当前位置:文档之家› 高中数学抛物线题型归类(全)

高中数学抛物线题型归类(全)

高中数学抛物线题型归类(全)
高中数学抛物线题型归类(全)

高中数学抛物线题型归类

目录

曲线与方程

题型1:曲线的方程的判断

题型2:直接法求曲线的方程

题型3:定义法求曲线的方程

题型4:相关点法求曲线的方程

题型5:参数法求曲线的方程

题型6:交轨法求曲线的方程

抛物线

题型1:求轨迹(抛物线)方程

题型2:抛物线的标准方程

题型2。1:求抛物线的标准方程

题型2.2:已知抛物线的标准方程

题型3:抛物线的定义

题型4:抛物线的焦半径

题型5:抛物线的焦点弦

题型6:抛物线的弦中点

题型7:抛物线的弦长、三角形面积

题型8:直线与抛物线的位置关系

题型8.1:直线与抛物线的位置关系

题型8.2:抛物线的切线问题

题型9:抛物线的求值问题

题型10:抛物线中求取值范围问题

题型11:抛物线中求最值问题

题型12:抛物线的定值问题

方法是先猜后证。猜法:取特殊情况或极端情况。

题型12.1:和差相消为定值

题型12.2:乘除相约为定值

题型13:抛物线的定点问题

方法是先猜后证。猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上。 题型13.1:直线恒过定点 题型13.2:曲线恒过定点 题型14:探究证明问题

题型1:曲线的方程的判断

1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的 ( )

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

2.方程|y|-1=表示的曲线是 ( )

A. 两个半圆

B. 两个圆

C. 抛物线

D. 一个圆

3.方程x 2

-xy+2y+1=0表示的曲线经过点A(1,-2),B(2,-3),C(3,10),D 中的( )

A. 1个

B. 2个

C. 3个

D. 4个

4.方程(x+y-1)=0所表示的曲线是 ( ) A.

B.

C.

D.

题型2:直接法求曲线的方程

1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________

2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形.

3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA ), 求动点P 的轨迹方程?

题型3:定义法求曲线的方程

1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0

,,60A B APB ∠=, 则动点P 的轨迹方程为 .

2.过点(-2,0)的直线与圆2

2

1x y +=相交于A ,B ,求弦AB 中点M 的轨迹方程。

3.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程_.

4.过点P(2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.

题型4:相关点法求曲线的方程

1将圆22

4x y +=上的点的横坐标保持不变,纵坐标变为原来的一半,求所得曲线

的方程,并说明它是什么曲线。

2.已知动点P 在曲线2y 2-x=0上移动,则点A(-2,0)与点P 连线的中点的轨迹方程是 A. y=2x 2

B. y=8x 2

C. x=4y 2

-1 D. y=4x 2

-

3.已知动点P 在曲线2y 2-x=0上移动,点P 关于直线x y -=对称的轨迹方程是______

题型5:参数法求曲线的方程

1.★过点(-2,0)的直线与圆22

1x y +=相交于A ,B ,求弦AB 中点M 的轨迹方程。

2.已知椭圆22143

x y +=的一组斜率为2的平行弦的中点的轨迹方程是 .

3.★已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B.设点M 是线段AB 的中点,求点M 的轨迹方程.

题型6:交轨法求曲线的方程

1.已知点P 在直线x=2上移动,直线L 通过原点且与OP 垂直,通过点A (1,0)及点P 的直线m 和直线L 交于点Q ,求Q 点的轨迹方程,并指出轨迹的名称和它的焦点坐标。

2★已知椭圆22a x +22b

y =1(a >b >0)的离心率为33

.以原点为圆心,以椭圆短

半轴长为半径的圆与直线y =x +2相切.(1)求a 与b 的值;(2)设该椭圆的

左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,

2L 交1L 于点P.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明

曲线类型.

2.4 抛物线

题型1:求轨迹(抛物线)方程

1.在直角坐标平面内,到点(1,1)和直线23x y +=距离相等的点的轨迹是

(1)直线 (2)抛物线 (3)圆 (4)双曲线

2.已知圆22

:(3)1F x y ++=,直线:2l x =,求与直线l 相切且与圆F 外切的圆的圆心M 的轨迹方程

3.若点P 到定点)0,4(F 的距离比它到直线05=+x 的距离小1,则P 的轨迹方程是

4.★若点P 到定点(2,0)的距离比它到直线x=-2的距离小2,则P 的轨迹方程是

5★.若抛物线过点)1,0(-A ,B (0,1)且以圆42

2=+y x 的切线为准线,则该抛 物线焦点F 的轨迹方程是

A. 13

42

2=-x y )0(≠y B. )0(13422≠=+y x y C. )0(13422≠=-x x y D. )0(1342

2≠=+x x y

6.把与抛物线y 2

=4x 关于1y x =+对称的曲线方程是

7.已知点F 为抛物线22y x =的焦点,P 在抛物线上运动,则线段PF 的中点轨迹方程是 .

8.当参数m 随意变化时,则抛物线()y x m x m =+++-2

2

211的顶点的轨迹方程

为___________。

9.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为

A .6m

B . 26m

C .4.5m

D .9m

题型2:抛物线的标准方程

题型2。1:求抛物线的标准方程

1. 求适合下列条件的双曲线的标准方程:

⑴经过点P(-2,-4); (2) 焦点到准线的距离为2

3

(3)焦点在直线34120x y --=上;

2.以椭圆

22

+=194

x y 的中心为顶点,短轴端点为焦点的抛物线方程为

3.已知等边三角形OAB 的三个顶点都在以x 轴为对称轴的抛物线上,其中O 为坐标原点,3求抛物线的标准方程.

4.顶点在原点,焦点在x 轴上且通径长为8的抛物线方程

题型2.2:已知抛物线的标准方程

1. 抛物线()20y ax a =<的焦点坐标是 ,准线方程为

2抛物线的顶点在原点,对称轴为y 轴,它与圆22

9x y +=相交,公共弦MN 的长 为5

3.抛物线2

4y x =的焦点到双曲线

2

2

13

y x -=的渐近线的距离是

4.抛物线24y x =的离心率为

题型3:抛物线的定义

1.过抛物线y 2

=2px 的焦点F 作弦PQ ,则以PQ 为直径的圆与抛物线的准线的位置关系是: A 、相离 B 、相切 C 、相交 D 、不确定 ( )

2.已知Q 为抛物线2

8y x =上的任一点,以Q 为圆心作与x=-2轴相切的圆,这些圆必过定点 A. )1,2(- B. (4,0)C. (0,1)- D. (2,0) ( )

3★.过抛物线y 2

=4x 的焦点F 作直线L 交抛物线于A B 、两点,直线L 的斜率为

3,则AF

FB =

4.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点

N .若M 为FN 的中点,则FN = .

5★.已知抛物线C : 2

8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( ).

A. 72

B. 3

C. 5

2 D. 2

题型4:抛物线的焦半径

1. 抛物线2

4y x =上的一点M 到焦点的距离是1,则点M 的纵坐标等于

2若抛物线x y 42

-=上的点M 到焦点的距离为10,则点M 的横坐标等于

3若抛物线2

4y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______.

4.设P 点在抛物线2

12x y =上,且P 到此抛物线的准线的距离为7,则P 点的坐标为

5.设F 为抛物线x y 42

=的焦点,C B A ,,为抛物线上三点,若

=++,则=++||||||

3469

D C B A ( )

6..过抛物线x y 82

=焦点的直线交抛物线于B A ,两点,已知||AB =10,O 为坐标原点,则△OAB 重心的横坐标为

7.已知直线()()20y k x k =+>与抛物线2

:8C y x =相交于A B 、两点,F 为C

的焦点,若||2||FA FB =,则k =

( )

A. 132 C. 2322

8过抛物线x y 42

=的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OB OA ? 的值是

A. 12

B. 12-

C. 3

D. 3-

9.设抛物线()2:30C y px p =≥的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点()02,,则C 的方程为______

10.抛物线)0(22

>=p px y 上有),1(1y A ,),(22y x B ,),5(3y C 三点,F 是它的焦点,若|||,||,|CF BF AF 成等差数列,求2x 。

题型5:抛物线的焦点弦

1.设抛物线x y 42

=的焦点弦的两个端点分别为),(11y x A ,),(22y x B ,若

621=+x x ,则||AB =____

2.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的

长分别是p 、q ,则q p 11+等于 A .2a B . a 21 C .4a D . a 4

( )

3.过抛物线2

2(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =

4★过抛物线y x 42-=的焦点F 作倾斜角为

60的直线交抛物线于A 、B 两点,则线段AB 的长为

5.过抛物线y 2

=4x 的焦点F 作直线L 交抛物线于A B 、两点,则AF

FB

=2,则直线L 的斜率为___

题型6:抛物线的弦中点

1.已知抛物线x y 42

=的弦的中点为(1,1),则弦所在的直线方程是 .

2.已知抛物线y x 62

-=的一组斜率为2的平行弦的中点的轨迹方程是 .

3.过已知抛物线x y 92-=上的一点P (-1,3)作直线交抛物线于Q 点,求PQ 中点的轨迹方程.

题型7:抛物线的弦长、三角形面积

1.过抛物线x y 42

=的焦点最短的弦长为_______.

2.过抛物线x y 42

=内的(1,1)最短的弦长为_______.

3.已知斜率为1且过的(0,-4)的直线l 与抛物线y x 62

-=交于,A B 两点,求AB 弦长.

4.已知过抛物线x y 92

-=上的焦点交抛物线于,A B 两点,AB 弦长是2,则直线AB 方程____________.

5.已知顶点在原点,焦点在x 轴上的抛物线截直线042=--y x 所得的弦长为

53,求此抛物线方程

6.设F 为抛物线2

:3C y x =的焦点,过F 且倾斜角为°

30的直线交于C 于,A B 两点,O 为坐标原点,则OAB △的面积为( ).

C.6332

D.94

7.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为

2

3

的直线与C 交于M , N 两点,则FM FN ?= A .5 B .6 C .7 D .8

8.已知抛物线x y 42

=的焦点为F ,B A ,为抛物线上两点,若FB AF 3=,O 为坐标

原点,求AOB ?的面积。

题型8:直线与抛物线的位置关系 题型8.1:直线与抛物线的位置关系

1.点M (2,4)作与抛物线y 2

=8x 只有一个公共点的直线l 有 ( ) A .0条 B .1条

C .2条

D .3条

2.求过点)1,0(M ,且和抛物线x y 42

=仅有一个公共点的直线方程。

题型8.2:抛物线的切线问题

1.已知抛物线y y 42

-=椭过点(0,2)的切线方程是 .

2.已知抛物线x y 42

=过点(1,-2)的切线方程是 .

3.已知斜率为1与抛物线y x 42

-=相切的直线方程是 .

题型9:抛物线的求值问题

1.设F 为抛物线x y C 4:2

=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q 为线段AB 的中点,若2||=FQ ,则直线的斜率等于____.

2.若抛物线2

2(0)y px p =>的准线经过双曲线2

2

1x y -=的一个焦点,则p =

3.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已

知||42AB =, 25DE =,则C 的焦点到准线的距离为 .

4.已知抛物线C :2

y x =的焦点为F ,00(,)A x y 是C 上一点,054

AF x =,则

0x =______

5.★已知点()20A ,,抛物线C :

2

4x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则FM MN =:

6.★过抛物线2

:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则点M 到直线NF 的距离为

7.设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交C 于,A B 两

点,则AB =

8.设A ,B 为曲线2

:4

x C y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.

题型10:抛物线中求取值范围问题

1.过抛物线x y 42

=内的(1,1)的直线交抛物线于A ,B ,则AB 弦长范围_______.

2.过抛物线x y 42

=内的(1,0)的直线交抛物线于A ,B ,则三角形OAB 面积范围.

3.★已知抛物线C 的方程为x 2=2py ,设点M (x 0,1)(x 0>0)在抛物线C 上,且

它到抛物线C 的准线距离为;过点M 作倾斜角互补的两条直线分别交抛物线C 于A (x 1,y 1),B (x 2,y 2)两点(M 、A 、B 三点互不相同),求当∠MAB 为钝角时,点A 的纵坐标y 1的取值范围.

题型11:抛物线中求最值问题

1.抛物线2

x y -=上的点P 到直线0834=-+y x 距离的

最小值是 ( )

35

85

73

4D C

B

A

2.设P 是抛物线x y 42

=上的一个动点,F 是焦点,求点P 到点)1,1(-A 的距离与点P 到直线1-=x 的距离之和的最小值。

3已知直线1:4360l x y -+=和直线2:1l x =-,抛物线2

4y x =上一动点P 到直 线1l 和直线2l 的距离之和的最小值是

4★.已知F 为抛物线2

y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,

2OA OB ?=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值

A.2

B.3 ).

5★.定长为3的线段AB 的两个端点在抛物线y 2

=x 的移动,记线段AB 的中点为M ,则点M 到y 轴的最短距离______________

6.已知F 为抛物线2

4C y x =:的焦点,过点F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AB DE +的最小值为A .16 B .14 C .12 D .10

7.已知F 是抛物线2

y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是. A .2 B .3 C

8.已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=的距离为

P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,

B 为切点.当点P 在直线l 上移动时,求·AF BF 的最小值.

题型12:抛物线的定值问题

方法是先猜后证。猜法:取特殊情况或极端情况。 题型12.1:和差相消为定值

1★.已知抛物线y x 42

=的焦点为F ,B A ,是抛物线上的两动点,且

)0(>=λλFB AF ,

过B A ,两点分别作抛物线的切线,设交点为M ,证明:AB FM ?为定值。

2★.在平面直角坐标系xoy 中,设点)0,21

(F ,直线2

1

:-

=x l ,点P 在直线l 上移

A

B

y O x

动,R 是线段PF 与y 轴的交点,l PQ FP RQ ⊥⊥,. (I)求动点Q 的轨迹的方程C ;

(II)设圆M 过A(1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时弦长||TS 是否为定值?请说明理由.

题型12.2:乘除相约为定值

1★.如图,已知抛物线y 2

=4x 的焦点为F ,过点P (2,0)且斜率为k 1的直线交抛物

线于A (x 1,y 1),B (x 2,y 2)两点,直线AF 、BF 分别与抛物线交于点M 、N . (Ⅰ)证明

?

的值与k 1无关;

(Ⅱ)记直线MN 的斜率为k 2,证明为定值.

题型13:抛物线的定点问题

方法是先猜后证。猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上。 题型13.1:直线恒过定点

1★.已知抛物线2

4x y =的焦点为F ,点P 是抛物线准线上的动点,过点P 作抛物线的

切线,切点为A 、B 。证明直线AB 恒过定点。

2★.已知A 、B 是抛物线y 2

=2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的 倾斜角分别为α和β,当α、β变化且α+β=4

π

时,证明直线

AB 恒过定点,并求出该定点的坐标。

3★.已知抛物线y 2

=2px 及定点A (a ,b ),B (-a ,0)(ab≠0,

b 2

≠2pa),M 是抛物线上的点,设直线AM ,BM 与抛物线的另一 交点分别为M 1,M 2,求证:当M 点在抛物线上变动时(只要M 1,

M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标。

题型13.2:曲线恒过定点

1★.在抛物线E :x 2

=ay 上,直线l 1:y=kx+1(k ∈R ,且k ≠0)与抛物线E 相交于B ,

C 两点,直线AB ,AC 分别交直线l 2:y=﹣1于点S ,T . (1)求a 的值;

(2)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.

题型14:探究证明问题

1.在直角坐标系xOy中,曲线

2

:

4

x

C y=

与直线

()

:0

l y kx a a

=+>

交于M,N两

点.y

轴上是否存在点P,使得当k变动时,总有OPM OPN

∠=∠?说明理由.

2.抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.

(1)求p的值.

(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.

(3)求直线l的斜率的取值范围.

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学抛物线习题精选(带答案)

抛物线习题精选 一、选择题 1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为(). A.45°B.60°C.90°D.120° 2.过已知点且与抛物线只有一个公共点的直线有(). A.1条B.2条C.3条D.4条 3.已知,是抛物线上两点,为坐标原点,若 ,且的垂心恰好是此抛物线的焦点,则直线的方程是(). A.B.C.D. 4.若抛物线()的弦PQ中点为(),则弦的斜率为() A.B.C.D. 5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是() A.B.C.D. 6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于() A.4 B.-4 C.D.

7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是() A.B. C.D. 8.当时,关于的方程的实根的个数是() A.0个B.1个C.2个D.3个 9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于() A.-1 B.1 C.7 D.9 10.以抛物线()的焦半径为直径的圆与轴位置关系为() A.相交 B.相离 C.相切 D.不确定 11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是() A.10 B.8 C.6 D.4 12.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小() A.小于B.等于C.大于D.不能确定 13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0) 14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为() A.1 B.C.2 D.

高中数学必修四----常见题型归类

高中数学必修四 题型归类 山石 第一章 三角函数 1.1任意角和弧度制 题型一:终边相同角 1.与 2003-终边相同的最小正角是______________,最大负角是_________。 2.终边在y 轴上的角的集合为________。 3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。 题型二:区域角 1.第二象限的角的集合为______ __ 2.如图,终边落在阴影部分(含边界)的角的集合是______ __ 3.若α是第二象限的角,确定2α的终边所在位置 .确定2 α 的终边所在位置 . 题型三:弧度制 1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 . 2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大. 1.2任意角的三角函数 题型一:三角函数定义

1.α是第二象限角,P (x ,5)为其终边上一点,且cos α= 4 2x ,则sin α的值为 . 2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α= 题型二:三角函数值的符号与角所在象限的关系 1.4tan 3cos 2sin 的值。A 小于0 B 大于0 C 等于0 D 无法确定 ( ) 2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2 的终边在 ( ) A .第二、四象限 B .第一、三象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 题型三:三角函数线 1.设MP 和OM 分别是角 18 19π 的正弦线和余弦线,则MP 、OM 和0的大小关系为______ 2.1sin 、1cos 、1tan 的大小关系为_______________ 题型四:同角公式 1.化简1-2sin200°cos160°=________. 2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89 οοοοοοο ???????++???+的值为________. 3.已知ααcos sin 2 1 =,求下列各式的值: (1) α αααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2 α. 4.tan110°=k ,则sin70°的值为 ( ) A .-k 1+k 2 B.k 1+k 2 C.1+k 2k D .-1+k 2 k

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高中抛物线知识点归纳总结与练习题及答案

一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2 122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y = =+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

人教版高中数学基础知识归类

高中数学基础知识归类——献给2012年高三(理科)考生 一.集合与简易逻辑 1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集. 2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ?. ②空集是任何集合的子集,记为A ??. ③空集是任何非空集合的真子集;注意:条件为A B ?,在讨论的时候不要遗忘了A =?的情况 如:}012|{2=--=x ax x A ,如果A R + =?,求a 的取值.(答:0a ≤) ④()U U U C A B C A C B =,()U U U C A B C A C B =;A B C A B C =()(); A B C A B C =()(). ⑤A B A A B B =?=U U A B C B C A ????U A C B ?=?U C A B R ?=. ⑥A B 元素的个数:()()card A B cardA cardB card A B =+-. ⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为 21n -;非空真子集个数为22n -. 3.补集思想常运用于解决否定型或正面较复杂的有关问题。 如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围.(答:32 (3,)-) 4.原命题: p q ?;逆命题: q p ?;否命题: p q ???;逆否命题: q p ???;互为逆否的两 个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件) 5.若p q ?且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件). 6.注意命题p q ?的否定与它的否命题的区别: 命题p q ?的否定是p q ??;否命题是p q ???. 命题“p 或q ”的否定是“p ?且q ?”;“p 且q ”的否定是“p ?或q ?”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数” 否定是“若a 和b 都是偶数,则b a +是奇数”. 二.函数 1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ?). ②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象. 2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴

高中数学抛物线的一个重要模型(模型解题法)

【模型解题法】高中数学抛物线焦点弦模型 【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。 过抛物线)0(22 >=p px y 的焦点弦,A B 分别抛物线准线l 的垂线,交l 构成直角梯形ABCD (图1).些重要结论呢? 【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ?的面积. 例4. 连,(2)CF DF CF DF ⊥,求证图. 例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项, 即 2 FE CE DE =?. 例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22 >=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C 在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为 2sin p θ . 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2 NF AF BF =?. 例12. 已知抛物线y x 42 =的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M. (I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →· AB → 为定值;

【模型解析】 设直线AB 的倾角为θ,当=90AB x θ⊥o 轴()时,称弦AB 为通径。 例1 求通径长. 解: 由于=90AB x θ⊥o 轴(),)0,2 ( p F , ∴ 当2 p x - =时,代入)0(22 >=p px y 中,得22,.B y p p y p ===-A ,故y ∴ 2AB p =. 例2 求焦点弦AB 长. 解法一:设),(),,(2211y x B y x A ,当90AB θ≠o p 时,设直线的方程为:y=k(x-).2 由22, () 2y px p y k x ?=??=-??得22222 (2)04p k k x p k x -++=, ......① ∴ 1222 (1)x x p k +=+ . ......② Q =AB AF BF AD BC =++,准线方程2 p x -=, ∴ 1212()22 p p AB x x x x p =+++=++. 由②知,2 22.p AB p k =+ ......③ 当90θ=o ,由(一)知2AB p =. 说明:Q tan k θ= ∴ 22222222 11cos sin cos 1 111.tan sin sin sin k θθθθθθθ ++=+=+== 因此,由 ③ 得22122(1).sin p AB p k θ =+ = 特别,当902,AB p θ==o 时,上式为是通径长。 解法二:设),(),,(2211y x B y x A . 902;AB p θ==o 时,上式为 90AB θ≠o 时,设直线的方程为11 ()2tan p x my m k θ =+ ==其中.

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学基础知识汇总

第一部分 集合 1.理解集合中元素的意义..... 是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的 取值?还是曲线上的点?… ; 2.研究集合问题,一定要抓住集合的代表元素,如:{}x y x lg |=与{}x y y lg |=及 {}x y y x lg |),(= 3.数形结合.... 是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 4.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1; (2);B B A A B A B A =?=?? 注意:讨论的时候不要遗忘了φ=A 的情况。 5.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)] 的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域, 相当于x ∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函 数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

高中数学极坐标与参数方程高考题型全归纳题型部分

2019极坐标与参数方程高考题型全归纳 一.题型部分 (一) 极坐标与直角坐标的转化、参数方程与普通方程的转化,极坐标与参数 方程的转化 1. 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ= 。 2. 参数方程: 直线参数方程:0 0cos () sin x x t t y y t θ θ =+?? =+?为参数 00(,) x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量; 圆锥曲线参数方程: 圆的参数方程:cos ()sin x a r y b r θθθ =+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆2 2221x y a b +=的参数方程是cos ()sin x a y b θ θθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =?? =?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=? =?为参数 (二)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径

比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式2 22 d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义” (三)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 例如:在直角坐标系xOy 中,曲线1 C 的参数方程为()sin x y α αα?=?? =?? 为参数,以坐标原 点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为

高一数学上册基础知识点总结

数学必修一基础要点归纳 第一章 集合与函数的概念 一、集合的概念与运算: 1、集合的特性与表示法:集合中的元素应具有:确定性、互异性、无序性;集合的表示法 有:列举法、描述法、文氏图等。 2、集合的分类:①有限集、无限集、空集。 ②数集:{ } 2 2y y x =- 点集: (){},1x y x y += 3、子集与真子集:若x A ∈则x B ∈?A B ? 若A B ?但A ≠B ?A B 若{}123,n A a a a a = ,,,则它的子集个数为2n 个 4、集合的运算:①{} A B x x A x B =∈∈ 且,若A B A = 则A B ? ②{}A B x x A x B = ∈∈ 或,若A B A = 则B A ? ③ { } U C A x x U x A =∈?但 5、映射:对于集合A 中的任一元素a,按照某个对应法则f ,集合B 中都有唯一的元素b 与之 对应,则称:f A B →为A 到的映射,其中a 叫做b 的原象,b 叫a 的象。 二、函数的概念及函数的性质: 1、函数的概念:对于非空的数集A 与B ,我们称映射:f A B →为函数,记作()y f x =, 其中,x A y B ∈∈,集合A 即是函数的定义域,值域是B 的子集。定义域、值域、对应法则称为函数的三要素。 2、 函数的性质: ⑴ 定义域:0 1 简单函数的定义域:使函数有意义的x 的取值范围,例: y = 的定义域为:25053302x x x ->??<? 2 复合函数的定义域:若()y f x =的定义域为[),x a b ∈,则复合函数 ()y f g x =????的定义域为不等式()a g x b ≤<的解集。 0 3 实际问题的定义域要根据实际问题的实际意义来确定定义域。

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

相关主题
文本预览
相关文档 最新文档