当前位置:文档之家› 溃坝计算

溃坝计算

溃坝计算
溃坝计算

水电工程溃坝洪水计算

赵太平

(国家电力公司水电水利规划设计总院)

摘要:某电站为一待建电站,位于高山峡谷区,河道比降较大。其下游为某城市,一旦大坝溃决,将对人民的生命财产安全造成极大的威胁。为此,进行溃坝洪水计算,可预测溃坝后,洪水的淹没范围和程度,以便提早采取相应的措施,减少损失。

关键词:溃坝; 洪水; 预测; 不恒定流

1 前言

水电是洁净能源,是西部地区重要的能源资源,开发西部水电,实现“西电东送”是实施“ 西部大开发”战略的重要举措,也是西部地区脱贫致富的重要途径之一。但水电站往往处于深山峡谷,甚至高地震区中,水电站的溃决将造成巨大的损失,为了预估溃坝洪水带来的影响,并提早采取相应的措施,将洪水灾害造成的影响减少到最小程度,有必要进行溃坝洪水计算。

本次计算电站地处青藏高原东南缘,区域内地势较高,平均海拔在4 000m左右。且电站坝址区覆盖层深厚,构造裂隙较发育,是我国西部著名的强地震带。电站下游主要的城镇为某城市,该城为我国西部少数民族集居区,经济以农牧业为主。

2 数学模型

2.1 模型结构

本次计算采用美国国家气象局编制的溃坝洪水预报模型DAMBRK模型[1]。该模型由三部分组成:1)大坝溃口形态描述。用于确定大坝溃口形态随时间的变化,包括溃口底宽、溃口顶宽、溃口边坡及溃决历时。2)水库下泄流量的计算。3)溃口下泄流量向下游的演进。

2.1.1 溃口形态确定

溃口是大坝失事时形成的缺口。溃口的形态主要与坝型和筑坝材料有关。目前,对于实际溃坝机理仍不是很清楚,因此,溃口形态主要通过近似假定来确定。考虑到模型的直观性、通用性和适应性,一般假定溃口底宽从一点开始,在溃决历时内,按线性比率扩大,直至形成最终底宽。若溃决历时小于10分钟,则溃口底部不是从一点开始,而是由冲蚀直接形成最终底宽。溃口形态描述主要由四个参数确定:溃决历时(τ),溃口底部高程(h bm),溃口边坡(z)。由第一个参数可以确定大坝

溃决是瞬溃还是渐溃。由后面三个参数可以确定溃口断面形态为矩形、三角形或梯形及局部溃或全溃。

2.1.2 水库下泄流量计算

水库下泄流量由两部分组成,一是通过溃口下泄流量Q b,二是通过泄水建筑物下泄的流量 Q s,即

Q=Q b+Q s

漫顶溃口出流由堰流公式计算

Q b=C1(h-h b)1.5+C2(h-h b)2.5

其中 C1=3.1b i C v K S,C2=2.45ZC v K S

当t b≤τ时,h b=h d-(h d-h bm)·t b/τ

b i=b·t b/τ

当t b>τ时,b=h bm

b i=b

行进流速修正系数C v=1.0+0.023Q?2/[B?2d(h?-h bm)2(h?- h b)]

K s=1.0

当(h?t-h?b)/(h?-h?b)≤0.67

K S=1.0-27.8[(h?t-h?b)/(h?-h?b)-0.67]3

当(h?t-h?b)/ (h?-h?b)>0.67

式中h b为瞬时溃口底部高程;h bm为终极溃口底高程;h d为坝顶高程;h f为漫顶溃坝时的水位;h为库水位高程;b i为瞬时溃口底宽;b为终极溃口底宽;t b为溃口形成时间;C v为行进流速修正系数(Brater1959);Q为水库总下泄流量;B d为坝址处的水库水面宽度;K s为堰流受尾水影响的淹没修正系数(Venard1954);h t为尾水位(靠近坝下游的水位)。

尾水位(h t)由曼宁公式计算,即

Q=(1.49/n)·S1/2A5/3/B2/3

式中n为曼宁糙率系数;A为过流断面积;B为过流断面的水面宽;S为能坡。

管涌溃口出流由孔口出流公式计算

Q b=4.8A p(h-h?)1/2

式中A p=[2b i+4Z(h f-h b)](h f-h b)。

若h t≤2h f-h b时,h?= h f,否则h t>2h f-h b时,h?= h t

溢洪道下泄流量(Q s)计算如下

Q s=C s L s(h-h s)1.5+C g A g(h-h g)0.5+C d L d(h-h d)1.5+Q t

式中C s为无控制的溢洪道流量系数;h s为无控制的溢洪道堰顶高程;C g为有闸门的溢洪道流量系数;h g为有闸门的溢洪道中心线高程;C d为漫坝水流的流量系数;L s 为溢洪道长度;A g为闸门过流面积;L d为坝顶长度减L s;Q t为与水头无关的固定下泄流量项。

水库总出库流量过程是水库蓄水和入库流量共同作用的结果,本模型采用水文蓄量法来推求水库总出库流量,程如下

I-Q=ds/dt

式中I为入库流量;Q为总出库流量;ds/dt为水库蓄量随时间变化率。

将上述方程用有限差分法离散可得

(I i+I i+1)/2-(Q i+Q i+1)/2 =△s/△t

其中上标i和i+1分别表示t和t+△t时刻变量的值。

△s=(A S i+1+A S i)(h i+1-h i)/2

代入有关公式得到总的离散方程为

(A S i+1+A S i)(h i+1-h i)/△t+ C1(h-h b)1.5+C2(h-h b)2.5+ C s L s(h-h s)1.5+

C g A g(h-h g)0.5+C d L d(h-h d)1.5+Q t+Q i-I i+1-I i=0

上述方程可用Newton—Raphson迭代法求解,得到水位h和下泄流量Q。

2.1.3 溃坝洪水向下游演进

本模型采用圣维南方程来描述洪水波向下游的传播,其方程形式如下

连续方程

动量方程

式中A为有效过流面积;A0为非有效过流面积(滩地蓄水面积);q为沿河道单位距离的侧向入流或出流(“+”表示入流,“—”表示出流);S f为摩阻比降;由曼宁公式求出:S f=n2|Q|Q/2.21A2R4/3;S e为局部损失(扩散—收缩)比降;

S e=K△(Q/A)2/2g△x。

圣维南方程为双曲型偏微分方程组,目前尚无法求出其解析解。应用中通常将其离散为代数方程,然后求出其数值解。本模型中,变量的时间差分采用中心差分,即

变量的空间差分采用有加权系数θ的向前差分

变量本身的近似表示如下

将上述离散式代入圣维南方程中,得到两个非线性方程。对N个断面的河道,有(N-1)个河段,可建立(2N—2)个方程。给定上、下游边界,共同组成2N个非线性方程,利用Newton Raphson法迭代求解方程组,可求出任意时刻各断面有关的水力要素。

2.1.4 初始条件和边界条件

初始条件:在求解上述不恒定流方程时,为了使方程的解尽快收敛,必须给定一个适当的初始值,即时段初(t=0),各断面的水位(h)或流量(Q)。本模型给定恒定非均匀流作为河道初始流条件。该初始值可由下列恒定流方程求出

Q i=Q i-1+q i-1△x i-1 i=2,3,4…N

式中Q i为坝址处的恒定流量,q i-1为沿河断面间 莫玿内有支流汇入的单宽旁侧入流量。

对于给定的上游初始流量条件及下游末端断面的确定的起始水位,用Newton—Raphson法很容易迭代求解上述方程,得到各断面的初始水位和流量。

对于山区河流,由于断面比降较大,某些断面可能会出现急流、跌水等复杂的流态。利用上述恒定流方程求解时,可能会出现迭代不收敛的情况,使得计算无法继续。为了解决这种问题,在推求水面线时,对可能会出现以上复杂流态的断面,采用临界流方程,用临界流水深作为该断面的水位初值。临界流方程可表示为

F3/B-Q2/g=0

当下断面为急流,上断面为缓流时,取上断面水位为临界水位。上述方程为超越方程可用对分法求。

上游边界条件:可用水库的出流过程线Q(t)。

下游边界条件:可用下游断面的水位流量关系曲线。

若最下游的流量由河道控制,可用满宁公式给出其水位流量关系

若最下游流量由建筑物控制,则其关系式可表示为

Q N=Q b+Q s

式中Q b为溃口流量,Q s为溢洪道流量。此两变量均与末断面水位h N有关,故上式可确定末断面的水位流量关系。

2.1.5 △t及△x的选择

在求解不恒定流方程时,由于数值离散本身的特点,适当选择时间步长△t和空间步长△x对方程的稳定性和收敛性至关重要。本模型的时间步长采用变时间步长,表示如下

△t=0.5 t≤t b-0.5

△t=τ/20 t b-0.5

△t =T p/20 t≥t b+2τ

式中τ为出流过程线的峰现时间。

空间步长的选择由数值离散的稳定条件决定:△x/C△t≤1。

溃坝洪水过程线是一个尖瘦的曲线,随着向下游的传播,洪峰不断衰减,过程线不断展宽,因此,计算时间步长可随洪水波的向下游演进而加大,空间步长也可随之加大即紧靠坝址下游处选择较小的△x,随着距坝址的距离增大,△x的值可随之增大。

2.2 模型验证

本模型经用雅砻江唐古栋滑坡堵江后形成的溃坝洪水演进实测资料验证[2],并经二滩不恒定流出流资料验证,计算值与实测值符合较好。证明本模型在模型结构、计算方法及参数选择上是基本合理的。

3 大坝溃决方案的拟定

3.1 溃决形式

本电站上库大坝按10 000年一遇洪水校核,坝顶高程为3 829.5m。正常蓄水位3 824.5m,库容为1.26亿m3。水库一般在正常蓄水位下运行,因此不会出现超标准洪水漫顶溃决的情况。本电站库周无大型坍滑体存在,不会出现因滑坡造成的涌浪导致大坝漫顶溃决的情况。

土石坝失事主要原因是:施工质量差、水库调度管理失当及出现大于抗震烈度的地震等。失事形式主要为管涌,据资料统计由于管涌造成大坝失事的占38%。管涌从发生到大坝溃决一般要经历一个比较长的时间,易于察觉。在发生管涌时,除了采取适当的工程措施来阻止管涌外,还应及时开启泄水设施泄流,以便降低库水位。本水库水位与放空洞放空时间关系见表1。

表1 某水库水位与放空洞放空时间关系

Table 1 Relationship between water level and emptying time in one reservi or

放空时间

13578910 /d

库水位/m 3 821.6 3 815.0 3 808.4 3 801.6 3 798.0 3 795.1 3 791.7 3.2 溃口宽度及底高程

土石坝的溃决过程是水流与坝体相互作用的一个复杂的过程。到目前为止,溃坝的溃决机理还不是十分清楚。一般而言,土石坝的溃口宽度及底高程与坝体的材料,施工质量及外力如地震等因素有关。在具体计算时,溃口尺寸一般根据实验和实测资料确定。

本水电站上库坝体溃口尺寸通过已有资料和大坝自身的结构、型式及筑坝材料确定为:溃决底高程为3 788.0m,溃口边坡,不考虑原始河床冲刷时取1:1.5,考虑原始河床有少量冲刷时取1:1。溃口底宽由坝体材料和当地地形确定,考虑坝上游原始河床有少量冲刷经计算取最大底宽为150m,当不考虑原始河床冲刷时,溃口底宽由原始河床控制为70m。

3.3 溃决历时

大坝的溃决历时因大坝的型式、坝高、筑坝材料、施工质量及溃决形式的不同而不同,可从几分钟到数小时不等。土石坝[3]的溃决一般是渐溃,历时一般为0.5~2.0h。如我国河南板桥水库土坝溃决历时1.5h,青海沟后坝为砂砾石面板坝,溃决历时为1.7h,美国Teton土坝溃决历时为1.25h。考虑本电站大坝为碎石土心墙堆石坝,抗冲能力强,取该电站溃决历时为2.0h。

3.4 溃决方案的拟定

本电站大坝为土石坝,考虑失事主要形式为管涌,溃决形式为渐溃。由管涌导致的坝体溃决,在溃决前有一定的迹象。当发现大坝出现异常,除采取适当的工程措施外,还可以通过放空水库降低库水位,使大坝溃决前坝前水位尽可能低,从而达到减小溃决流量,减少损失的目的。初步拟定四种放空水库方案即:不放空、放空3天、放空5天、放空7天,相应坝前水位分别为3 824.5m,3 815m,3 808.4m,3 810.6m。则溃决方案组合有8种,详见表2。

表2 某电站溃坝方案组合表

Table 2 Dambreak schemes of one powerstation

方案不放空3天5天7天

坝前水位/m 3 824.5 3 815 3 808.4 3 810.5

B m=150.0m,Z=1.0方案1方案2方案3方案4

B m=70.0m,Z=1.5方案5方案6方案7方案8

3.5 计算条件

某电站坝址以下至某城市共布设有28个计算断面,分别从1/2000,1/5000,1/10000地形图上量取。河道糙率通过实测资料率定。本电站下游洪水演进河道有三个水尺断面。通过实测资料试算,河道糙率一般为0.05~0.1。流量大时糙率取值在0.075~0.1之间,小流量糙率取值在0.05~0.075之间。

4 计算结果及分析

4.1 溃坝洪水流量

大坝溃坝最大流量不仅受大坝溃口形态的影响,而且受坝址地形影响。即使是大坝全溃,其溃口尺寸也要结合坝址地形确定。考虑到大坝溃决时可能会冲走一部分原始河床,因此拟定溃坝的最不利方案即方案1。方案1,从大坝溃决到形成最大流量共需1.64h,坝址最大流量为15 400m3/s,随后流量逐渐衰减,总共下泄水量为8 307万m3,占总库容的66%。假定水流冲刷没有影响原始河床,再考虑水库放空一段时间,由此拟定溃坝的中方案即方案6。方案6,从大坝溃决到形成最大流量共需2.0h,坝址最大流量为9 40m3/s,总共下泄水量为5 767m3(不包括放空水量),占总库容的46%。

若大坝溃决前有足够的时间放空水库,将使坝前水位提前降低,从而减小下泄流量,由此拟定溃坝的低方案即方案8。方案8,从大坝溃决到形成最大流量共需2.0h,坝址最大流量为3 830m3/s,总共下泄水量为2 720万m3(不包括放空水量),占总库容的22%。

分析坝址处流量随时间变化过程可以看出,由于溃口不断扩大,出库流量急剧增加,同时下游水位不断升高,对出口流量形成顶托,抑制流量继续增加,当两种作用平衡时流量达到最大。此时溃口也达最大,而后流量由最大逐渐减小,由于下游水位顶托,流量衰减相应减慢,洪水波形成陡涨缓落型波形。

4.2 溃坝洪水流量沿程变化

从该电站坝址到某城市河段距离为29.07km。该溃坝洪水波行进河段由两段组成,上段平均比降98.8?,下段平均比降19.9?。该河段河道窄深,槽蓄作用不大。

计算结果表明,该电站溃坝最不利方案(方案1),坝址最大流量为15 400m3/s,洪水波传播到某城市,其流量衰减为15 200m3/s,流量减少了200m3/s,平均每公里衰减7.0 m3/s。其衰减很小,这主要由于本河段坡降很大,且河道窄深,槽蓄作用不明显。

该溃坝中方案(方案6),坝址最大流量为9 640m3/s,传播到某城市其流量衰减为8 970m3/s,流量减少了670m3/s,平均每公里衰减23.0 m3/s。

该溃坝低方案(方案8),坝址最大流量为3 830m3/s,洪水波传播到某城市,其流量衰减为3 540m3/s,流量减少了290m3/s,平均每公里衰减10.0m3/s。

4.3 洪水波传播时间

本河段由于坡降较大,河道窄深,洪水流量衰减小,且坝址距某城市只有30km 左右,因此,溃坝洪水传播很快,相应的预见期很短。

各方案洪峰自坝址到达某城市的时间均未超过1个小时,且流量大,传播速度快,传播时间短。

4.4 沿程最高水位和最大水深

溃坝洪水波传播到各断面,将使该断面的水位迅速升高,从而造成淹没损失。在各种方案下,溃坝洪水到达某城市的水深均超过11m,造成损失较大。

4.5 溃坝洪水影响分析

本电站,坝体一旦溃决,其溃坝洪水将对下游某城市造成严重影响。

溃坝最不利方案(方案1),坝址流量将在1.64小时涨至15 400m3/s,经过41分钟,洪水波传播至某城市流量为15 200 m3/s,其深弘点水深为20.12m。该城市地形为一缓慢抬升的斜坡,其比降约10?,该城市受影响的范围为2 012m。

溃坝中方案(方案6),坝址流量将在2.00小时涨至9 640m3/s,经过42分钟,洪水传播至某城市处流量为8 970 m3/s,其深弘点水深为15.99m。该城市受影响的范围为1599m。

溃坝低方案(方案8),坝址流量将在2.0小时涨至3 830m3/s,经过52分钟,洪水传播至某城市处流量为3 540m3/s,其深弘点水深为11.06m。该城市受影响的范围为1 106m。

由上分析可知,一旦发生溃坝洪水,其洪水波经过不足1小时就可到达某城市,入城流量在3 540~15 400m3/s之间,城内水深在11~20.12m之间,影响范围在1 106m~2 012m之间。一旦发生溃坝洪水,预警时间不足一小时。从各方案对比来看,对本工程而言,溃口底宽变化对溃坝流量、洪水传播时间、水深的影响作用有限。而溃坝时的坝前水位对溃坝流量、洪水传播时间、水深的影响有着重要作用。

4.6 预防措施

若溃坝洪水一旦发生,将对某城市造成严重影响。为此,必须从设计到施工,严格把好质量关,严格执行有关规程规范。电站运行时,应加强大坝管理、监测和检查。对大坝不安全部位,发现问题及时汇报,并采取相应工程处理措施。若遇不可抗拒因素(如地震等)造成大坝溃决,应及时打开泄水设施,尽可能降低水位;建立警报系统,以便一旦出现紧急情况,及时向主管部门和当地政府报告,将大坝管理人员撤离至安全地带;当地政府组织沿河群众安全撤离;当地府向邻近地区求援,早日撤离危险区,将损失降低到最小。

参考文献

[1]美国国家气象局溃坝洪水预报模型.水利电力部水利水电规划设计院,1984.11.[2]雅砻江洪水计算使用手册.四川联合大学高速水力学国家重点实验室,1995.2.[3]硗碛水电站溃坝洪水分析计算. 能源部水利部成都勘测设计院,1999 .5.11.

作者简介:赵太平(1972-),男,湖北人,硕士,研究方向为水力学及河流动力学。

溃坝洪水计算

FCD13030 FCD 水利水电工程初步设计阶段溃坝洪水计算大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段溃坝洪水计算大纲范本 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1.流域及工程概况 (4) 2.设计依据 (4) 3.基本资料 (5) 4.计算原则 (7) 5.溃坝计算方法及内容 (8) 6.溃坝洪水计算成果及分析 (10) 7.应提供的设计成果 (11) 3

1 流域及工程概况 2 设计依据 2.1 有关本工程的文件 (1) 设计任务书; (2) 可行性研究报告; (3) 可行性研究报告审查文件。 2.2 主要规范 (1) SL 44-93 水利水电工程设计洪水计算规范; (2) DL/T5015-1996 水利水电工程水利动能设计规范; (3) SD 138-85 水文情报预报规范; (4) DL/T5064-1996 水电工程水库淹没处理规划设计; (5) DL 5021-93 水利水电工程初步设计报告编制规程。 2.3 主要参考资料 (1) 谢任之,溃坝水利学,山东科学技术出版社; (2) 唐友一,溃坝水流状态计算方法的探讨,水利水电技术,1962年第4期; (3) 美国天气局,溃坝洪水预报程序DAMBRK及用户指南,水电部南京水文水资源研究所,1987年11月; (4) 山西省水利勘测设计院,水利动能设计手册,水库溃坝计算,1983年; (5) 水电部十一局研究院,土坝溃坝流量计算方法的研究,1977年6月; (6) 天津勘测设计院,孙国洁等,溃坝洪水计算国内外概况; (7) 水电部四川勘测设计院,大中型水电站水能设计第十五章,溃坝流态计算,1977 4

工程初步设计阶段溃坝洪水计算大纲

工程初步设计阶段 溃坝洪水计算大纲 1 流域及工程概况 2 设计依据 2.1 有关本工程的文件 (1) 设计任务书; (2) 可行性研究报告; (3) 可行性研究报告审查文件。 2.2 主要规范 (1) SL 44-93 水利水电工程设计洪水计算规范; (2) DL/T5015-1996 水利水电工程水利动能设计规范; (3) SD 138-85 水文情报预报规范; (4) DL/T5064-1996 水电工程水库淹没处理规划设计; (5) DL 5021-93 水利水电工程初步设计报告编制规程。 2.3 主要参考资料 (1) 谢任之,溃坝水利学,山东科学技术出版社;

(2) 唐友一,溃坝水流状态计算方法的探讨,水利水电技术,1962年第4期; (3) 美国天气局,溃坝洪水预报程序DAMBRK及用户指南,水电部南京水文水资源研究所,1987年11月; (4) 山西省水利勘测设计院,水利动能设计手册,水库溃坝计算,1983年; (5) 水电部十一局研究院,土坝溃坝流量计算方法的研究,1977年6月; (6) 天津勘测设计院,孙国洁等,溃坝洪水计算国内外概况; (7) 水电部四川勘测设计院,大中型水电站水能设计第十五章,溃坝流态计算,1977年1月; (8) 黄委会科研所,溃坝水流计算方法初步探讨,水利科技情报,1976年9月; (9) 彭登模,溃坝最大流量及溃坝流量过程计算的体会及建议,人民长江,1965年第5期。 3 基本资料 3.1 地形资料 (1) 水库及下游河道地形图; (2) 坝址横断面图; (3) 下游河道纵横断面资料。 3.2 水库库容曲线 收集水库原始库容及运行若干年后的剩余库容曲线。 水库库容曲线 表 1

土石坝溃坝研究与分析

与土石坝溃坝分析相关题目 土石坝溃坝研究 内容摘要:我国大坝数量居世界首位,但溃坝率亦居世界前列,溃坝导致水库下游地区灾害性的后果十分严重。论文主要是对大坝溃坝的影响因素以及从中所吸取的经验教训进行研究。首先简要介绍了土石坝的兴建情况和溃坝的危害,针对溃坝的原因和机理等进行研究,并对溃坝防治的措施和技术进行论述。依据所研究的原因、措施和相关经验,结合高旗岭尾矿库初期大坝失事的实例,进行了详细的分析,并提出了安全监测、渗流分析及科学设计等合理的防治措施。 关键词:土石坝;溃坝;原因;技术措施 目录

内容摘要 ........................................................ I 引言 (1) 1 土石坝溃坝的危害 (2) 1.1 土石坝的兴建情况 (2) 1.2 土石坝溃坝的危害 (2) 1.3 研究课题的提出 (3) 2 土石坝溃坝的基本原因 (3) 2.1 土石坝的渗漏 (3) 2.1.1 土石坝渗漏的原因 (3) 2.1.2 土石坝渗漏对溃坝的影响分析 (4) 2.2 漫顶 (5) 2.2.1 土石坝漫顶的原因 (5) 2.2.2 漫顶对土石坝溃坝的影响分析 (5) 2.3 滑坡原因 (5) 2.3.1 滑坡产生的原因 (5) 2.3.2 滑坡对土石坝溃坝的影响 (7) 3 溃坝防治措施和技术 (7) 3.1 土石坝渗漏的防治措施 (8) 3.1.1 垂直防渗和水平防渗 (8) 3.1.2 混凝土防渗墙 (8) 3.1.3 高压喷射灌浆防渗 (8) 3.1.4 劈裂灌浆防渗 (9) 3.2 土石坝自然灾害的防治措施 (9) 3.2.1 地震影响 (9) 3.2.2 洪水漫顶 (9) 3.3 科学管理防治溃坝措施 (10) 4 土石坝溃坝案例分析 (11) 4.1 土石坝溃坝案例的简要介绍 (11) 4.2 溃坝情况分析 (11) 4.2.1 坝体渗漏 (11)

基于对溃坝洪水计算的分析

基于对溃坝洪水计算的分析 [摘要]兴修水库,对防洪、灌溉、发电、航运、养殖都起着很大的作用,一般情况下,必须而且可以确保大坝的安全。但是,由于某些特殊原因,例如战争、地震、超标洪水、大坝的施工质量不佳,地基不良及水库调度管理不当等,都会使坝体突然遭到破坏,而形成灾难性的溃坝洪水,给下游带来极其严重的危害。因此,研究和预估溃坝洪水,对于合理确定水库的防洪标准和下游安全措施是非常必要的。 【关键词】洪水;计算;分析 1.前言 溃坝可分为瞬时全溃、部分溃和逐渐全溃。不过,由于导致溃坝的因素甚为复杂,难于事先全面考虑,从最不利的结果着想,可以认为溃坝是瞬时完成的。因此,以下仅对瞬时全溃或部分溃的情况进行讨论,所谓全溃是指坝体全部被冲毁;部分溃则指坝体未全冲毁,或溃口宽度未及整个坝长,或深度未达坝底,或二者兼有的情况。 实验表明溃坝水流的物理过程,如图1所示,溃坝初期,库内蓄水在水压和重力作用下,奔腾而出,在坝前形成负波,逆着水流方向向上游传播,称为落水逆波;在坝下形成正波,顺着水流方向向下游传播,称为涨水顺波。由于波速随水深而增加a,所以落水逆波前边的波速总大于后面的波速,使其波形逐渐展平;坝下游涨水顺波的变化正相反,因为后面的波速总大于前面的波速,于是形成了后波赶前波的现象,使波额变陡,成为来势凶猛的立波。例如,1928年美国圣弗兰西斯科坝失事,下游2.2km处观测得波额高达37m,万吨大的混凝土巨块都被冲走,不过,经过一段河槽调蓄及河床阻力作用之后,立波逐渐坦化,最终消失。图2示意地表示出一次溃坝洪水在坝址及下游各断面的流量过程线,从图上可以看出,坝址处峰形极为尖瘦,溃坝后瞬息之间即达最大值,然后随时间的推移而急速下降,呈乙字形的退水线。随着溃坝洪水向下游的演进,过程线逐渐变缓。 1.坝址断面(第I断面); 2.坝下游第II断面; 3.坝下游第III断面; 4.坝下游第IV断面。 根据对溃坝水流物理过程的试验研究,曾提出许多关于溃坝流量过程计算方法及其向下游传播的演算方法,其中有些在理论上是比较严密的。但这些方法计算工作量大,资料条件要求高,限于溃坝的边界条件难以定准,其计算成果的精度并不一定高。因此,对于中小水库,多采用具有一定精度、且较为简便的半理论半经验公式或经验公式,计算坝址处溃坝最大流量及其向下游的传播。 2.坝址处溃坝最大流量的计算 调查溃坝的情况表明,中小水库的土坝、堆石坝短时间局部溃的较多,刚性坝(如拱坝)和山谷中的土坝容易瞬间溃毁,为安全计,对于设计情况可考虑按瞬间溃坝处理,以瞬间全溃及局部溃的最大水流理论为指导,在总结国内外各种计算方法的基础上,对所做600多次试验资料综合归纳,得到了适合于瞬间全溃或局部溃的坝址处溃坝最大流量计算公式。经使用200多组溃坝试验记录和实际的溃坝资料,对该公式和国内外的其他公式进行检验,表明该公式适用条件广、计算精度高,误差均不超过20%。 Qm=0.27√g(L/B)1/10(B/b)1/3b(H-K’h)3/2 (1)

土石坝稳定计算安全评价与计算毕业设计

第4章大坝稳定计算 4.1. 计算方法 4.1.1. 计算原理 本设计稳定分析采用简单条分法——瑞典圆弧法。该法基本假定土坡失稳破坏可简化为一平面应变问题,破坏滑动面为一圆弧形面,将面上作用力相对于圆心形成的阻滑力矩与滑动力矩的比值定义为土坡的稳定安全系数。计算时将可能滑动面上的土体划分成若干铅直土条,略去土条间相互作用力的影响。 图4.1 瑞典圆弧法计算简图 下游坝坡有渗流水存在,应计入渗流对稳定的影响。在计算土条重量时,对浸润线以下的部分取饱和容重,对浸润线以上的部分取实重(土体干重加含水重)。假设土条两侧的渗流水压力基本上平衡,则稳定安全系数的综合简化计算公式为:

∑∑+±+ψ--±= ] /cos )[(} sec ]sin sec cos ){[(R e Q V W b c tg Q b u V W K i i i i i i i i i i i i i i i i i C ααααα‘ ’ (4.1) 其中:i ——土条编号; W ——土条重量; u ——作用于土条底部的孔隙水压力; ,b α——分别为土条宽度和其沿滑裂面的坡角; //,c ?——有效抗剪强度指标; S ——产生滑动的作用力; T ——抗力。 表4.1 坝体安全系数表 4.1.2. 计算工况 根据水工建筑物教材的要求,稳定渗流期校核两种工况的上下游坝坡稳定:正常运用条件和非正常运用条件I ,对于设计洪水位的上下游坝坡,其浸润线和水位均处于正常和校核条件之间,在坝体尺寸和材料相同的情况下,正常和校核满足要求,设计即满足要求。 4.1.3. 基础资料 表4.2 三百梯水库坝体土物理力学指标建议值

溃坝计算

水电工程溃坝洪水计算 赵太平 (国家电力公司水电水利规划设计总院) 摘要:某电站为一待建电站,位于高山峡谷区,河道比降较大。其下游为某城市,一旦大坝溃决,将对人民的生命财产安全造成极大的威胁。为此,进行溃坝洪水计算,可预测溃坝后,洪水的淹没范围和程度,以便提早采取相应的措施,减少损失。 关键词:溃坝; 洪水; 预测; 不恒定流 1 前言 水电是洁净能源,是西部地区重要的能源资源,开发西部水电,实现“西电东送”是实施“ 西部大开发”战略的重要举措,也是西部地区脱贫致富的重要途径之一。但水电站往往处于深山峡谷,甚至高地震区中,水电站的溃决将造成巨大的损失,为了预估溃坝洪水带来的影响,并提早采取相应的措施,将洪水灾害造成的影响减少到最小程度,有必要进行溃坝洪水计算。 本次计算电站地处青藏高原东南缘,区域内地势较高,平均海拔在4 000m左右。且电站坝址区覆盖层深厚,构造裂隙较发育,是我国西部著名的强地震带。电站下游主要的城镇为某城市,该城为我国西部少数民族集居区,经济以农牧业为主。 2 数学模型 2.1 模型结构 本次计算采用美国国家气象局编制的溃坝洪水预报模型DAMBRK模型[1]。该模型由三部分组成:1)大坝溃口形态描述。用于确定大坝溃口形态随时间的变化,包括溃口底宽、溃口顶宽、溃口边坡及溃决历时。2)水库下泄流量的计算。3)溃口下泄流量向下游的演进。 2.1.1 溃口形态确定 溃口是大坝失事时形成的缺口。溃口的形态主要与坝型和筑坝材料有关。目前,对于实际溃坝机理仍不是很清楚,因此,溃口形态主要通过近似假定来确定。考虑到模型的直观性、通用性和适应性,一般假定溃口底宽从一点开始,在溃决历时内,按线性比率扩大,直至形成最终底宽。若溃决历时小于10分钟,则溃口底部不是从一点开始,而是由冲蚀直接形成最终底宽。溃口形态描述主要由四个参数确定:溃决历时(τ),溃口底部高程(h bm),溃口边坡(z)。由第一个参数可以确定大坝

土石坝溃坝研究

网络教育学院 本科生毕业论文(设计) 题目:土石坝溃坝研究 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 土石坝是坝工建设中应用最为广泛和发展最快的一种坝型,我国的大坝数量已居世界之首,溃坝率也具前列。本文首先简要介绍了土石坝的兴建情况和溃坝的……,针对溃坝的原因和机理等进行……,并对溃坝防治的措施和……。最后结合土石坝案例,了解研究堰塞型土石坝的…….,这对研究堰塞坝的溃决过程、洪水演进具有重大意义,是防洪减灾、保障下游人民的生命财产安全的重中之重。 关键词:土石坝;溃坝;原因;技术措施 需要完整版请联系文档上传者(观察用户名即可)

目录 内容摘要 ........................................................................................................................... I 引言 . (1) 1 土石坝溃坝的危害 .................................................................. 错误!未定义书签。 1.1 土石坝的兴建情况 ....................................................... 错误!未定义书签。 1.2 土石坝溃坝的危害 ....................................................... 错误!未定义书签。 1.3 研究课题的提出 ........................................................... 错误!未定义书签。 2 土石坝溃坝的基本原因 .......................................................... 错误!未定义书签。 2.1 土石坝的渗漏 ............................................................... 错误!未定义书签。 2.1.1 土石坝渗漏的原因 ............................................ 错误!未定义书签。 2.1.2 土石坝渗漏对溃坝的影响分析 ........................ 错误!未定义书签。 2.2 漫顶 ............................................................................... 错误!未定义书签。 2.2.1 土石坝漫顶的原因 .............................................. 错误!未定义书签。 2.2.2 漫顶对土石坝溃坝的影响分析 .......................... 错误!未定义书签。 2.3 滑坡原因 ....................................................................... 错误!未定义书签。 2.3.1 滑坡产生的原因 .................................................. 错误!未定义书签。 2.3.2 滑坡对土石坝溃坝的影响 .................................. 错误!未定义书签。 2.4 地震 ................................................................................. 错误!未定义书签。 3 溃坝防治措施和技术 .............................................................. 错误!未定义书签。 3.1 土石坝渗漏的防治措施 ............................................... 错误!未定义书签。 3.1.1 灌浆防渗 ............................................................ 错误!未定义书签。 3.1.2 套井回填防渗 .................................................... 错误!未定义书签。 3.1.3 混凝土防渗 ........................................................ 错误!未定义书签。 3.1.4 土工膜防渗 ........................................................ 错误!未定义书签。 3.2 土石坝滑坡的防治措施 ............................................... 错误!未定义书签。 3.2.1 合理设计 ............................................................ 错误!未定义书签。 3.2.2 加强管理 ............................................................ 错误!未定义书签。 3.3 科学管理防治溃坝措施 ............................................... 错误!未定义书签。 3.3.1 水库管理 ............................................................ 错误!未定义书签。

溃坝洪水计算

217141 1.0H B KW 2 14141 1.0H B KW b 3.2 大坝溃决分析 3.2.1可能导致大坝溃决的主要因素 **水库可能出现大坝溃决的主要因素、形式见3.1.1条。 3.2.2可能发生的水库溃坝形式 水库溃坝的主要形式有漫坝溃决、管涌溃决。**水库可能发生的水库溃坝形式是发生了超标准洪水超过泄洪能力造成洪水漫坝溃坝。 3.2.3 溃坝洪水计算 **水库坝型为钢筋混凝土面板堆石坝,坝高*** m ,坝顶高程*** m ,防浪墙顶高程***m ,最大库容10460万m 3,坝顶长度***m 。**水库采用洪水漫坝造成水库逐渐溃决进行洪水计算。 (1)溃坝决口宽度估算 ①根据铁道科学研究院推荐的经验公式估算。计算公式为: b= 式中:b 溃坝决口宽度(m),W 水库总库容(万m3),B 坝顶长度(m),H 最大坝高(m),K 经验系数,对于该水库属土石混合坝K 值为 1.19。 b=26.18m ②根据黄河水利委员会经验公式估算 式中:b 为溃口宽度(m),W 为水库总库容(万m 3),B 为主坝长度(m),H 为坝高(m),K 为经验系数(粘土类取0.65,壤土取1.30)。 b=26.84m ③参考中国水利水电科学研究院陆吉康经验公式计算。 b = 0.180×3×kW 0.32 H 0.19 H 为溃决水深(水库溃决时刻水位- 坝址断面平均底高程)(m),W 为水库有效下泻库容(m 3),b 为最终溃口的平均宽度(m),K 为修正系数,对于漫顶造成的溃决K = 1 。

b=25.32m 以上三种方法计算决口宽度均在经验误差范围内,取情况最恶劣计算坝址溃坝最大流量,即溃坝决口宽度26.84m。 (2) 溃口坝址最大流量估算 溃口坝址最大流量根据肖克列奇经验公式估算: 式中:Q max溃口坝址最大流量(m3/s),B坝顶长度(m),b溃坝决口宽度(m),H0溃坝前上游水深(m)。 Q max = 38768.09 m3/s **水库坝址处溃坝最大流量:38768.09 m3/s。 表2:**水库溃坝计算成果表 3.2.4溃坝洪水对下游防洪工程、重要保护目标等造成的破坏程度和影响范围 根据有关资料分析,水库溃坝时洪水可能导致水库下游的**、**两个集镇镇(街)的企业、学校、村庄、农田和鱼塘受淹浸,摧毁房屋及其他公共设施,冲毁水陂、渠道,国道**段中断,损失严重。 3.2.5溃坝对上游可能引发滑坡崩塌的地点、范围和危害程度 根据有关分析,导致**水库对上游可能引发滑坡崩塌的部位主要集中在***,其危害程度可能造成滑坡。

土石坝溃坝原因分析

土石坝溃坝原因分析 摘要对土石坝的概念、组成及优缺点进行了概述,并分析了土石坝溃坝的原因,对充分发挥土石坝的兴利作用具有重要意义。 关键词土石坝;溃坝;原因 中国大坝数量居世界首位,然而,中国溃坝率亦居世界前列。据1954—2001年的统计,中国大坝年溃坝率,远超世界其他国家。溃坝的危害程度很高,尤其是对于高坝大库和大江大河的堤防工程,一旦失事其危害十分巨大。分析土石坝的溃坝原因,对于充分发挥水利工程的兴利作用,保证人民生命财产安全有着十分重要的意义。 1土石坝概述 土石坝是指由当地土料、石料或土石混合料填筑而成的坝,又称当地材料坝。当坝体材料以土和砂砾为主时,称土坝;以石渣、卵石、块石为主时,称堆石坝;土、石料均占有一定比例时,称土石混合坝。三者在工作条件、结构型式和施工方法上均有相似之处,通称土石坝。土石坝在世界上历史最为悠久,应用最为广泛,随着近年来大型土方施工机械、岩土理论和计算技术的发展,放宽了对筑坝材料的使用范围,缩短了工期,也使土石坝成为当今世界坝工建设中发展最快的一种坝型[1]。土石坝一般由坝身、防渗体、排水体和护坡四部分组成。坝身是土石坝的主体,坝的稳定主要靠它来维持;防渗体的作用是降低浸润线,防止渗透破坏和减少渗透流量;排水体主要用于安全地排出渗水,降低坝体浸润线和防止渗透变形,同时,还可以增强下游坝坡稳定性;护坡的作用是防止波浪、冰层、温度变化和雨水等对坝坡的破坏。 土石坝之所以被广泛采用,主要基于以下3点原因:一是就地取材,与混凝土坝相比,节省大量水泥、钢材和木材,减少了筑坝材料远途运输费用;二是对地质、地形条件要求低,任何不良地基经处理后均可筑土石坝;三是施工方法灵活,技术简单,且管理方便,易于加高扩建。土石坝也存在一些不足,如不允许坝顶溢流(过水土石坝除外),所需溢洪道或其他泄水建筑物的造价往往很大;在河谷狭窄、洪水流量大的河道上施工导流较混凝土坝困难;采用黏性土料作防渗体时,黏性土料施工受气候条件影响较大等。 2土石坝溃坝的原因分析 2.1土石坝的渗漏 2.1.1土石坝渗漏的原因。对土石坝渗漏的原因,渗流控制理论分析认为一般有以下3点:①坝体填土与排水体之间的反滤层设计不正确,层间系数过大,

溃坝洪水演进的理论分析——读书报告

堤坝溃决洪水演进的理论分析 摘要:崩滑堵江事件在世界范围内,尤其在山区广泛存在。每年因为类似事件 的发生都会至少造成数以千万计人的生命财产受到不同程度的威胁及伤害,崩滑堵江事件及其灾害链已严重影响人类的工程经济活动。因此对于堤坝溃决洪水的演进分析便显得尤为紧迫。本文对洪水演进进行了理论分析,得出了相关结论,为日后的工程实际活动很好地提供了理论指导。 关键词:堤坝溃决;洪水演进;理论分析 Theoretical analysis of flood routing after dam break The natural damming of rivers by landslides is a significant hazard in many areas. Landslide damming is particularity common in mountainous regions.Every year,related events have caused at least tens of millions of people's life and property being threatened and damaged.Debris blocking river events and disasters chain has serious impact on human engineering activity.So it’s necessary to carry on theoretical analysis of flood routing after dam break.This paper has worked on the theoretical analysis,related conclusions have been drawn,which could well provide a theoretical guidance on further engineering practical activity. Key words: dam break;flood routing;theoretical analysis 1.研究目的与意义 崩滑堵江形成的天然堵江(堆石)坝高几米至几百米,其最大坝高比目前世界上已建、在建或拟建的人工土石坝均高;堰塞湖体积从几十万方至上百亿方,大者足以与人工水库相媲美;存在时间由几十分钟至上千年;溃坝后形成的洪水异常凶猛,洪峰高几米至几十米,演进过程中造成严重灾害[6]。 因此, 认识掌握堤坝溃决机理并对堤坝溃决过程进行模拟, 对于建立堤坝溃决的早期预警体系、人员紧急疏散预案和基于风险的堤坝设计方法等都具有重要意义.对于洪水演进进程作理论研究与分析,旨在了解整个发生过程,为实际发生的工程事件提供理论支撑。 2.国内外研究动态

水库土石坝设计关键技术

水库土石坝设计关键技术 发表时间:2018-04-02T16:17:52.223Z 来源:《基层建设》2017年第34期作者:杜园龙张维[导读] 摘要:水库安全与人们的生活紧密相关,甚至同生命财产安全相连,土石坝的设计又与水库安全相关。 楚雄欣源水利电力勘察设计有限责任公司 摘要:水库安全与人们的生活紧密相关,甚至同生命财产安全相连,土石坝的设计又与水库安全相关。本文对水库土石坝的概况与存在的险情进行论述,并探讨水库土石坝设计的关键技术,旨在为水库土石坝的优化设计提出理论参考依据。 关键词:水库;土石坝;设计;关键技术 土石坝是我国现存最古老的一种坝型(如图1),具有较长的应用史,随着科学技术水平的提升,土石坝也因发展快、应用范围广等优势在世界坝工建设中占有一席之地。现今水库土石坝在设计过程中存在着严重的问题,致使水库土石坝的险情增加,增加溃坝的几率。因此,本文针对水库土石坝设计的关键技术进行简要分析。 图1 水库土石坝航拍图 一、水库土石坝存在的险情 (一)水库土石坝的渗漏 我国土石坝溃坝现象发生的主要原因为土石坝渗漏,分别为坝身渗漏,接触渗漏、坝基渗漏及绕坝渗漏等四种渗漏形式[1]。发生土石坝渗漏的主要原因可归为以下四点:第一,材质不过关。土石坝施工期间多是就地取材,同时部分土石坝所处位置的交通便利性较差。筑坝材料存在过多的杂质、水溶性较强等不过关现象,同时,碾压不充分等材料使用问题也是土石坝溃坝发生的主要原因之一。第二,坝身设计未过关,例如坝身厚度未达到标准,渗径较短等问题都会导致渗漏情况加剧。第三,排水系统不完全符合要求,土石坝具有排水棱体,但是由于部分设计存在问题,使排水体堵塞,从而致使排水体失效,甚至无排水体现象发生。第四,防水设施未过关,例如设计与要求不符合,截水槽尺寸不符合要求,碾压不实,致使和岸坡与截水槽结合不紧密,从而引发渗漏现象。 (二)水库土石坝的坝体裂缝与滑坡 水库土石坝裂缝产生的原因大致可分为四点:第一,清淤工作未能彻底进行;第二,坝基防渗措施未能达到设计效果;第三,泄洪操作失误;第四,结合部质量较差。水库土石坝坝体滑坡发生原因可归为:堪验设计工作不到位、建设工作未到位,碾压不到位等原因。 二、水库土石坝设计的关键技术 (一)对洪汛数据的复核 针对水库土石坝由于不规范建设,导致洪汛预测不准的情况,在设计与计算过程中应加强对洪汛数据的复核工作。首先,对实践监测的重视。充分利用水库当地的水文资料,同时对水库土石坝当地的水文数据进行实际的监测,了解当地的洪水汛期、暴雨量及年降水量等洪汛数据[2]。其次,在获取当地洪汛数据及水文资料后,要将所获取的资料利用相关的计算方法,求得水库土石坝的相关参数,并对求得的数据资料采取进一步调查与分析,保证所得数据科学合理。对于所补充的洪汛资料也要进行分析与论证,保证洪汛资料与实际调查的结果相吻合,符合科学合理的原则[3]。洪汛资料与流域特征对于数据资料具有较大的影响,因此,在进行资料与数据复核过程中,要避免发生系统性错误,同时及时发现错误并进行修正。要比较建筑物级别与所得数据进行对照,挑选合适的抗洪标准,同时严格按照国家指标对材料与质量进行确认,同时对洪水、洪量与洪峰流量等作为基础依据,对水库特征进行设计。 (二)抗震性能的提升 对于土石坝溃坝事件而言,地震灾害是重要原因之一,后果较为严重。因此,在土石坝设计中,抗震设计是重要内容之一。在进行地震性能设计时,要对当地的地质条件进行复核,通过对当地地质环境的实际检测,获取当地断层交汇带、地震带、密集缝隙区等地质资料,同时考虑河床的土质、缓坡、土层质量、架空、降沉等地质环境。同时,土石坝多为就地取材,因此,在设计过程中,也要对当地的土质石材的质量进行综合性考量,并且对水溶性岩石的含量进行分析[4]。除此之外,还需对土石坝的抗震性能进行分析,通过对条块水平地震惯性、动态分布系数、设计烈度等在进行拟静法时加以计算;利用动力法进行分析时要对震前坝体的初始状态、非显性应力等应变关系得出相关结论。在进行计算过程中,也需要对土石坝地震的永久性变形及残余变形加以考量。根据上述材料方法得到数据后,依据我国相关标准进行设计,同时,还需对建筑物的防震等级加以确定,严格复核审查相关数据资料,保证所获得数据运用的合理性。在设计过程中,也要对土体抗液化性能进行改善,避免存在较大液化性的土体,应用抗液化破坏的结构进行抗震设计。要从地基、坝高、水库防控设施、防渗体、坝轴线等多方面因素进行抗震考虑,注重抗震结构的合理性。 (三)土石坝防漏与排水设计 坝体渗漏主要是在坝基、坝肩及接触带出现渗漏,因此,为了确保坝体防漏、排水性能得到保障,要从以下几个方面进行设计:首先,要注重对当地土石质量的考察,在选材过程中要将易液化的土质避开,同时要综合性考虑当地的地质条件。在进行防渗墙设计时也要进行综合性的考虑设计,若坝体设计孔隙较大,可通过坝轴线设立防渗墙的方式达到防渗要求,进行防渗墙设计时,要从底部深入到二层基岩,选取防渗墙的最佳建材,灌浆是防渗墙最佳的制造方法[5]。其次,在设计时要保障上堵下排,多重结合,在进行设计过程中要在上下游、坝体采取统一的防渗漏措施,应用粘土铺盖结合开挖导渗沟的方式达到水平防渗,也可采用灌浆、充填等方式对坝体孔隙进行填补,保障防渗漏的效果更佳,在下游可通过排水棱体达到排水与防渗的作用。 (四)坝坡的防滑与固定 滑坡与滑坡性裂缝是土石坝溃坝事件发生的重要原因。因此,在进行土石坝设计过程中要对坝坡的加固加以重视。首先,要对当地的地理环境进行综合性的考虑衡量,根据当地的水文资料选择正确的坝型,在坝型选择过程中要注意自重、耗材、抗震性、温度等诸多要素。在选择坝型后,要利用不同坝型的独特优势使其可有效达成,如保障当地自然环境不会干扰施工,土石坝所用材料在当地均可获得。 (五)合理布置枢纽 为了保障枢纽布置的合理性要从以下四个方面着手:第一,坝址选择的正确性,使施工作业可顺利开展;第二,保证枢纽的全面性,可在诸多条件下正常运作;第三,相对费用的有效降低,在保障枢纽强度与稳定性的基础上,对运作成本有效合理规划,使维护、年运作费及总造价可有效降低,保障土石坝的安全性的同时,降低施工成本。

水电工程溃坝洪水计算

水电工程溃坝洪水计算 发表日期:2006-03-06 浏览人数:1570 作者:赵太平来源:网络收集评论0条 1 前言 水电是洁净能源,是西部地区重要的能源资源,开发西部水电,实现“西电东送”是实施“ 西部大开发”战略的重要举措,也是西部地区脱贫致富的重要途径之一。但水电站往往处于深山峡谷,甚至高地震区中,水电站的溃决将造成巨大的损失,为了预估溃坝洪水带来的影响,并提早采取相应的措施,将洪水灾害造成的影响减少到最小程度,有必要进行溃坝洪水计算。 本次计算电站地处青藏高原东南缘,区域内地势较高,平均海拔在4 000m左右。且电站坝址区覆盖层深厚,构造裂隙较发育,是我国西部著名的强地震带。电站下游主要的城镇为某城市,该城为我国西部少数民族集居区,经济以农牧业为主。 2 数学模型 2.1 模型结构 本次计算采用美国国家气象局编制的溃坝洪水预报模型DAMBRK模型[1]。该模型由三部分组成:1)大坝溃口形态描述。用于确定大坝溃口形态随时间的变化,包括溃口底宽、溃口顶宽、溃口边坡及溃决历时。2)水库下泄流量的计算。3)溃口下泄流量向下游的演进。 2.1.1溃口形态确定 溃口是大坝失事时形成的缺口。溃口的形态主要与坝型和筑坝材料有关。目前,对于实际溃坝机理仍不是很清楚,因此,溃口形态主要通过近似假定来确定。考虑到模型的直观性、通用性和适应性,一般假定溃口底宽从一点开始,在溃决历时内,按线性比率扩大,直至形成最终底宽。若溃决历时小于10分钟,则溃口底部不是从一点开始,而是由冲蚀直接形成最终底宽。溃口形态描述主要由四个参数确定:溃决历时(τ),溃口底部高程(h bm),溃口边坡(z)。由第一个参数可以确定大坝溃决是瞬溃还是渐溃。由后面三个参数可以确定溃口断面形态为矩形、三角形或梯形及局部溃或全溃。

土石坝毕业设计开题详细报告.doc

土石坝毕业设计开题报告 1. 课题研究的意义 土石坝是世界坝工建设中应用最为广泛和发展最快的一种坝型。土石坝如此广泛的应用,那就要求我们要掌握土石坝的设计以及施工工艺。进行土石坝的研究,可以让我们①掌握如何根据地形、地质、建筑材料、施工情况、工程量、投资等方面,经综合比较选定坝型,了解土石坝枢纽各建筑物组成、建筑物的工作特点以及在枢纽中的布置;②了解和掌握调洪演算的方法和水库各种特征水位的确定;③在对土石坝枢纽中各建筑物的设计中,了解各建筑物的选型比较方法以及所选定建筑物的设计难点和重点,并掌握相应的设计方法;④掌握计算机绘图和程序计算方法,培养设计报告撰写能力;⑤通过设计研究,培养文献资料查阅、发现问题、独立思考问题和解决问题的能力。 2. 国内外研究进展 土石坝是历史最为悠久的一种坝型。目前,土石坝是世界坝工建设中应用最为广泛和发展最快的一种坝型。据不完全统计,我国兴建的各种类型的坝共有8.48万座,其中95%以上为土石坝。21世纪我国水利水电事业将进入大发展时期,在西部大开发的战略下,一批水利水电工程将在黄河上游、长江中上游干支流、红河等水利资源丰富的江河上开工建设。 在国外土石坝的发展速度同样迅速,所建的百米以上的高

坝中,土石坝所占的比重呈逐年增长趋势,20世纪50年代以前为30%,60年代接近40%,70年代接近60%,到80年代后增至70%以上。随着近代的土石坝筑坝技术的发展,促成了一批高坝的建设。目前,世界上已建成的最土石坝为前苏联的努列克坝,高300m。我国已建成的天生桥一级面板堆石坝,高178m,在建的水布垭面板堆石坝,高233m,在建的糯扎渡心墙堆石坝,高261.5m。设计中的双江口堆石心墙坝,高314m。 3. 当前研究存在的问题 土石坝的当前研究主要存在:一是水库的渗流问题,二是除险加固的问题,三是新型材料的使用。 在坝与水库失事的统计中1/4是由于渗流问题引起的,我国大坝数量居世界首位,溃坝率亦居世界前列。溃坝的危害程度很高,尤其是对于高坝大库和大江大河的堤防工程,一旦失事其危害十分巨大,严重威胁整个水利工程的安全,进一步威胁下游人民生命和财产的安全。只有快速有效地分析堤坝的安全状况、运行状况以及溃坝风险分析等,才能减少事故的发生。只有有效地对多因素影响下的土石坝溃坝情况进行分析与预报,才能保证堤坝的正常运行、管理以及有的放矢地对堤坝工程进行除险加固处理。 较多的大坝需要除险加固,是由于当时特定的历史条件,存在严重的边勘测、边设计、边施工的现象,防洪标准低,质量控制不严,尾工和隐患较多,时刻威胁下游人民生命财产安全,

(完整版)习题设计洪水计算

一、任务: 求绵竹市官宋硼埝取水枢纽工程的百年一遇设计洪水过程。 二、说明计算 洪峰流量频率计算需要考虑特大洪水,超过三倍均值的作为特大洪水。 三、相关资料 1 流域概况 绵竹市官宋硼埝取水枢纽工程位于沱江上游绵远河山区与成都平原交界的汉旺镇,上距汉旺水文站0.5公里,下距汉旺镇仅1公里。 绵远河发源于绵竹市与阿坝州茂县交界的九顶山南麓大盐井沟,绵远河是沱江干流主源,河道全长117公里,流域面积1212平方公里。在汉旺镇以上为山区,山区河道长44.4公里,集水面积400平方公里,占流域面积的33%,河流主干平均坡降63.1‰,山区河段山高谷深,河床狭窄,水流湍急,森林茂密。汉旺以下为平原,河道长72.6公里。集水面积812平方公里,平均坡降3.6‰。官宋硼埝取水枢纽工程控制集水面积403平方公里,开发河段(上游800米,下游200米)1公里范围河道平均坡降8‰~10‰,上游700米河段基本顺直,河床宽80~100米,下游逐渐开阔,河床宽约500米。 绵远河流域形状狭长,水系发育呈不对称树枝状分布,地理位置为东经103°56’~104°27’、北纬30°55’~31°42’之间。源头分水岭海拔高程达4000米,域内最高峰火焰山海拔高程为4285米,地势西北高、东南低,由西北向东南逐渐倾斜。流向大致由西北向东南流,主干西河经大火地在松光岭处接纳东河后称清水河,在伐木厂与黄水河汇流后始称绵远河。以下有湔沟及天池沟从右岸汇入,流经汉旺场进入成都平原,经黄许镇、德阳市、八角井镇,在广汉市三水乡与石亭江汇合后称北河,再流经金堂县赵镇与毗河汇合后称沱江。 绵远河流域在汉旺以上的山区,属龙门山断裂带,主要有板厂沟冲断裂、清

土石坝边坡稳定分析与计算方法

土石坝边坡稳定分析与计算方法 文章针对土石坝边坡稳定分析与计算方法进行了系统的分析与整理,主要是对PC1500程序稳定性理论分析中三种状态进行了分析并介绍了编制依据及使用情况。 标签:土坝;稳定性;边坡;程序 1 稳定性理论分析 土坝的稳定性破坏有滑动、液化及塑性流动三种状态。 (1)坝坡的滑动是由于坝体的边坡太陡,坝体填土的抗剪强度太小,致使坍滑面以外的土体滑动力矩超过抗滑力矩,因而发生坍滑或由于坝基土的抗剪强度不足,因而坝体坝基一同发生滑动。 (2)坝体的液化是发生在用细砂或均匀的不够紧密的砂料作成的坝体中,或由这种砂料形成的坝基中。液化的原因是由于饱和的松砂受振动或剪切而发生体积收缩,这时砂土孔隙中的水分不能立即排出,部分或全部有效应力即转变为孔隙压力,砂土的抗剪强度减少或变为零,砂粒业就随着水的流动向四周流散了。 (3)土坝的塑性流动是由于坝体或坝基内的剪应力超过了土料实际具有的抗剪强度,变形超过了弹性限值,不能承受荷重,使坝坡或者坝脚地基土被压出或隆起,因而使坝体的坝基发生裂缝、沉陷等情况。软粘性土的坝或坝基,如果设计不良,就容易产生这种破坏。 进行坝坡稳定计算时,应该杜绝以上三种破坏稳定的现象,尤其前两种,必须加以计算以及研究。 2 PC1500程序编制依据及计算方法 2.1 编制依据及使用情况综述 PC1500程序在计算方法方面采用了瑞典条分法和考虑土条水平侧向力的简化毕肖甫法。从对土料物理力学指标的不同选用又可分为总应力法,有效应力法和简化有效应力法。程序规定,计算公式中无孔隙水压力为总应力法;计入孔隙水压力为有效应力法;令孔隙水压力一项为零而将孔隙水压力包含在土体重量的计算之中,称为简化有效力法[1]。分别考虑了稳定渗流期,施工期,水位降落期三种情况。程序按照“水工建筑物抗震设计规范”,“碾压土石坝设计规范”编制。 2.2 计算方法 PC1500程序安排了四种计算方式,即计算一个指定的滑弧,用优选法连续

基于HEC-RAS和GIS的溃坝洪水计算

第18卷 第2期 中 国 水 运 Vol.18 No.2 2018年 2月 China Water Transport February 2018 收稿日期:2017-12-01 作者简介:丁 灿(1993-),男,安徽芜湖人,四川大学水力学与山区河流开发保护国家重点实验室,主要从事水工水 力学方面的研究 基金项目:国家重点研发专项(2016YFC0401603)。 基于HEC-RAS 和GIS 的溃坝洪水计算 丁 灿,田 忠,王 韦 摘 要:以大渡河枕头坝水电站为研究对象,采用HEC-RAS 建立数值模型,并利用数字高程模型及实测水文资料对模型进行验证,使计算结果与实测数据误差控制在±4%以内。根据实际情况,选取最不利情况,即来流为校核洪水、大坝漫顶瞬时全溃进行计算,并通过Arc-GIS 实现结果可视化。结果表明:来流为校核洪水,大坝瞬时全溃条件下,坝址最大流量约35,246m 3/s ,洪峰20min 到达金口河城区,流量衰减至22,515m 3/s ,部分城区将受到严重影响;水库泄空计算显示5孔闸门全开情况下,水库2h 完成泄空,与所推导的理论公式完全吻合。研究结果表明,计算数据与理论相符,可为防洪决策提供有效支持。 关键词:HEC-RAS ;Arc-GIS ;溃坝模拟;水库泄空 中图分类号:TV877 文献标识码:A 文章编号:1006-7973(2018)02-0179-03 水库作为水资源调控措施的重要组成部分,其安全至关重要。通过溃坝模拟,对其影响进行预先估算,以便做出相应合理应对措施,对减少生命财产损失具有重要意义,因此前人利用一维和二维模型针对溃坝模拟做出了大量的工作。吴钢峰等[1]利用结构网格,采用有限体积法建立二维水动力学模型,模拟溃坝洪水在复杂地形下的流动过程;陈景秋等[2]采用改进的时空守恒元和解元方法建立大坝瞬间全溃所致的洪水演进和反射过程的数学模型;王晓玲等[3]采用耦合VOF 法的三维k-ε紊流数学模型,模拟了三维溃坝洪水在复杂区域的演进过程;谢作涛等[4]采用DAMBREAK 模型模拟了溃坝洪水在下游的演进过程。吴博等[5]利用HEC-RAS 和GIS 软件对小东川河流域洪水淹没范围做出了较为准确的预测。贺娟等[6]利用HEC-RAS 对长河坝水电站进行了溃坝洪水模拟。此次研究对象枕头坝一级水电站库区及下游为高山峡谷地区,故一维模型可以满足计算要求。本文采用HEC-RAS 一维水动力学模型进行溃坝洪水计算并通过Arc-GIS 实现可视化,为相关部门制定防洪预案提供了依据。 一、模型计算原理 HEC-RAS 是由美国陆军工程兵团水文工程中心研发的一款用于一维水流分析的计算软件,其主要分为四个模块,分别为恒定流计算、非恒定流计算、泥沙输运以及水环境分析模块。本文主要采用非恒定流模块进行溃坝洪水计算,其核心计算公式为圣维南方程: ()0 0=-?+?+??q t A A x Q (1) ()02=??? ??++??+??+??e f S S x h gA x A /Q t Q (2) 式中:Q —流量,当计算向下游演进时,Q 即为坝址处 的下泄流量;A —有效过水断面面积;A 0—非河槽蓄水的断面面积(滩地面积);x —顺水流方向的距离;t —时间;q —沿河道单位距离的侧向入流或出流;g —重力加速度;S f —摩阻比降;S e —局部损失;h —水面高程;k —收扩系数,收缩时取正值,扩张时取负值,否则为0。 模型采用四点隐式差分的格式对公式(1)、(2)进行离散并求解。 二、溃坝洪水模拟 1.研究区域概况 枕头坝一级水电站位于大渡河中游,下游距乐山市金口河区5km ,为大渡河干流水电梯级规划的第十九个梯级电站,其最大坝高86.5m ,水库总库容0.469亿m 3,坝址处控制流域面积73,057km 2,河道平均坡降为1.8‰,多年平均流量1,360m 3/s 。坝址下游可能受影响范围内梯级电站有沙坪一级水电站(尚未开工,距离枕头坝坝址20km )和沙坪二级水电站(在建,距离枕头坝坝址28.5km ),主要人口聚集点有金口河城区、永和镇及金河镇,坝址下游主要交通干线为S306省道和成昆铁路。 2.模型建立及验证 (1)模型建立 利用Arc-GIS 软件在30m 精度DEM 模型上绘出河道、堤岸和边滩并提取计算断面,通过HEC-GeoRAS 软件将计算模型导入HEC-RAS 进行计算。计算河道范围从枕头坝水电站库尾沿大渡河至沙坪一级水电站坝址,共34,300m ,其中枕头坝坝址上游库区16,000m ,坝址下游 18,318m 。模型共布设50个控制断面,每个断面距离不超过1km ,平均间距约0.7km ,弯道处至少布设3个断面。 (2)模型验证

相关主题
文本预览
相关文档 最新文档