌症和其他损伤的产生解析基因治疗中最常用的载体为病毒,大多数基因治疗临床实验用小鼠逆转录病毒运送目的基因,其他病毒载体还包括腺病毒、痘病毒和疱疹病毒等。

2019_2020学年高中生物第六章基因治疗和人类基因组计划(略)第四节遗传病与人类未来知能演练轻巧夺冠

第三节基因治疗和人类基因组计划(略)第四节遗传病与人 类未来 [随堂检测][学生用书P84] 1.蚕豆病患者的葡萄糖-6-磷酸脱氢酶基因有缺陷,因此进食蚕豆后易发生溶血性黄疸。下列对这种疾病的叙述,错误的是( ) A.治疗蚕豆病的有效途径是基因治疗 B.不吃蚕豆,可以控制蚕豆病的发病 C.无论在什么环境条件下,蚕豆病的致病基因总是对人类有害的 D.蚕豆病的致病基因是否有害与环境因素有关 解析:选C。蚕豆并不是非吃不可的食物,若不将它归入“正常”的环境因素,则不能说蚕豆病致病基因是有害基因。 2.下列各项中不属于“选择放松”内容的是( ) A.对ADA缺乏症患者进行基因治疗 B.对有遗传病家史的孕妇进行产前诊断 C.有遗传病家史的待婚青年进行遗传咨询 D.对肺炎患者积极进行医学治疗 解析:选D。选择放松的对象是遗传病患者,而肺炎是由病原体感染引起,不是遗传病。 3.(2017·浙江4月选考)每年二月的最后一天为“国际罕见病日”。下列关于罕见病苯丙酮尿症的叙述,正确的是( ) A.该病是常染色体多基因遗传病 B.近亲结婚不影响该病的发生率 C.该病的发病风险在青春期会增加 D.“选择放松”不会造成该病基因频率的显著增加 解析:选D。苯丙酮尿症是常染色体隐性遗传病,A错;该病是常染色体隐性遗传病,所以近亲结婚会导致隐性纯合概率增加,B错;所有的遗传病在青春期的发病率都很低,C 错;而“选择放松”造成有害基因的增多是有限的,故选D。 4.个体发育和性状表现偏离正常,不仅仅是有害基因造成的,还与环境条件不合适有关。下列说法中正确的是( ) A.苯丙酮尿症患者细胞中造成苯丙酮尿症的基因是有害的 B.蚕豆病患者体内的引起蚕豆病的缺陷基因是有害的 C.苯丙酮尿症患者经过治疗能和正常人一样生活并能生育后代,从而使致病基因频率不断升高

基因组学

课程名称基因组学 硕士课程论文 题目:基因枪技术在植物学研究中的应用 学科专业: 植物学 年级: 2012 学号: 2012210632 研究生:侯敏指导教师:查笑君 论文提交时间: 2012 年 12 月 11 日 基因枪技术在植物学研究中的应用

摘要基因枪是当今研究中一种重要的基因转移方法,在各个应用领域都显示出了其独特的优越性,因而广受重视;与此同时,基因枪技术本身也在实践中不断发展和完善。本文在回顾和总结基因枪技术使用原理的基础上,综述了基因枪在植物学研究中的应用。 关键词基因枪;植物学;基因转移;应用 Appl ication of Particle Bombardment in the Research of Botany Abstract As an important means of gene delivery , gene gun technology has showed its superiority in many application fields of gene engineering , and so has gained wide attention. At the same time , gene gun technology is also evolving in practice. Upon the retrospection and of the gene gun principles , the application of the gene gun in the Botanical Research was summaried. Key words Gene gun ; botany ; gene delivery ;application 1 基因枪技术的转化原理与发展 近年来转基因技术以前所未有的速度进步人们已经不再满足于单个基因成功插入原有生物的基因组中而是把目光放在插入基因的成功表达和产。然而自然界的生物体是十分复杂的有机整体许多的功能性状并不是单个基因可简单调控的即使像海藻一样简单的双糖在酵母中的代谢途径也需要个基因产物的直接参与。目前进行多基因转化研究的主要技术手段有两种一种是单质粒载体的转化即几个目的基因和标记基因在同一载体质粒上另一种是目的基因和标记基因位于不同的载体上的共转化研究后者的主要优点在于能在分离的世代中把在生产中没有意义的基因分离同时也可以转入更多的外源基因基因枪转化方法则是实现其转化的主要途径。 基因枪技术( Particle gun) ,又称生物弹或生物发射法(Biolistic process) 、粒子轰击技术( Particle bombardment) 和高速微粒子发射技术( High - velocity microprojectile) 。其原理是利用高速飞行的微米或亚微米级惰性粒子(钨或金粉) ,将包被其外的目的基因直接导入受体细胞,并释放出外源DNA ,使DNA 在受体细胞中整合表达,从而实现对受体细胞的转化。根据动力来源不同,基因枪可大体分为火药式( Gunpowder )、放电式( Elect ric discharge) 和气动式(Pneumatic) 3 种类型。1987 年美国康乃尔大学的J . C. Santord 等设计制造的火药式基因枪是最初的基因枪。到目前为止还有以化学推进剂为动力(弹药枪) 和以放电为动力(电子枪) 用于粒子轰击细胞的新工具,特点是能转化有细胞壁的植物细胞,并能直接向细胞器中输入DNA ,或用来转化花粉以避开组织培养的操作。在全面推广粒子枪之前还要进行开发和改良,更有效的电子枪会取代弹药枪。 2 基因枪法在禾谷类作物遗传转化中的应用 2.1 转化目的基因改良作物性状在用基因枪法转化禾谷类作物的研究中,转化的目的基因主要有抗除草剂基因、抗虫基因、抗病基因、雄性不育基因等。 2.1.1 转化抗除草剂基因 抗除草剂基因既可用作选择标记基因建立遗传转化系统,又能作为目的基因,使转基因作物在生长期间可使用除草剂除草,从而免去人工除草工作,节省了大量劳力。常用的抗除草剂基因是PPT 乙酰转移酶基因(又称bar 基因) ,抗除草剂bialaphos。用基因枪法将bar 基因转化小麦[、水稻、玉米、高粱,均获得了抗除草剂植株。 2.1.2 转化抗虫基因 在禾谷类作物中,用基因枪法转化的抗虫基因主要是苏云金芽孢杆菌的晶体蛋白基因(Bt 基因) ,而且在玉米中报道得较多,王国英等用基因枪法将Bt 基因转化玉米胚性愈伤组织,获得了转Bt 基因的植株,对一个转Bt 基因植株的杂交后代进行了玉米螟抗性的田间鉴定,抗虫和感虫植株的比例接近1∶1 ,符合孟德尔单显性基因的遗传规律。在水稻中,用改良的苏云金杆菌δ—内毒素[cryIA(b) ]基因经基因枪法转化,获得了能育的抗黄茎钻蛀虫转基因粳稻植株。 2.1.3 转化抗病基因 简玉瑜等用基因枪法将抗菌肽B(cecropin B) 基因导入水稻得到了转基因植株,对T3 代抗白叶枯

相关主题
文本预览
相关文档 最新文档