当前位置:文档之家› SDH数字微波通信系统

SDH数字微波通信系统

SDH数字微波通信系统
SDH数字微波通信系统

SDH数字微波通信系统

摘要:SDH数字微波通信是新一代的数字微波传输体制。它兼有SDH数字通信和微

波通信两者的优点,本文简单介绍了SDH的速率和帧结构,阐明了SDH数字微波传输设备采用的关键技术以及SDH数字微波通信系统的组成。

关键字:SDH 微波通信数字

ABSTRACT:SDH digital microwave communication is the new generation of digital microwave transmission system. It both SDH digital communications and microwave communication advantage of the two, this article simply introduces the rate and frame structure SDH, expounds SDH digital microwave transmission equipment the key technologies used and SDH digital microwave communication system composition.

Keywords:SDH digital microwave communication

1.SDH简介

SDH是新一代的数字传输体制。SDH有全世界统一的数字信号和帧结构标准,它把北美、日本和欧洲、中国流行的两大准同步数字体系(三个地区性标准)在STM—l等级上获得统一第一次实现了数字传输体制上的世界睦标准,因采用了同步复用方式和灵活的复用映射结构,避免对整个高速复用信号分解,达到一步复用特性,使上、下业务十分容易,也大大简化了数字交叉连接设备(DXC);SDH帧结构中安排了丰富的开销比特,大大加强了网络的运行管理和维护能力;不同厂家的产品可以互通,降低了联网成本。毫无疑问,传输网的发展方向应该是高度灵活和规范化的SDH网。SDH不仅可以应用于光纤通信系统中,而且还可以运用于微波通信系统之中,从而可以建立一个全新的SDH数字微波通信网络。

1、SDH的比特速率

同步数字体系最基本的模块信号(即同步传送模块)是STM—l,其比特速率为155.520Mbit /s,更高级的STM-N信号可以按字节同步复接获得,其fbN=(155.520*N)Mbit/s,目前SDH只能支持一定的N值,即N为l、4、16、64等。

S rM—l l55.520Mbit/s

STM-4 622.080Mbit/s

sTM一16 2488.320Mbit/s

STM一64 9953.280Mbit/s

2、s1M一1的帧结构

STM—l的帧结构为净负荷区域、段开销区域和管理单元指针区域组成。以矩阵结构表达,共为9行270列(字节),帧长125us。SOH较为复杂,已经包含了定帧信息、公务、段误码监测、自动备用倒换、段数据通信等信息。

2.SDH微波通信系统的组成

数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。一条数字微波通信线路,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。

向若干方向辐射的枢纽站,就其每一个方向来说一也是一个终端站。SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等,终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ /CMI变换等)。在公务联络方面,终端站具有全线公务和选站公务两种能力。在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理(TMN)连接。终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。可作为监控系统的集中监视站或主站。

交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。目前,大容量干线绝大部分采用数字程控交换机。

数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。对于PDH系统,一般采用编码调制数字电话终端机,它还包括二次群和高次群复接器、保密机及其他数字接口设备,按工作性质不同,它可以组成数字终端或数字分路终端机。而对于SDH系统,则采用SDH数字复用设备,简称SDH设备,它由一些基本功能块灵活地组成不同类型的总的设备。图中的数字分路终端机可由分插复用器(ADM)来替代。

微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。有两个以上方向的上,下话路的微波站则称之为数字微波枢纽站。SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ/CMI变换等)。在公务联络方面,终端站具有全线公务和选站公务两种能力。在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理网(TMN)连接。终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。

SDH微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中继站,称再生中继站。需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。

再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。线路运行质量的能力,并可执行网管系统的配置管理及进行遥控及遥测。再生中继站也可以上、下旁路业务信号。

3.SDH数字微波传输设备采用的关键技术

1、微波帧复用技术

在光纤通信系统中是采用SDH帧结构来传输数字流的,而在数字微波传输系统中,为了传输数字公务信息、旁路业务信号等,贝需要在SDH复用帧结构的基础上插入一些辅助比特,因而需要在数字微波传输系统的收、发信端分别增加分、复接器,使得微波帧复用技术更为复杂。在不同的微波通信系统中可以使用不同的微波帧结构,微波帧结构与SDH同步传输模块的速率、所插入的微波帧开销比特速率以及调制方式等因素有关。

2、编码调制技术

我国在4~11GHz频段大多采用ITU—R建议的28~30MHz和40MHz的波道间隔配置,要在有限的频带内传送尽可能高的比特率,最有效的办法就是采用高性能高速多状态调制解调技术。因SDH传送方式的特点而决定了在传送相同话路或相同的2Mbit/s接口数的传输方式中,SDH微波所需占用的比特率要比PDH微波所需占用的比特率高l1%~2O%。SDH 微波与PDH微波在相同的波道间隔下,其所需调制状态数的区别。

3.交叉极化干扰抵消(XPIc)技术

为了进一步增加数字微波系统的容量,提高频谱利用率,有两种方法可以实现。一种方法是采用512QAM或1024QAM调制方式。但因调制状态数多,对电路的线性要求高,元器件的性能敏感,对多径衰落的影响也很84 中国电子商务1.2010.06严重,故技术难度大。在数字微波系统中除了采用多状态调制技术(64QAM,128QAM或512QAM调制)外,还采用双极化频率复用技术,在每个波道中同时用垂直与水平两种极化各传一个155.52Mbit/S 的SDH微波信息,使单波道数据传输速率成倍增长。但在出现多径衰落时,交叉极化鉴别率(xPD)会降低,从而产生交叉极化干扰。为此,需要一个交叉极化抵消器,用以减小来自正交极化信号的干扰。自适应交叉极化干扰抵消技术的基本原理是从所传输信号相正交的干扰信道中取出部分信号,经过适当处理后与有用信号相加,用以抵消叠加在有用信号上的来自正交极化信号的干扰。原则上干扰抵消过程可以在射频、中频或基带上进行。采用XPIC 技术后,对干扰的抑制能力一般可达15dB左右。

4。前向纠错技术

为避免一般的FEC技术导致的牺牲频带利用的现象发生,采用了一种新技术,即把调制和纠错编码结合起来统一设计的编码调制技术。常见的有块状编码调制(BCM)、格状编码调制(TCM)和多级编码调制(MLCM)等三种。其中BCM是各级用块状码进行调制。与TCM相比,设备比较简单,但编码增益较低;TCM是各级都用一种卷积码,如4D—TcM是一种四维格状编码、维特比译码的纠错方式。与其他方式相比,其编码增益最高,但不能传送2Mbit /S的路旁业务,MLCM 方式可以利用微波帧开销(RFCOH)增加2Mbit/S的路旁业务,其编码增益比TCM稍高,并因译码操作在低速进行,故结构简单。可见,MLGM方式是一种较好的纠错方式,其次是4DTCM方式。

5.自适应频域和时域均衡技术

当系统采用多状态QAM调制方式时,要达到ITU—R所规定的性能指标,对多径衰落必须采取相应的对抗措施。考虑到ITu—R的新建议将不再给数字微波系统提供额外的差错性能配额,因此,必须采取强有力的抗衰落措施。在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。频域均衡主要用于减少频率选择性衰落的影响,即利用中频通道插入的补偿网络的频率杼l生去补

偿实际信道频率特性的畸变,时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。

6.高线性功率放大器和自动发射功率控制(ATPC)技术

ATPC(Automatic transmitPowercontro1)即发信功率的自适应控制技术在SDH数字微波通信中得到广泛应用。SDH微波采用多状态调制技术,对传输信道,特别是高功率放大器的线性提出了严格的要求。为了满足系统总传输性能的要求,除了对微波传输放大器采取回退措施外,还要采取一些非线性的补偿技术,如加中频或射频预失真器或采用前馈等技术来改善发信机的线性。ITU—T第75l号建议规定,SDH微波系统还要采用自动发信功率控制(ATPC)技术。该技术的要点是微波发信机的输出功率在ATPC的控制范围内自动跟踪接收端接收电平的变化而变化。在正常的传播条件下,发信机输出功率固定在某个比较低的电平上,例如比正常电平低lO~15dB左右。当发生传播衰落时,接收机检测到传播衰落并达到ATPC所规定的最低接收电平时,立即通过微波段开销(RFSOH)字节控制对方发信机提高发信功率,直到发信机功率达到额定功率后,若对方接收电平仍继续下降,则发信机输出功率则维持在额定输出功率上不再变化。通常严重的传播衰落发生的时间率是很短的,—般不足1%,所以采用ATPC装置后,发信机在99%以上的时间内均以比额定输出功率低l0~15dB的状态工作。

ATPC主要优点是:

(1)降低了对相邻系统的干扰;

(2)减小了上衰落对系统的影响;

3)降低了电源消耗,使射频放大器的功耗相当于正常电平时的50%;

(4)改善了系统的残余比特差错性能。由于发信机在ATPC控制下使大部分正常传输条件下用最小。

4.SDH微波在SDH电信网中的应用

微波作为三大传输手段之一也在SDH网中起着重要作用。尽管光纤传输网在容量方面有微波无法比拟的优点,但不管是通信干线上还是支线,SDH微波网仍然是光纤网不可缺少的补充和保护手段。SDH微波网可以利用现有模拟或PDH微波网的基础设施进行建设。其主要应用有下列几种:用SDH微波系统使光纤电信网形成闭合环路;与SDH光纤系统串接使用;作为SDH光纤网的保护,以解决整个通信网的安全保护问题;自成链路或环路。中国移动、电信、联通、广电等电信运营商都已经大规模建设了基于SDH的骨干光传输网络。利用大容量的SDH环路承载IP业务、ATM业务或直接以租用电路的方式出租给企、事业单位。而一些大型的专用网络也采用了SDH技术,架设系统内部的SDH光环路,以承载各种业务。比如电力系统,就利用SDH环路承载内部的数据、远控、视频、语音等业务。

而对于组网更加迫切、而又没有可能架设专用SDH环路的单位,很多都采用了租用电信运营商电路的方式。由于SDH基于物理层的特点,单位可在租用电路上承载各种业务而不受传输的限制。承载方式有很多种,可以是利用基于TDM技术的综合复用设备实现多业务的复用,也可以利用基于IP的设备实现多业务的分组交换。SDH技术可真正实现租用电路的带宽保证,安全性方面也优于VPN等方式。在政府机关和对安全性非常注重的企业,SDH租用线路得到了广泛的应用。一般来说,SDH可提供E1、E3、STM-1或STM-4等接口,完全可以满足各种带宽要求。同时在价格方面,也已经为大部分单位所接受。

5.总结

我国地域辽阔,各地自然条件和经济发展情况差别相当大,因此,必须因地制宜的安排各种传输手段。各国的经验表明,在发生自然灾害的情况下,总是首先靠无线通信方式恢复电信业务。同时在某些应用场合,如连接到卫星地球站、移动通信网基站及其专用网,以及连接到广大农村及偏远的厂矿等,还是用微波作为传输手段比较灵活方便,而且,其性能价格比也十分理想。所以,我国在大力发展光纤干线传输网的同时,也十分注意发展建设SDH数字微波通信网。

参考文献

[1]孙学康,SDH技术,人民邮电出版社.

[2]韦乐平等,S DH及其新应用,人民邮电出一、数字微波通信系统的组成

数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。

组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分:

用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。

交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。目前,大容量干线绝大部分采用数字程控交换机。

数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。对于PDH系统,一般采用编码调制数字电话终端机,它还包括二次群和高次群复接器、保密机及其他数字接口设备,按工作性质不同,它可以组成数字终端或数字分路终端机。而对于SDH系统,则采用SDH数字复用设备,简称SDH设备,它由一些基本功能块灵活地组成不同类型的总的设备。图中的数字分路终端机可由分插复用器(ADM)来替代。

微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。有两个以上方向的上,下话路的微波站则称之为数字微波枢纽站。SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ/CMI变换等)。在公务联络方面,终端站具有全线公务和选站公务两种能力。在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理网(TMN)连接。终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。

数字微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中继站,称再生中继站。需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。线路运行质量的能力,并可执行网管系统的配置管理及进行遥控及遥测。再生中继站也可以上、下旁路业务信号。

.二、数字微波采用的关键技术

数字微波传输设备所采用的基本技术大致与PDH相同,但由于传输方式的特点又决定了两者有所不同,SDH有下述几个关键技术:

1.编码调制技术

微波是一种频带受限的传输媒质,根据ITU-R建议,我国在4~11GHz频段大都采用的波道间隔为28~30MHz及40MHz(ITU-R相关的频率配置建议)。要在有限的频带内传输SDH信号,必须采用更高状态的调制技术。SDH微波与PDH微波在相同的波道间隔下,所需调制状态数的区别如表1所示。

2.交叉极化干扰抵消以(XPIC)技术

为了进一步增加数字微波系统的容量,提高频谱利用率,在数字微波系统中除了采用多状态调制技术(64QAM,128QAM或512QAM调制)外,还采用双极化频率复用技术,使单波道数据传输速率成倍增长。但在出现多径衰落时,交叉极化鉴别率(XPD)会

降低,从而产生交叉极化干扰。为此,需要一个交叉极化抵消器,用以减小来自正交极化信号的干扰。

自适应交叉极化干扰抵消技术的基本原理是从所传输信号相正交的干扰信道中

取出部分信号,经过适当处理后与有用信号相加,用以抵消叠加在有用信号上的来自正交极化信号的干扰。原则上干扰抵消过程可以在射频、中频或基带上进行。采用XPIC技术后,对干扰的抑制能力一般可达15dB左右。

3.自适应频域和时域均衡技术

当系统采用多状态0AM调制方式时,要达到ITU-R所规定的性能指标,对多径衰落必须采取相应的对抗措施。考虑到ITU一R的新建议将不再给数字微波系统提供额外的差错性能配额,因此,必须采取强有力的抗衰落措施。在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。

频域均衡主要用于减少频率选择性衰落的影响,即利用中频通道插入的补偿网络的频率特性去补偿实际信道频率特性的畸变;时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。

4.高线性功率放大器和自动发射功率控制

多状态调制技术对传输信道,特别是高功率放大器的线性提出了严格的要求。例如,对采用640AM的系统而言,要求传输信道的三阶交调失真要比主信号至少低45dB。若采用128QAM或256QAM调制技术,则要求更严。为满足系统总传输性能的要求,除了对微波高功放采取输出回退措施外,还要采取一些非线性的补偿技术,如加中频或射频失真器或采用前馈技术等来改善放大器的线性。

高线性功率放大器和自动发射功率控制(ATPC)技术的关键是微波发信机的输

出功率在ATPC的控制范围内自动地随接收端接收电平的变化而变化。采用ATPC技术的

优点是,降低了同一路由相邻系统的干扰,减小了上衰落对系统的影响,降低了电源消耗,减小非线性失真。

5.大规模专用集成电路(ASIC)设计技术

三、SDH微波在SDH电信网中的应用

微波作为三大传输手段之一也在SDH网中起着重要作用。尽管光纤传输网在容量方面有微波无法比拟的优点,但不管是通信干线上还是支线,SDH微波网仍然是光纤网不可缺少的补充和保护手段。SDH微波网可以利用现有模拟或PDH微波网的基础设施进行建设。其主要应用有下列几种:用SDH微波系统使光纤电信网形成闭合环路;与SDH光纤系统串接使用;作为SDH光纤网的保护,以解决整个通信网的安全保护问题;自成链路或环路。

四、工程综合应用网图

在许多通信系统工程设计的建设过程中,不可避免地要考虑到已有系统的再利用因素,以及不同型号设备的兼容问题,SDH数字微波通信系统在此方面具有独有的优势。它不仅具有光纤级传输性能及全面的网络管理性能,还包括一个开放的系统结构,能方便地实现不同型号的ADM(上、下话路复用器)之间的切换和交叉互连。其综合应用(典型)网络链接如图3所示。

我国地域辽阔,各地自然条件和经济发展情况差别相当大,因此,必须因地制宜的安排各种传输手段。各国的经验表明,在发生自然灾害的情况下,总是首先靠无线通信方式恢复电信业务。同时在某些应用场合,如连接到卫星地球站、移动通信网基站及其专用网,以及连接到广大农村及偏远的厂矿等,还是用微波作为传输手段比较灵活方便,而且,其性能价格比也十分理想。所以,我国在大力发展光纤干线传输网的同时,也十分注意发展建设SDH数字微波通信网。原邮电部已决定在“九五”至“十五”期间新建30条左右的国家一级干线数字微波电路,总长约30000km。

SDH微波通信是新一代的数字微波传输体制。数字微波通信是用微波作为载体传送数字信息的一种通信手段。它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。

一、SDH微波通信系统的组成

1、数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。

2、组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分:

3、用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。

4、交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。目前,大容量干线绝大部分采用数字程控交换机。

5、数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。对于PDH系统,一般采用编码调制数字电话终端机,它还包括二次群和高次群复接器、保密机及其他数字接口设备,按工作性质不同,它可以组成数字终端或数字分路终端机。而对于SDH系统,则采用SDH数字复用设备,简称SDH设备,它由一些基本功能块灵活地组成不同类型的总的设备。图中的数字分路终端机可由分插复用器(ADM)来替代。

6、微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。有两个以上方向的上,下话路的微波站则称之为数字微波枢纽站。SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插入与提取,微波帧开销的插入及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、收信差分译码、解扰码、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插入与提取石DH开销的插入与提取、NRZ/CMI变换等)。在公务联络方面,终端站具有全线公务和选站公务两种能力。在网络管理方面,终端站可以通过软件设定为网管主站或主站,收集各站汇报过来的信息,监视线路运行质量,执行网管系统配置管理及遥控、遥测指令,需要时还可通过Q3接口与电信管理网(TMN)连接。终端站基带接口与SDH复用设备连接,用于上、下低价支路信号。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。

7、SDH微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中继站,称再生中继站。需要上、下话路的中继站称微波分路站,它必须与SDH的分插复用设备连接。再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。线路运行质量的能力,并可执行网管系统的配置管理及进行遥控及遥测。再生中继站也可以上、下旁路业务信号。

二、SDH数字微波采用的关键技术

1、SDH微波传输设备所采用的基本技术大致与PDH相同,但由于传输方式的特点又决定了两者有所不同,SDH有下述几个关键技术:

(1).编码调制技术

微波是一种频带受限的传输媒质,根据ITU-R建议,我国在4~11GHz频段大都采用的波道间隔为28~30MHz及40MHz(ITU-R相关的频率配置建议)。要在有限的频带内传输SDH信号,必须采用更高状态的调制技术。SDH微波与PDH微波在相同的波道间隔下.

(2).交叉极化干扰抵消以(XPIC)技术

为了进一步增加数字微波系统的容量,提高频谱利用率,在数字微波系统中除了采用多状态调制技术(64QAM,128QAM或512QAM调制)外,还采用双极化频率复用技术,使单波道数据传输速率成倍增长。但在出现多径衰落时,交叉极化鉴别率(XPD)会降低,从而产生交叉极化干扰。为此,需要一个交叉极化抵消器,用以减小来自正交极化信号的干扰。

自适应交叉极化干扰抵消技术的基本原理是从所传输信号相正交的干扰信道中取出部分信号,经过适当处理后与有用信号相加,用以抵消叠加在有用信号上的来自正交极化信号的干扰。原则上干扰抵消过程可以在射频、中频或基带上进行。采用XPIC技术后,对干扰的抑制能力一般可达15dB左右。

(3)自适应频域和时域均衡技术

当系统采用多状态0AM调制方式时,要达到ITU-R所规定的性能指标,对多径衰落必须采取相应的对抗措施。考虑到ITU一R的新建议将不再给数字微波系统提供额外的差错性能配额,因此,必须采取强有力的抗衰落措施。在各种抗衰落技术中,除了分集接收技术外,最常用的技术是自适应均衡技术,包括自适应频域均衡技术和自适应时域均衡技术。

频域均衡主要用于减少频率选择性衰落的影响,即利用中频通道插入的补偿网络的频率特性去补偿实际信道频率特性的畸变;时域自适应均衡用于消除各种形式的码间干扰,可用于最小相位和非最小相位衰落,为消除正交干扰,可引进二维时域均衡器。

高线性功率放大器和自动发射功率控制

多状态调制技术对传输信道,特别是高功率放大器的线性提出了严格的要求。例如,对采用640AM的系统而言,要求传输信道的三阶交调失真要比主信号至少低45dB。若采用128QAM 或256QAM调制技术,则要求更严。为满足系统总传输性能的要求,除了对微波高功放采取

输出回退措施外,还要采取一些非线性的补偿技术,如加中频或射频失真器或采用前馈技术等来改善放大器的线性。

高线性功率放大器和自动发射功率控制(ATPC)技术的关键是微波发信机的输出功率在ATPC的控制范围内自动地随接收端接收电平的变化而变化。采用ATPC技术的优点是,降低了同一路由相邻系统的干扰,减小了上衰落对系统的影响,降低了电源消耗,减小非线性失真。

(4)大规模专用集成电路(ASIC)设计技术

三、SDH微波在SDH电信网中的应用

微波作为三大传输手段之一也在SDH网中起着重要作用。尽管光纤传输网在容量方面有微波无法比拟的优点,但不管是通信干线上还是支线,SDH微波网仍然是光纤网不可缺少的补充和保护手段。SDH微波网可以利用现有模拟或PDH微波网的基础设施进行建设。其主要应用有下列几种:用SDH微波系统使光纤电信网形成闭合环路;与SDH光纤系统串接使用;作为SDH光纤网的保护,以解决整个通信网的安全保护问题;自成链路或环路。

四、工程综合应用网图

在许多通信系统工程设计的建设过程中,不可避免地要考虑到已有系统的再利用因素,以及不同型号设备的兼容问题,SDH数字微波通信系统在此方面具有独有的优势。它不仅具有光纤级传输性能及全面的网络管理性能,还包括一个开放的系统结构,能方便地实现不同型号的ADM(上、下话路复用器)之间的切换和交叉互连。

我国地域辽阔,各地自然条件和经济发展情况差别相当大,因此,必须因地制宜的安排各种传输手段。各国的经验表明,在发生自然灾害的情况下,总是首先靠无线通信方式恢复电信业务。同时在某些应用场合,如连接到卫星地球站、移动通信网基站及其专用网,以及连接到广大农村及偏远的厂矿等,还是用微波作为传输手段比较灵活方便,而且,其性能价格比也十分理想。所以,我国在大力发展光纤干线传输网的同时,也十分注意发展建设SDH 数字微波通信网。原邮电部已决定在“九五”至“十五”期间新建30条左右的国家一级干线SDH微波电路,总长约30000km。

1.使1.5Mbit/s和2Mbit/s两大数字体系在STM-1等级上获得统一。数字信号在跨越国界通信时,不再需要转换成为另一种标准,第一次真正实现了数字传输体制上的世界性标准。

2.采用了同步复用方式和灵活的复用映射结构。各种不同等级的码流在帧结构净负荷内的排列是有规律的,而净负荷与网络是同步的,因而只需要利用软件即可使高速信号一次直接分插出低速支路信号即所谓的一步复用特征。这样既不影响别的支路信号,又避免了需要对全部高速复用信号进行分用的做法,省去了全套背靠背复用设备,使网络结构得以简化,上

下业务十分容易,也使DXC的实现大大简化。利用同步分插能力还可以实现自愈环形网,改进网络的可靠性和安全性。此外,背靠背接口的减少还可以改善网络的业务透明性,便于端到端的业务管理,使网络易于容纳和加速各种新的贷款业务的引入。

3.SDH帧结构中安排了丰富的开销比特,因而使得网络的OAM能力大大加强。此外,由于SDH中的DXC和ADM等一类网元是智能化的,通过嵌入的控制通路可以使部分网络管理能力分配到网元,实现分布式管理,使新特性和新功能的开发变得比较容易。

4.由于将标准光接口综合进各种不同的网元,减少了将传输和复用分开的需要,从而简化了硬件,缓解了布线拥挤。此外,有了标准光接口和通信协议后,使光接口成为开放型接口,还可以在基本光缆段上实现横向兼容,满足多厂家环境要求,降低了联网成本。

5.由于用一个光接口代替了大量电接口,因而SDH网所传输的业务信息可以不必经由常规同步系统所具有的一些中间背靠背电接口而直接经光接口通过中间节点,省去了大量的相关电路单元和跳线光缆,使网络的可用性和误码性能都获得改善。而且,由于电接口数量锐减导致运行操作任务的简化以及设备种类和数量的减少,使运营成本减少20%~30%。

6.SDH网与现有网络能完全兼容,即可以兼容现有准同步数字体系的各种速率。同时,SDH网还能容纳各种新的业务信号,使之具有完全的向后兼容性和向前兼容性。

综上所述,SDH最核心的特点是同步复用,标准的光接口及强大的网管功能。

而SDH作为一种新的技术体制,还存在一些缺陷,主要表现在:

1. 频带利用率低

有效性和可靠性是一对矛盾,增加了有效性必将降低可靠性,增加可靠性也会相应的使有效性降低。SDH的一个很大的优势是系统的可靠性大大的增强了(运行维护的自动化程度高),这是由于在SDH的信号--STM-N帧中加入了大量的用于OAM功能的开销字节,这样必然会使在传输同样多有效信息的情况下,PDH信号所占用的频带(传输速率)要比SDH信号所占用的频带(传输速率)窄,即PDH信号所用的速率低。例如:SDH的STM-1信号可复用进63个2Mbit/s或3个34Mbit/s(相当于48×2Mbit/s)或1个140Mbit/s(相当于64×2Mbit/s)的PDH信号。只有当PDH信号是以140Mbit/s的信号复用进STM-1信号的帧时,STM-1信号才能容纳64×2Mbit/s的信息量,但此时它的信号速率是155Mbit/s,速率要高于PDH同样信息容量的E4信号(140Mbit/s),也就是说STM-1所占用的传输频带要大于PDH E4信号的传输频带。

2. 指针调整机理复杂

SDH体制可从高速信号中直接下低速信号,省去了多级复用/解复用过程。而这种功能的实现是通过指针机理来完成的,指针的作用就是时刻指示低速信号的位置,以便在“拆包”

时能正确地拆分出所需的低速信号,保证了SDH从高速信号中直接下低速信号的功能的实现。可以说指针是SDH的一大特色。但是指针功能的实现增加了系统的复杂性。最重要的是使系统产生SDH的一种特有抖动--由指针调整引起的结合抖动。这种抖动多发于网络边界处,其频率低,幅度大,会导致低速信号在拆出后性能劣化,这种抖动的滤除会相当困难。

3. 软件的大量使用对系统安全性的影响

SDH的一大特点是OAM的自动化程度高,这也意味软件在系统中占用相当大的比重,这就使系统很容易受到计算机病毒的侵害,特别是在计算机病毒无处不在的今天。另外,在网络层上人为的错误操作、软件故障,对系统的影响也是致命的。这样系统的安全性就成了很重要的一个方面。所以设备的维护人员必须熟悉软件,选用可靠性较高的网络拓扑。

数字微波通信技术的发展及应用

数字微波通信技术的发展及应用 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术, 不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领 域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大 的发展前景十分广阔,应用范围也越来越广泛。可见,对数字微波通信技术的发 展及应用进行研究具有十分重要的现实意义,本文主要对此进行探究。 关键词:数字微波通信技术;发展;应用 微波是当今时代应用范围十分广阔的一种通信传输方式,数字微波通信技术 就是利用微波来传输数字信息的一种方式,同时还能够利用电波空间传输各种信 息甚至是对相互之间没有任何关联的信息进行传输,而且还能够在此基础上再生 中继,不得不说这是一种发展十分迅速的一种通信方式,本文主要对数字微波通 信技术的发展及应用进行研究,希望能够有效促进数字微波通信技术的不断发展。 1 数字微波通信技术的特点 数字微波通信技术之所以发展迅速且应用范围十分广泛是因为其具有其独特 的优势。数字微波通信技术的特点及其具体表现详见下表: 表1 数字微波通信技术的特点及其具体表现 2 数字微波通信技术的发展 微波通信技术是微波频段借助于地面视距进行信息传播的一种无线通信技术,已经出现了近几十年的时间。在出现初期阶段,微波通信系统通常是模拟制式的,它与当时的同轴电缆载波传输系统相同都是通信网长途传输干线的重要传输方式。具体而言,我国各个城市之间的电视节目是通过微波来进行传输的。20世纪70 年代初期随着科学技术的进步,人们开发出了几十兆比特每秒容量的数字微波通 信系统,可以说这个阶段是通信技术自模拟阶段向数字阶段转变的关键时期。20 世纪80年代末期,同步数字系列在传输系统中已经变得十分常见,可以说已经 被普遍应用,数字微波通信系统的容量也随之不断增大。当前,我们已经进入了 科学技术日新月异的新时代,数字微波通信技术与光纤、卫星一起被看作现代通 信技术的重中之重。 当今时代,数字微波通信技术不仅在传统传输领域内得到了关注,更在固定 宽带接入领域得到了众多专家学者的高度重视,可见数字微波通信技术发展态势 良好,发展前景十分广阔。 3 数字微波通信技术的主要发展方向 3.1 实现正交幅度调制级数的提升以及严格限带 要有效提升数字微波通信技术的频谱利用率一般需要应用到多电平正交幅度 调制技术,当前阶段,通常要应用到256与512正交幅度调制,未来还会应用到1024和2048正交幅度调制。此外,对于信号滤波器的设计要求也会变得越来越 严格,必须要确保其余弦滚降系数可以维持在一定范围内。 3.2 网格编码调制及维特比检测技术 采取复杂的纠错编码技术可以有效降低系统的误码率,但是这会导致系统的 频带利用率随之降低。这就要求我们必须采取有效措施来解决此问题,网格编码 调制技术就是不错的选择,可以有效处理该问题。需要注意的是,利用网格编码 调制技术需要使用维特比算法来进行解码。但是,在数字信号高速传输的当今时代,使用这种解码算法是具有一定难度的。

铁路应急通信系统讲座

铁路应急通信系统简介 第一章概述 1、铁路应急通信系统的定位 根据铁道部TB/T3204-2008的标准,《铁路应急通信接入技术条件》对铁路应急 通信系统定义的描述:“铁路应急通信系统是在铁路发生自然灾害、行车事故或其他突发性公共事件时,为确保救援指挥需要,在突发事件现场与应急救援指挥中心之间、应急救援指挥中心与应急救援指挥分中心之间以及突发事件现场内部建立的话音、数据、图像等通信,同时包括铁路应急指挥应用系统与各相关信息系统之间的通信。” 2、铁路应急通信系统的特点和要求 (1)具有快速响应的特点,实时性很强: 在《铁路运输应急通信管理办法》第十一条规定:“当铁路发生突发事件等紧急情况,铁通公司接到启用应急通信的通知,应立即采取措施,在一小时内接通应急电话及其他通信设备,保障现场与上级指挥机构的联系,必要时增设现场应急救援指挥通信枢纽。” 在《铁路交通事故应急救援规则》(中华人民共和国铁道部令第32号)第三十一条规定:“事故应急救援需要通信保障时,通信部门应当在接到通知后根据需要立即启用“117”应急通信人工话务台,组织开通应急通信系统。事故发生在站内,应当在30分钟内开通电话、1小时内开通图像传输设备。事故发生在区间,应当在1小时内开通电话、2小时内开通图像传输设备。” 所以铁路应急通信具有快速响应的特点,实时性很强,要根据铁路局各区段的实际情况,配置足够数量的应急通信现场设备,以便在规定时限内开通应急通word 编辑版. 信系统,确保通信指挥畅通。 (2)自成系统的应急通信网络 从铁道部到铁路局,再从铁路局到事件现场,形成两级应急指挥机构,按照两级指挥机构,构建应急通信网络,专网专用。目前,还没有组成全路的应急通信网络,只是一个点对点的应急通信网络。 在即将公布的《应急通信装备规划》中,要求以铁道部为中心,对各铁路局(集团公司、客专公司)以及相邻铁路局之间,用2M电路连接,组成一个星型复合

微波系统简介

微波系统简介 1微波发信设备 1.1设备组成 从目前使用的数字微波通信设备来看,分为直接调制式发信机(使用微波调相器)和变频式发信机。中小容量的数字微波(480路以下)设备可以用前一种方案。而中大容量的数字微波设备大多数采用变频式发信机,这是因为这种发信机的数字基带信号调制是在中频上实现的,可得到较好的调制特性和较好的设备兼容性。 下面以一种典型的变频式发信机为例加以说明,如图所示。 变频式发信机方框图 由调制机或收信机送来的中频已调信号经发信机的中频放大器放大后,送到发信混频器,经发信混频,将中频已调信号变为微波已调信号。由单向器和滤波器取出混频后的一个边带(上边带或下边带)。由功率放大器把微波已调信号放大到额定电平,经分路滤波器送往天线。 微波功放及输出功放多采用场效应晶体管功率放大器。为了保证末级的线性工作范围,避免过大的非线性失真,常用自动电平控制电路使输出维持在一个合适的电平。 一种微波功率放大器 公务信号是采用复合调制方式传送的,这是目前数字微波通信中采用的一种传递方式。它是把公务信号通过变容器实现对发信本振浅调频的。可见这种调制方式设备简单,在没有复用设备的中继站也可以上、下公务信号。

1.2性能指标 ◆工作频段 从无线电频谱的划分来看,我们把频率为0.3GHz~300GHz的射频称为微波频率。目前使用的范围只有1GHz~40GHz,工作频率越高,越能获得较宽的通频带和较大的通信容量。也可以得到更尖锐的天线方向性和天线增益。但是,当频率较高时,雨、雾及水蒸气对电波的散射或吸收衰耗增加,造成电波衰落和收信电平下降。这些影响对12GHz以上的频段尤为明显,甚至随频率的增加而急剧增加。 目前我国基本使用2、4、6、7、8、11GHz频段。其中2、4、6GHz频段因电波传播比较稳定,故用于干线微波通信,而支线或专用网微波通信常用2、7、8、11GHz。当然,对频率的使用,还要经申请,由上级主管部门和国家无线电管理委员会批准才行。 ◆输出功率 输出功率是指发信机输出端口处功率的大小。输出功率的确定与设备的用途、站距、衰落影响及抗衰落方式等因素有关。由于数字微波的输出比模拟微波有较好的抗干扰性能,故在要求同样的通信质量时,数字微波的输出功率可以小些。当用场效应晶体管功率放大器作末级输出时,一般为几十毫瓦到1瓦左右。 ◆频率稳定度 发信机的每个波道都有一个标称的射频中心工作频率,用f0表示。工作频率的稳定度取决于发信本振源的频率稳定度。设实际工作频率与标称工作频率的最大偏差值为Δf, 则频率稳定度的定义为 (3-1) 式中K为频率稳定度。 对于采用PSK调制方式的数字微波通信系统而言,若发信机工作频率不稳,即有频率漂移,将使解调的有效信号幅度下降,误码率增加。对于PSK调制方式,要求频率稳定度为1310-5~5310-6。 发信本振源的频率稳定度与本振源的类型有关。近年来由于微波介质稳频振荡源可以直接产生微波频率,并具有电路简单、杂波干扰及热噪声较小的优点,所以正在被广泛采用,其自身的频率稳定度可达到1310-5~2310-5左右。当用公务信号对介质稳频振荡源进行浅调制时,其频率稳定度会略有下降。对频率稳定度要求较高或较严格时,例如(1~5)310-6,可采用脉冲抽样锁相振荡源等形式的本振源。 除上述三项主要指标外,对发信机还有其他一些细节的技术要求,这里不再详述。2微波收信设备 2.1设备组成 数字微波的收信设备和解调设备组成了收信系统,这里所讲的收信设备只包括射频

高速公路机电系统全面解决方案

高速公路机电系统全面解决方案 浙江浙大网新快威科技有限公司旨在为高速公路机电系统提供整体系统解决方案,主要涵盖监控系统、通信系统、收费系统、供电照明系统等。 一、监控系统监控系统采用先进的远程监控技术,采用模块化系统结构,采用星型组网方式,为业主提供一套高可靠性、高稳定性、高实时性、高联动性的先进的监控系统。 监控系统以监控(分)中心计算机系统为核心,附以功能强大的外场设备,实现对高速公路沿线的监控,对高速公路的安全高效运营提供科学的依据。 1、监控(分)中心监控(分)中心是监控系统的指挥部,采集并处理外场设备的数据,紧急时依靠对数据的分析自动形成专家解决方案,并自动(手动)对外场设备下发指令。 监控(分)中心包括监控(分)中心局域网、监控软件、通信计算机、监控管理计算机、图形管理计算机、应用服务器、数据库服务器、闭路电视系统中心显示、控制及存储设备、模拟显示屏(地图板)、大屏幕投影设备、控制台、电源设备等。 监控(分)中心局域网采用10M/100M/1000M 以太网,保证数据交换安全、快速。计算机可以实现互为双机热备份,当一台计算机出现故障时,另外一台计算机可以实现另外一台计算机的功能。 监控软件采用模块化结构,保证软件应用简单、维护方便、升级容易,并且业主可以根据

自身实际情况进行进一步开发。监控(分)中心监控软件采用CS 模式,管 理结构简单,在服务器正常工程的前提下,任何一台客户机的故障均不会影响其它客户机正 常工作。 通信计算机采用性能稳定的工业控制计算机,保证与外场设备的通信安全稳定。 数据库服务器采用先进的存储技术(如RAID )实现数据的双机备份,保证数据的安全存储。 闭路电视系统设备采用先进的显示、控制设备及存储设备,实现图像的显示清晰明亮,控制外场摄像机实时连续,存储图像容量大,时间长,压缩格式灵活。 模拟显示屏通过串行接口连接至交通监控计算机,智能接收交通监控计算机发送的数据,实时模拟显示高速公路运行的状况。 大屏幕投影系统采用先进的高亮度长寿命投影系统,将采集到的视频信号、局域网内计算机显示信号放大显示在大屏幕投影屏幕上,直观放大的显示需求信息,并且大屏幕投影系统可以与闭路电视系统和监控软件联动,实现自动切换异常视频信号。 电源设备采用大容量、长延时、冗余性能优良的设备,保证市电正常或者市电不正常时,监控(分)中心设备均可以正常工作。 2、外场设备 外场设备包括车辆检测器设备、气象检测器设备、大(小)型可变情报标志设备、闭路 电视外场设备等。 车辆检测器采用检测精度高、适应7X 24小时连续不间断工作、适应野外恶劣环 境条件,及时准确的收集车流量、平均车速、车道占有率等数据,并通过通信系统实时传送至

铁路通信技术总结

铁路通信技术总结 本页是精品最新发布的《铁路通信技术总结》的详细文章,希望大家能有所收获。篇一:关于对现代铁路通信技术的思考关于对现代铁路通信技术的思考 【摘要】现如今,通信技术是计算机技术、数字技术、光电子技术等的结合体。具备以下几个特点:高速化、智能化、数字化等。同时,随着计算机技术的飞速发展,现代通信技术手段还可以克服时间与空间限制,这样一来,无论用户在什么时间、什么地点都能和他人通过语音、数据视频等进行交流。照此发展速度,可以满足旅客的各种信息交流的需求,比如:与他人进行图像、传真、数据交流等。除此之外,今后铁路列车将朝着高速化的方向快速发展,为确保行车的安全,从而对人机进行合理化控制,同时又能提高运输效率,力求逐步完善通信功能。本文主要对现代铁路通信技术与发展进行了深入的探讨和分析,并且详细对现代通信技术在铁路中的应用加以阐述,同时又指出现代通信技术的发展趋势和意义。 【关键词】铁路通信;通信信号;通信系统 1前言 近年来,我国铁路通信技术发展十分迅速,范文TOP100这样一来,要求现代科技人员要完全打破传统铁路通信网接入模式,而是要使用更为先进的有线与无线通信传输方式与接入方式,进

而能够快速升级铁路通信,更好的适应现代社会的发展,这样一来,使铁路通信网络创造更大的经济效益与社会效益。 2关于现代铁路通信技术的论述 对高速铁路来说,通信技术不再是单纯的提供话音或者是报文传输手段。然而,更多的在信号系统中充当着传输与监控数据的角色。现代铁路通信技术主要有以下几个特点:首先,通信技术、安全、行车组织等的相互融合;其次,系统设计是以综合集成与集散控制为指导思想的;再次,其管理决策是以人机交互、优势互补的方法。这是从构思、实施再到运行管理的一个过程,同时又是确保铁路安全运行的主导作用的体现,从而利用计算机与信息技术完成信息的采集、运输和处理等功能,确保铁路的高速运行。 3我国铁路通信技术的发展过程 在我国,铁路通信技术发展大体分为三个阶段:第一阶段,上世纪60年代以前,铁路常常选用的通信技术为架空明线、电子管载波、交换机、直流脉冲调度电话等。第二阶段,60年代后期,采用以小同轴电缆、纵横交换机、双音频调度电话等。上述两个阶段我国铁路通信技术始终停留在模拟通信的阶段。直到80年代后,开始使用数字通信技术。精品此阶段的主要特点为使用光缆、数字复用传输、列车无线通信等。例如:大秦数字通信网建成标志着我国的铁路通信技术由模拟制开始转向数字制方向。 4现代通信技术在铁路中的应用

(终稿)高速公路通信系统复习题

高速公路通信系统复习题 一、单选题: 1、高速公路干线通信管道通常是沿高速公路()埋设。(C) A、公路边坡 B、排水沟外侧 C、中央分隔带 D、路肩 (注:行业规范) 2、为了加快光缆施工进度和保证施工质量,目前广泛采用的新施工方法是(D)。 A、牵引法 B、拉曳法 C、吸气法 D、气吹法 (注:行业规范) 3、STM-4等级同步传输系统的传输容量是()。(C) A、34Mbit/s B、155Mbit/s C、622Mbit/s D、120Mbit/s (注:国际标准) 4、光分波器和光合波器在光纤通信用光电器件中属于()。(B) A、光发送器件 B、光波系统互连器件 C、光接受器件 D、光电集成器件 (注:国际标准) 5、()是各种交通控制信息快速及时传递的基本保障。(D) A、路由器 B、业务电话 C、紧急电话 D、通信系统 (注:功能定义) 6、紧急电话主要用于( )。(D) A、紧急调度 B、紧急处理 C、紧急服务 D、呼救求援 (注:功能定义) 7、通信站联合接地电阻不应大于()欧姆。(B) A、0.5 B、1 C、2 D、10 (注:国家标准) 8、由于()具有较多的优点,所以我国新建的交通通信专网大多采用这种传输制式。(B) A、PDH B、SDH C、STM-1 D、ATK (注:实际情况)(ATK:多媒体管理程序) 9、高速公路信令网应采用()结构方式。(C) A、一级 B、二级 C、三级 D、四级 (注:国家标准,我国信令网采用三级。第一级是信令网的最高级,称为高级信令转接点(HSTP),第二级是低级信令转接点(LSTP),第三级为信令点(SP)。)

微波通信系统讲解学习

微波培训 一、概述 1.微波通信是在微波频段,通过地面视距进行信息传播的一种无 线通信手段。所谓微波是指频率在300MHz至300GHz范围内的 电磁波! 2.微波不像无线电广播那样从一个点向许多地点发送信号,微波 通信是一个点到点的通信系统,当两点间直线距离内无障碍物 的时候就可以使用微波通信。 3.微波通信设备对于无线通信的基站的互联具有较好的适应性, 体积小、重量轻、安装容易。其室外单元和天线可直接安装于 无线基站的轻型铁塔上,使用十分简便。配置也比较灵活,工 作频段和发射功率可以很容易的调整,我们在现场根据现场的 需要来进行调整即可,通信容量和备份配置也是多种多样,可 供用户选择。 4.备份最常用的就是1+1。就是在一端的微波设备里有两个室内 单元,一个做主用,另外一个做备有,当主用的室内单元出现 故障,不能继续工作的时候,通信就会自动的切换到备用的室 内单元上进行,这样就不会中断通信,。 5.现在省内移动所使用最多的微波设备有3种,分别是地杰的 SUPER STAR、戴维斯的WaveLink PDH、爱立信的MINI LINK E!另外今年刚出现带有美化天线烽火科技的虹信微 波,这几种微波的基本组成结构是一样的,都是由天线、室 外单元、馈线、室内单元组成。 6.

戴维斯的WaveLink PDH是智能化中、短距离点对点PDH数字微波传输设备,频段是从7GHZ----38GHZ,容量为4/8/16 E1等类型。根据基站的需要,安装的IDU配置也不一样,有4个E1的,8个E1的,16个E1的,最常用的是8个E1的。戴维斯的WaveLink PDH具有全频段无损切换,前向误码纠错及自动功率增益控制等先进功能。 7.硬件组成 它们的硬件是由天线、软波导、室外单元(ODU)、馈线、避雷器、室内跳线、室内单元(IDU)组成。 (1)天线:也就是我们经常在塔上看到那个大锅,根据系统频率,传输距离,和系统的需求,可以被配置为不同直径的天线, 常用的有0.3m、0.6m、1.2m、2m等几种,当然还有更大的2.5m、3m的。天线还分为垂直极化和水平极化两种,电磁波垂直于地磁方向称为垂直极化,如果是水平于地磁方向的成为水平极化。一般多采用垂直极化,因为垂直极化的抗干扰能力要比水平极化的强。 (2)软波导:除了0.3m的天线不使用软波导采用硬连接以外,其余各型号的天线均使用软波导叫软连接,软波导就是起到一个连接天线和ODU的作用。 (3)室外单元( Out Door Unit:ODU ):微波的大部分功能都是由室外单元来完成的,通信的处理,微波容量的大小就是由ODU 来完成的,ODU里面的容量卡决定了这跳微波的容量,跟IDU上面的E1输出口数量是应该对应的,如果容量卡和IDU 对应不上就会出现E1不通的现象。

数字微波技术及建设方案

数字微波技术及建 设方案

泰立TL 数字电视系统 X X X X X X X X X X 数字电视MMDS传输覆盖系统 技术参考方案 7月

泰立TL 数字电视系统方案 一、数字电视的特点 1、概述 随着先进的计算机技术、集成电路技术、通信技术迅速向电视领域渗透,电视业正迎来一场革命性的变化,这种变化概括地说主要体现在两方面,即电视的数字化和网络化。电视的数字化是网络化的前提和必要条件,网络化是数字化的有益延伸和拓展。 电视技术从模拟向数字过渡是必然的发展方向,从技术角度来讲,数字电视技术具有的优点主要体现在以下几个方面: (1)数字信号在传输过程中经过再生技术和纠错编解码技术使噪声不逐步积累,基本不产生新的噪声,保持信噪比基本不变,收端图像质量基本保持与发端一致,适合多环节、长距离传输。 (2)利用数字压缩技术使传输信道带宽比模拟电视明显减少,一般为模拟电视的1/6左右,甚至更小,这样能够合理利用各种类型的频谱资源,传送更多的电视节目。 (3)采用数字编码方法,便于实现加扰和解扰技术,使收费电视在实际中得以应用。

2、数字电视系统组成的关键技术 数字有线电视是一个系统工程,它的关键技术包括:数字压缩、信道编码与调制、条件接收CA、用户管理系统SMS、中间件技术、机顶盒技术STB等。它们的成熟度不尽相同,在做系统集成方案时必须考虑到上述关键技术的彼此关联度及现实的应用与发展,并遵循总局对数字电视平台的统一规划,有重点、分阶段的实施。 信源压缩编码:主要包含离散余弦变换(DCT)、差分编码、运动补偿、熵编码等。对于运动图像的压缩编码,国际组织已制订了MPEG的国际标准(MPEG是运动图片专家组的简称)。 MPEG影视压缩过程包括滤波、彩色空间变换、数字化、分辨率转换、图像变换、量化和编码7个步骤。其中前4个步骤又称为图像预处理,以获得较大的压缩率与提高图像质量。后3个步骤为图像压缩,即将图像分成8×8个像素的图像块,然后用数学方法如离散余弦变换,把空间域表示的图像变成频率域中的系数,再对系数按不同等级量化,减少高频分量,最后再采用无损压缩技术

铁路GSM-R简介

GSM-R资料 目录 一、GSM-R的现状3 1.SM-R在世界发展现状 4 2.GSM-R在我国的技术发展现状 5 ⑴欧洲GSM-R技术规范的现状 5 ⑵我国GSM-R技术标准与规范的现状及必要性 5 ⑶我国GSM-R标准、规范的范围和主要内容 6 二、GSM-R的应用情况8 1、SM-R与话音通信8 1.1GSM-R与无线调度通信9 1.2 站场无线通信与无线调车机车信号和监控信息传送9 1.3 区间通信与应急通信9 1.4 GSM-R与有线调度9 1.5 GSM-R与普通话音通信9 2、GSM-R与列车控制10 2.1 列控信息传送10 2.2 机车同步操控信息传送10 3、GSM-R与铁路信息化12 3.1 列车无线车次号校核系统信息传送12 3.2 列车尾部风压装置信息传送12

三、大秦线GSM-R系统的网络结构 13 1.交换系统14 2.GPRS系统14 3.基站系统15 ⑴BTS基站设备15 a公共子系统16 b载频子系统17 c天馈子系统17 ⑵天馈线 17 a天线17 b馈线18 c漏泄同轴电缆18 ⑶直放站 18 ⑷频率配置19 ⑸大秦线BTS连接图19 四、GSM-R工程硬件安装21 1、接地规程 21 1.1接地系统的作用21 1.2接地系统的组成21 1.3建筑物的地下接地网22 1.4接地系统的室内部分22 1.5接地系统室外部分24

1. 馈线接地夹接地位置25 2. 馈线接地夹的固定25 3. 馈线避雷器的接地26 2.机柜的安装26 2.1机柜安装介绍26 2.2不靠墙安装26 2.2.1安装流程26 2.2.2底座简介27 2.2.3机柜定位27 2.2.4安装下框架29 2.3在防静电地板上安装31 1、支架形式 32 2、支架组件 32 3、支架安装方式32 4、支架数量 32 5、安装流程 34 6、机柜定位 34 7、支架定位 35 8、固定支架 36 9、机柜安装 36 10、绝缘测试36 2.4安装单板和模块时的防静电要求36

高速公路通信系统传输子网的设计

摘要 高速公路联网收费是高速公路的收费管理发展的大势所趋,本论文在江西省高速公路实行联网收费的环境下,对公路干线通信网进行了设计,建立了以SDHSTM -4 为主体的传输主干层,为了保证整个通信网络的时钟同步,还从网络的建设需求出发提出主从式同步的时钟信号网的建设方案。文中详细讨论了通信网络中的各种技术和通信子系统的具体结构及功能,描述了联网环境下的通信系统各子系统如何实现,图示了干线网络组成、同步网时钟系统、网管系统的构成等,描述了数字程控交换联网时中继方式,视频图像的传输方式等。另外,本文对高速公路的通信网络如何适应通信技术的发展以及高速公路综合业务应用方面作了有益的研究。本设计在江西省高速公路联网收费区域中已顺利实施,江西省高速公路目前己完成了联网收费第一阶段建设目标,基本实现了全省联网收费,联网收费系统自开通以来运行平稳,带来明显的社会效益和经济效益。 关键词:高速公路;通信网络;SDH;视频图像传输

目录

第一章绪论 1.1 研究背景 1.2 研究目的及意义 1.3 本文所作工作与论文安排 第二章设计原则和目标 2.1 设计原则 2.2 设计目标 2.2.1 技术目标 2.2.2 应用目标 第三章通信系统管理体制 第四章需求分析 4.1 业务需求 4.2 管理需求 4.3 安全需求 第五章通信技术选择 5.1 联网对通信技术的要求 5.2 传输网络技术的选择 5.2.1 传输网络技术的发展 5.2.2 传输网络技术的选择 5.2.3 图像传输技术的选择. 5.2.4 语音交换的联网 第六章通信系统构成和技术要求6.1 概述. 6.2 干线光纤数字同步传输系统6.3 综合业务接入网系统 6.4 数字程控交换系统 6.5 紧急电话系统 6.6 应用数据传输通路 6.7 闭路电视传输系统 6.8 会议电视系统 第七章结论 7.1 主要研究成果 7.2 问题与不足 致谢 参考文献

SDH 数字微波通信技术

SDH 数字微波通信技术 摘要:SDH微波通信是新一代的数字微波传输体制。数字微波通信是用微波作为载体传送数字信息的一种通信手段。它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。本文主要介绍SDH数字微波通信技术的组成、特点及应用。 一、SDH数字微波通信系统的组成 (1)数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。 组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分: (2)用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。 (3) 交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。 (4) 数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。 (5) 微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。SDH微波终端站的发送端完成主信号的发信基带处理、调制、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收、解调、收信基带处理。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。 (6) 数字微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中

高速公路三大系统(监控通信收费)整体设计

石黄公路沧州至黄骅港段高速公路机电工程监控系统施工图设计 设计说明 1工程概述 石黄公路沧州至黄骅港段高速公路是我省“五横、六纵、七条线”公路主骨架的重要组成部分,是省会石家庄联系黄骅港以及晋煤东运的重要通道,是我省“十五”期重点建设项目。以下简称沧黄高速公路。 沧黄高速公路全长93.585Km。本路段设沧州西互通、沧州东互通、黄骅南互通、八里庄互通、黄骅枢纽互通共五座互通。全线按高速公路标准设计,设计时速120km。 沧黄高速公路采用两级管理管理体制,即高速公路管理处--收费站、养护工区两级机构。 沧黄高速公路监控、通信、收费中心设在沧州西互通的高速公路管理处,负责全线的三大系统的管理。在沧州西互通、沧州东互通、黄骅南互通、八里庄互通设匝道收费站,在路东端设主线收费站。 全线监控系统采用集中管理模式:全线设置一个监控中心,设置在沧黄高速公路管理处,负责全线的交通监视和运营管理。监控外场设备子系统向监控中心上传路况信息。 沧黄高速公路监控系统工程主要是监控系统涉及到的系统设计、设备提供、运输、安装、调试、开通、试运行、培训、提供资料、交付使用、保修、提供备件等各项工作。 2设计依据 (1)石黄公路沧州至黄骅港段高速公路机电工程施工合同招标文件技术规范 (2)石黄公路沧州至黄骅港段高速公路机电工程施工合同投标文件技术方案 (3)石黄公路沧州至黄骅港段高速公路机电工程施工合同 (4)建设单位提供的土建、房建、管道图纸 (5)现场堪查测量的资料 (6)国家及部颁的有关标准。 3设计内容、范围、编排 3.1设计内容、范围 《石黄公路沧州至黄骅港段高速公路机电工程监控系统施工图》共包括四大部分内容: 3.2设计说明 用文字说明整个监控系统图纸的设计思路。系统运行和功能实现的方式和方法参见本文件的第一册《石黄公路沧州至黄骅港段高速公路机电工程监控系统方案设计》。如图纸中标明的设备型号和数量与设备清单不一致时,以清单为准。 3.3系统图 描述整个系统的结构,和设计说明部分相互配合,把整个系统内的层次关系、数据流向直观的表现出来。 3.4监控中心施工图 这部分内容包括沧黄监控中心施工中涉及到的设备布置、安装、接线的相关图纸。 通过这部分的图纸,详细说明了监控系统每项功能实现的具体过程、方式和相关的设备。以及相关设备的各种接口和连接。 3.5外场设备施工图 在外场设备施工图部分,说明了监控系统各种外场设备的线缆敷设、基础制作、配件加工、设备安装与接线的技术参数、施工规范和工艺要求。 3.6图号编排 CH JK 1 01 沧黄监控系统图纸类别序号 图纸类别:

SDH数字微波通信系统

SDH数字微波通信系统 摘要:SDH数字微波通信是新一代的数字微波传输体制。它兼有SDH数字通信和微 波通信两者的优点,本文简单介绍了SDH的速率和帧结构,阐明了SDH数字微波传输设备采用的关键技术以及SDH数字微波通信系统的组成。 关键字:SDH 微波通信数字 ABSTRACT:SDH digital microwave communication is the new generation of digital microwave transmission system. It both SDH digital communications and microwave communication advantage of the two, this article simply introduces the rate and frame structure SDH, expounds SDH digital microwave transmission equipment the key technologies used and SDH digital microwave communication system composition. Keywords:SDH digital microwave communication 1.SDH简介 SDH是新一代的数字传输体制。SDH有全世界统一的数字信号和帧结构标准,它把北美、日本和欧洲、中国流行的两大准同步数字体系(三个地区性标准)在STM—l等级上获得统一第一次实现了数字传输体制上的世界睦标准,因采用了同步复用方式和灵活的复用映射结构,避免对整个高速复用信号分解,达到一步复用特性,使上、下业务十分容易,也大大简化了数字交叉连接设备(DXC);SDH帧结构中安排了丰富的开销比特,大大加强了网络的运行管理和维护能力;不同厂家的产品可以互通,降低了联网成本。毫无疑问,传输网的发展方向应该是高度灵活和规范化的SDH网。SDH不仅可以应用于光纤通信系统中,而且还可以运用于微波通信系统之中,从而可以建立一个全新的SDH数字微波通信网络。 1、SDH的比特速率 同步数字体系最基本的模块信号(即同步传送模块)是STM—l,其比特速率为155.520Mbit /s,更高级的STM-N信号可以按字节同步复接获得,其fbN=(155.520*N)Mbit/s,目前SDH只能支持一定的N值,即N为l、4、16、64等。 S rM—l l55.520Mbit/s STM-4 622.080Mbit/s sTM一16 2488.320Mbit/s STM一64 9953.280Mbit/s 2、s1M一1的帧结构 STM—l的帧结构为净负荷区域、段开销区域和管理单元指针区域组成。以矩阵结构表达,共为9行270列(字节),帧长125us。SOH较为复杂,已经包含了定帧信息、公务、段误码监测、自动备用倒换、段数据通信等信息。

9 铁路应急通信系统

铁路应急通信系统 北京久盛鸿业科技有限公司 2013年3月

目 录 一、前言 二、铁路应急系统概述 三、应急通信系统提供的基本业务 四、应急通信系统接入方式 五、应急通信现场设备主机特点 六、相关检测报告 七、供货业绩

第一部分前言 铁路应急通信系统是在铁路发生自然灾害、行车事故或其他突发性公共事件时,为确保救援指挥需要,在应急现场与应急救援指挥中心之间、相关应急救援指挥中心之间以及应急现场内部建立的话音、图像、数据等信息通信及铁路应急指挥应用系统与各相关信息系统之间的信息通信。并且能广泛的应用于其它行业大型野外施工现场远程指挥等。 DTG-I型铁路应急通讯(图像)传输系统是根据TB/T 3204-2008《铁路应急通信接入技术条件》的要求而开发的,主要由应急救援指挥中心、传输网络和应急接入三部分组成。适于铁路运输大事故的远程抢险指挥、事故分析、现场作业监控;系统同时提供语音(自动电话、热线电话、117立接、行调电话)、静态图像、动态图像、数据传输等多媒体业务。

第二部分铁路应急通信系统概述 根据TB/T 3204-2008《铁路应急通信接入技术条件》的要求,铁路应急通信系统主要由应急中心、传输网络、应急接入三部分构成。 应急救援指挥中心包括铁道部应急中心、铁路局/公司/客专调度所应急分中心。 传输网络可利用既有网络资源。 应急接入包括现场的接入设备和终端设备,车站/区间光接入点应急接入设备。 应急救援附近车站用来提供抢险用的各种数据通道,包括E1通道、通话柱、光纤接口。 采用有线或无线方式传输时,现场信息先传送至邻近车站/区间光接入点,通过既有传输网络资源,传送至应急分中心和应急中心。 采用卫星传输方式时,现场信息通过卫星传输通道、既有传输网络传送至应急分中心/应急中心。 应急中心(分中心)到现场的信息传送与上述过程相反。 整个铁路应急通信组网示意图:附图2-1

数字微波通信系统

填空: 1、分集技术是指通过两条或两条以上的途径传输同一信息,以减轻衰落的技术措施。 2、微波中继通信最基本的特点是:微波、多路、接力。 3、微波频率波段频率为300M~300GHZ,波长为1mm~1m范围的电磁波。 4、SDH三大核心特点是:同步复用、标准的光接口、强大的网络管理能力。 5、基带传输系统频带利用率的最大值,也就是说任何基带传输系统在单位频带最多每秒钟 传输2个码元,不管二元还是多元码。 6、数字微波中继通信线路是由终端站、中继站、枢纽站、分路站等组成。 7、在传输线路上以1000bit/s的速率传输数据,经测试1小时内共有50bit的误码,则该系 统的误比特率为50X100% 1000X3600 选择: 当电波的电场强度方向垂直于地面时,此电波就为垂直极性波。 在SDH微波中继通信系统中,没有上下话路功能的站是中继站。 两个以上的电台使用同一频率而产生的干扰就是同频干扰。 在天线通信系统中,很多都采用两个接收天线,以达到空间分极效果。 厘米波频率范围是3G~30GHZ 地球表面传播的无线电波称为散射波。 判断: 无线通信可以传送电报电话传真图像数据以及广播和电视节目等通信业务。正确 无线电波的传播不受气候和环宽的影响。错 基本同步传输模块是STU-1,其速率为155.520μb/s,STU-N是将STM-1同步复用并插入一些字节实现的。错 由于大气折射作用实际的电波不是按直线传播,是按曲线传播的。正确 QAM是一种调幅调制模式,不是调相调制模式。错(既调幅又调相) 简答: 1、SDH结构图及各部位作用 1)信息净负荷(payload)是存放各种信息的负载。 2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护字节。 3)管理单元指针(AU-PTR) AU-PTR是用来指示信息净负荷的第一个字节的准确位置,以便接收端能进行正确分接。各种信号装入SDH帧结构的净负荷区需经过三个步骤:映射、定位、复用。 基本网络单元有再生中继器,终端复用器,分插复用器,同步数字交叉连接设备。

数字微波通信技术的发展及应用

数字微波通信技术的发展及应用 发表时间:2018-12-17T17:13:38.747Z 来源:《基层建设》2018年第31期作者:牛同江[导读] 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术,不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大的发展前景十分广阔,应用范围也越来越广泛。 甘肃省新闻出版广电局无线传输中心711台甘肃兰州 730000 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术,不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大的发展前景十分广阔,应用范围也越来越广泛。可见,对数字微波通信技术的发展及应用进行研究具有十分重要的现实意义,本文主要对此进行探究。 关键词:数字微波通信技术;发展;应用微波是当今时代应用范围十分广阔的一种通信传输方式,数字微波通信技术就是利用微波来传输数字信息的一种方式,同时还能够利用电波空间传输各种信息甚至是对相互之间没有任何关联的信息进行传输,而且还能够在此基础上再生中继,不得不说这是一种发展十分迅速的一种通信方式,本文主要对数字微波通信技术的发展及应用进行研究,希望能够有效促进数字微波通信技术的不断发展。 1 数字微波通信技术的特点 数字微波通信技术之所以发展迅速且应用范围十分广泛是因为其具有其独特的优势。数字微波通信技术的特点及其具体表现详见下表: 表1 数字微波通信技术的特点及其具体表现 2 数字微波通信技术的发展 微波通信技术是微波频段借助于地面视距进行信息传播的一种无线通信技术,已经出现了近几十年的时间。在出现初期阶段,微波通信系统通常是模拟制式的,它与当时的同轴电缆载波传输系统相同都是通信网长途传输干线的重要传输方式。具体而言,我国各个城市之间的电视节目是通过微波来进行传输的。20世纪70年代初期随着科学技术的进步,人们开发出了几十兆比特每秒容量的数字微波通信系统,可以说这个阶段是通信技术自模拟阶段向数字阶段转变的关键时期。20世纪80年代末期,同步数字系列在传输系统中已经变得十分常见,可以说已经被普遍应用,数字微波通信系统的容量也随之不断增大。当前,我们已经进入了科学技术日新月异的新时代,数字微波通信技术与光纤、卫星一起被看作现代通信技术的重中之重。 当今时代,数字微波通信技术不仅在传统传输领域内得到了关注,更在固定宽带接入领域得到了众多专家学者的高度重视,可见数字微波通信技术发展态势良好,发展前景十分广阔。 3 数字微波通信技术的主要发展方向 3.1 实现正交幅度调制级数的提升以及严格限带 要有效提升数字微波通信技术的频谱利用率一般需要应用到多电平正交幅度调制技术,当前阶段,通常要应用到256与512正交幅度调制,未来还会应用到1024和2048正交幅度调制。此外,对于信号滤波器的设计要求也会变得越来越严格,必须要确保其余弦滚降系数可以维持在一定范围内。

数字微波传输系统

数字微波传输系统

数字微波传输系统 HD-6001D单路高清晰度视频编码器 产品简介: HD-6001D是一款高清晰的单路网络视频编码产品,用于以太网实时传输数字音视频的多媒体服务器,它能通过以太网(局域网/广域网)将实时的图像和声音同时通过网络传输; 具有1路视频输入接口、1路音频输入接口和1路音频输出接口,支持MPEG-4视频编码技术和MP3音频编解码技术,可提供D1/4CIF格式的高清晰视频效果。HD-6001D主要应用于仅需接入1路摄像机且对图像质量要求较高的前端监控点。

最大输出功率26dBm(±2dBm) 内置天线增益18dBi 天线波瓣宽度水平22°,垂直22° 传输距离0.1~20KM,视发射功率和天线增益而定 数据速率6,9,12,18,24,36,48和54Mbps(最大峰值)自适应(可选)加密128位自动应答循环AES 传输协议RTP/IP,UDP/IP,TCP/IP或组播IP 其他DNS或者DHCP客户端,HTTP1.1(Web服务器) 安全基于SSL的加密认证 WEB服务提供嵌入式Web服务,网络中的PC客户端可通过Web浏览器访问HD-9500E,支持访问权限认证识别客户端,可设置各项参数 射频输出阻抗50 射频输出接口N型座 电源输入电压AC 220V或订货说明选择DC12V 功耗≤20W 物理外壳金属+ABS塑料结构外壳 尺寸320(W)×200(D )×90(H)mm 通过连接件连接安装墙体、铁管等重量 2.5 Kg 设备管理Web Server/HTTPS ,SNMP v1, v2, v3 Agent 固件升级通过网络升级应用程序固件 工作环境: 接地电阻≤5Ω 温度-40~+60℃ 湿度10%~95%(无凝结) HD-9500E扩频数字微波传输发射机 产品简介:

微波通信的主要技术与应用

微波通信的主要技术与应用 摘要:微波是一种具有极高频率(通常为300 MHz—300GHz),波长很短,通常为1m—1mm的电磁波。在微波频段,由于频率很高,电波的绕射能力弱,所以信号的传输主要是利用微波在视线距离内的直线传播,又称视距传播。微波通信是现代通信传输的重要手段之一,在微波接力通信、移动通信、广播电视通信、卫星通信等一系列领域得到了广泛的发展。 关键词:微波通信;数字微波通信;相关技术 引言 微波是通信的一种传输方式,微波与短波相比,虽然具有传播较稳定,受外界干扰小等优点,但在电波的传播过程中,却难免受到地形、地物和气候状况的影响而引起反射、折射、散射和吸收现象,产生传播衰落和传播失真。数字微波通信技术是基于时分复用技术的一种多路数字通信体制,其应用是非常广泛的,尤其是伴随着科学技术的飞速发展,数字微波通信技术的发展及应用前景正在变得越来越广阔。数字微波通信技术就是通过微波来实现对于数字信息的传送,与此同时,借助于电波空间,能够对于各种各样的相互之间不存在任何关联的信息进行传输,并在此基础上实现再生中继,这是一种现代化的发展非常快速的通信方式。 一微波的发展 微波的发展是与无线通信的发展分不开的。无线电波可以按照频率或波长来分类和命名。由于各波段的传播特性各异, 因此可以用于不同的通信系统微波通信是20世纪50年代的产物。由于其通信的容量大、建设速度快、抗灾能力强等优点而取得迅速的发展。20世纪40年代到50年代产生了传输频带较宽、性能较稳定的微波通信, 成为长距离、大容量地面干线无线传输的主要手段,并可同时传输高质量的彩色电视,而后逐步进入中容量乃至大容量数字微波传输。微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通

高速公路通信系统集成应用

高速公路通信系统集成应用 摘要:高速公路进行联网之后,其通信系统的建设至关重要。高速公路联网通信目的在于充分发挥高速公路运行效率,真正做到网络信息的有效集成和运营管理的自动执行,只有这样,才能保证信息管理系统、集中监控系统和联网收费系统的高效运转. 关键词:高速公路通信系统集成 一、通信系统构成 高速公路的通信系统由以下几部分构成:光纤数字传输系统;数字程控交换系统;光缆工程;电缆工程;通信电源系统;防雷接地系统 高速公路通信工程内容包括以下部分: 1.敷设光缆 (1)高速公路全程敷设符合G.652建议的24芯单模光缆用于通信系统传输和收费系统数据传输。 (2)高速公路全程敷设符合G.652建议的24芯单模光缆用于监控数据、图像的传输。 (3)全线从监控外场设备处的路肩手孔至中央隔离带的分歧人孔之间以及各站点前的可变信息发布屏至所属的通信站之间敷设符合G。652建议的 4芯短段光缆. 2.敷设电缆 (1)各通信站内的配线电缆(含音频配线及数据配线)的供货和连接. (2)电缆安装辅助材料和配线的安装。 3.通信分中心综合业务接入网光线路终端OLT设备配置传输模块,需1块10M/100M以太网接口板(EFS,8口/板)并完成通道开通和调试工作。 4.通信分中心综合业务接入网光线路终端OLT设备需配置2个STM-4等级光口以及28个2M接口,并完成光接口、通道的开通和调试工作。 5.通信分中心综合业务接入网光线路终端OLT设备需配置FA16用户接入子框,其中2

块V5协议处理及主控板(PV8,8路/板),并完成通道的开通和调试工作。 6.通信分中心SPC设备上配置2块数字中继板(DTM,2路/板),并完成通道的开通和调试工作。 7.通信分中心配置2组48V200AH蓄电池组。 8。在高速公路收费站设置无人通信站,并各设置1套光网络单元设备ONU、MDF,以及电源设备各1套。 二、光纤数字传输系统 1.光传输系统介绍 光纤数字传输系统为高速公路沿线设施(诸如业务电话、指令电话)之间的话务通信以及监控、收费系统的数据、图像等非话业务提供传输通道。 高速公路设置通信分中心,并配置了ADM、SPC、OLT等设备。 综合业务接入网系统在收费站各设置1套光网络单元设备ONU,通过4芯光纤接入通信分中心得OLT设备。 2.系统配置 1。主系统配置 光纤数字传输系统主要设备由以下几部分组成: (1)在通信分中心的OLT设备配置FA16用户接入子框,以及2块V5协议处理及主控板(PV8,8路/板)用于综合业务网ONU设备接入. (2)在通信分中心的OLT设备上配置1块10M/100M以太网接口板(EFS,8口/板)用于综合业务网数据图像业务的传输。 (3)完成通信分中心综合业务接入网光线路终端OLT设备相关接口的通道开通和调试工作. (4)各处无人通信站的ONU设备根据光中继距离配置相应的光接口板;根据话音和数据传输的不同需要分别配置模拟用户接口板、2Mb/s接口板、10/1

相关主题
文本预览
相关文档 最新文档