当前位置:文档之家› 数学发展史中的几次重大思想方法的突破图文稿

数学发展史中的几次重大思想方法的突破图文稿

数学发展史中的几次重大思想方法的突破图文稿
数学发展史中的几次重大思想方法的突破图文稿

数学发展史中的几次重大思想方法的突破

集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1. 承认“无理数”是对“万物皆数”的思想解放

古希腊有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为“数”是万物的本源,是数学严密性和次序性的唯一依据,是在宇宙体系里控制着自然的永恒关系,数是世界的准则和关系,是决定一切事物的,“数统治着宇宙”,支配着整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使“数”不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究

1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。万物皆数以数为一个价值尺度去解释自然,揭示了自然界的部分道理,可把数绝对化就不行了,就制约了人的思维。无理数的发现推翻了毕达哥拉斯等人的信条,打破了所谓给定任何两个线段,必定能找到第三个线段使得给定的线段都是这个线段的整数倍。这样,原先建筑在可公度量上的比例和相似性的理论基础就出问题了。这是数学史上的第一次危机。

2.2 微积分的产生是第二次思想解放

第二次数学危机源于极限概念的提出。作为极限概念确立的伟大成果的微积分是不能不讲的。微积分的问题,实际上就是解决连续与极限的问题,我们也曾讲过,芝诺反对无限连续,他在连续的门坎前设了四道屏障,这就是他提出的四个有名的悖论。

二分法悖论、阿基里斯悖论、箭的悖论、操场悖论。

牛顿在发明微积分的时候,牛顿合理地设想:Δ

t越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。这一新的数学方法,受到数学家和物理学家热烈欢迎。大家充分地运用它,解决了大量过去无法问津的科技问题。但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击。贝克莱主教曾猛烈地攻击牛顿的微分概念。

实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。其实,牛顿也曾在着作中明确指出过:所谓“最终的比”

(如(2)中的2at)不是“最终的量”的比,而是比所趋近的极限。但他既没有清除另一些模糊不清的陈述,又没有严格界说极限的含义。包括莱布尼兹对微积分的最初发现,也没有明确极限的意思。因而,牛顿及其后一百年间的数学家,都不能有力地还击贝克莱的这种攻击。这就是数学史上所谓第二次数学危机。

2.3 非欧几何的诞生是第三次思想解放

希腊人在几何学上取得很大成就,最典型的是《几何原本》。

《几何原本》从五个公理、五个公设出发推演出有关的数学问题,这就给了人们一个价值尺度,一把尺子。那么人们自然要问,这把尺子准否

又有谁去量《几何原本》。公设①~④都是很容易接受的,对于叙述最为罗

嗦的“第五公设”有人想能否从中去掉它,然后由别的来代替。

那么,唯一的办法就是用别的定理去证明它也能获得同样结论。第一个做这件事的人就是仅与欧几里得相差不到一世纪的着名天文学家、几何学家托勒密,但没有获得成gong。尔后到公元

5世纪的普洛克拉斯,17世纪的沃利斯,也都没有获得什么进展。直到19世纪初,所有用欧几里得的公理去证明欧几里得平行的公理的尝试,都失败了,它整整困惑了人们2000多年。

19世纪初,当一大批数学家们开始意识到第五公设是不可证明时,那唯一的办法,要么干脆承认第五公设,要么换一个新的思路,重新构筑一个体系。这时,非欧几何可以说已经呼之欲出了。当时德国数学家C.F.高斯、俄国数学家H.И.罗巴契夫斯基和匈牙利数学家J.波尔约等人各自独立地认识到这种证明是不可能的。高斯关于非欧几何的信件和笔记在他生前一直没有公开发表,只是在1855年他去世后出版时才引起人们的注意。罗巴契夫斯基和波尔约分别在1830年前后发表了他们关于非欧几何的理论。在这种新的非欧几何中,替代欧几里得平行公理的是罗巴契夫斯基平行公理:在这种几何里,三角形内角和小于两直角。当时罗巴契夫斯基称这种几何学为虚几何学,后人又称为罗巴契夫斯基几何学,简称罗氏几何,也称双曲几何。

非欧几何的创建打破了

2000多年来欧氏几何一统天下的局面,从根本上革新和拓宽了人们对几何学观念的认识。非欧几何的创建导致人们对几何学基础的深入研究。不仅推广了几何学观念,而且对于物理学在20世纪初期所发生的关于空间和时间的物理观念的改革也起了巨大的推动作用。非欧几何学首先提出了弯曲的空间,它为更广泛的黎曼几何的产生创造了前提,而黎曼几何后来成了爱因斯坦广义相对论的数学工具。而这一次思想解放,数学依然是在物理学的前面几十年。A.爱因斯坦和他后继者在广义相对论的基础上研究了宇宙的结构。按照相对论的观点,宇宙结构的几何学不是欧几里得几何学而是接近于非欧几何学,许多人采用了非欧几何作为宇宙的几何模型。

2.4 罗索悖论引出的数学基础研究是第四次思想解放

第三次危机,涉及到了“数学自身的基础是什么”的根本问题。它的起因是19世纪的弗雷格根据康托尔创立的集合论思想撰写一本《算术基础》,其主要思想是把算术的基础全部归结为逻辑,以期能建立:数学→算术→逻辑的模式,筑起数学的大厦。

1092年6月,罗素给正在致力于把算术化归于集合和逻辑的弗雷格写了一封信,叙述了他所发现的一条悖论:我们暂且这样叙述:有些集合不以自己为元素,{0,1,2}=3,“3”并不是自己的元素。也可能以自己为元素,如“所有集合的集合”,自己是个集合,所以也是自己的元素。现在考虑所有那些“不以自己为元素的集合”。这个概念的外延确定了一个集合,它是不是自己的元素呢如果它以自己为元素,它就不符合定义自己的概念,因而不是自己的元素。如果它不以自己为元素呢它又和概念相符了。它应当以自己

为元素,使得弗雷格的“逻辑”产生了矛盾,陷入了两难境地。

对罗素的观点,我们也可以换一种比较具体的好理解的说法。理发师悖论:某村有一位手艺高超的理发师,他只给村上一切不给自己刮脸的人刮脸。试问,他给不给自己刮脸呢

如果他不给自己刮脸,他是个不给自己刮脸的人,他应当给自己刮脸。

如果他给自己刮脸,由于他只给那些不给自己刮脸的人刮脸,他就不应当给自己刮脸。

罗素悖论是数学史上的第三次危机,它给数学领域沉重的打击。围绕第三次危机,

19世纪、本世纪许多杰出的数学家都参与了“数学基础”大厦建设工作,取得卓然成就,

“数学化”(Mathematizing)很可能是人的一种创造性活动,像语言或音乐一样,具有原始的独创性,它的历史性决定不容许完全的客观的有理化(rationalization)。”

一部数学文化的原创有着极大诱惑力,它鼓舞着、引导着人们去为他奋斗。就如同美国前数学协会埃里克坦普尔·贝尔说的:“人们将会发现,领略现代数学思想的这些令人鼓舞的概念,就像热天喝冰水那样使人清新,像一切艺术那样令人感奋。”

浅谈数学思想方法的意义

美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,

或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关

联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面

从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意

义.

1.数学方法教学的心理学意义

第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容.

第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.““学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.”

第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括

的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力.

第四,强调结构和原理的学习,“能够缩挟高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线.

2.中学数学教学内容的层次

中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法.

表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,

在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识.

深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.

那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质.

3.中学数学中的主要数学思想和方法

数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是:(1)这三个思想几乎包

摄了全部中学数学内容;(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;(4)掌握这些思想可以为进一步学习高等数学打下较好的基础.

此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透.

数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.

4.数学思想方法的教学模式

数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式:

操作——掌握——领悟

对此模式作如下说明:(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;(2)

“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础;(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提;(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些.

数学教学主要是数学思维的教学,而不是单纯的数学知识的教学,要加强数学基础知识教学的同时,培养学生的数学能力,掌握数学思考方法,因此小学数学教学要有重大突破,就在于小学生思维发展的研究。这一教学原则改变了我们“满堂灌”,“注入式”的教学方法,着眼于学生的思维的训练。给学生“思考”的机会,指导学生思维方法,使其形成良好的思维品质。

.数学思想与方法

1,从词义看:思想是指客观存在反映在人的意识中经过思维活动而产生的结果。

2,从哲学角度看,思想的涵义有二:一是与“观念”同义,二是指相对于感性认识的理性认识成果。

3,数学思想:对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的思想观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学问题的指导思想。例:化归思想、分类思想、模型思想、极限思想、统计思想、最优化思想。

4,数学方法:从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中采用的各种方式、手段、途径等,其中包括变换数学形式。求和可以考虑分解组合的方法,变换问题的数学形式。

二、数学思想方法的发展和演进

数学是一门古老的学科,它从萌芽时期发展至今已经有数千年的历史。数学的发展史不只是一些新概念、新命题的简单堆砌,它包含着数学思想和方法的积淀,尤其是数学本身许多质的飞跃,即数学思想方法的重大突破。

1,古代的数学思想和方法

从远古到公元前5世纪左右的数学萌芽时期是一个漫长的历史过程。(人们积累了算术和几何方面的零碎知识,逐渐形成了抽象意义下的数和图形的概念,产生了计数法和各种数制下的算法,出现了测地术。此时尚未形成一般的数学理论,还谈不上有什么重要的数学思想。但是一一对应的计数法(对应思想)和记数符号的使用有力地推动了数学的发展。另外,直接的观察和体念被作为最重要的认识方法。

数学经过漫长的萌芽时期,在古巴比伦、埃及和中国积累了大量的数学知识之后,汇成了两股不同的数学源流,

形成了两个各具特色、风格各异的数学体系。一个是以巴

比伦和埃及数学为源头的,在希腊汇合后又得到长足进步与发展的古希腊数学,另一个则是以解决问题为宗旨、以注重算法为特点的古代中国数学。古希腊的数学融数学与哲学为一体,以哲学促进数学理论的建立,提出了一系列思辩性的数学观点、理论和方法。首先,古希腊人对数学的认识有了根本性的变化。他们认为数学不仅可用来解决一些实际问题,更重要的是他们试图用数学来理解世界,把数学看作是理解宇宙的一钥匙,是研究自然的一部分,其深刻的数学思想对后世影响很大。其次,古希腊人用演绎证明方法研究几何,使几何学成为一个演绎系统。欧几里得的《几何原本》和阿波罗尼斯的《圆锥曲线》是演绎数学的代表着作。把逻辑证明系统地引入数学,把数学奠基于逻辑之上,这是对数学认识的一个质的飞跃。由此得来数学思想方法的更新——公里化的思想和演绎推理进入了数学。值得一提的是,古希腊虽然非常强调演绎推理,但数学思想发展的历史表明,他们的数学创造也离不开观察、实验,离不开归纳、猜想和分析。中国古代数学是以问题为中心的算法体系,《九章算术》的成书是其形成的标志。

2、近代的数学思想和方法

17~18世纪,欧洲的数学创造也进入了一个崭新的时期,这个时期,数学不仅产生了许多新的分支,而且产生了许多新的思想和方法,

它突出表现在从演绎几何到几何代数化、从常量数学到变量数学以及从必然数学到或然数学的几个重大转折上。

3、现代的数学思想和方法数学方法的应用举例

1、数学抽象与数学模型方法数学从内容到方法都显示出极其高度的抽象性

(1).数学抽象方法

1.1数学抽象的概念

数学抽象是抽象方法在数学中的具体运用,也就是利用抽象方法把大量生动的关于现实世界空间形式和数量关系的直观背景材料进行去伪存真,由此及彼,由表及里的加工和制作,提炼数学概念,构造数学模型,建立数学理论

例2.在正方形内部给出2000个点,现在用M来表示该正方形的4个顶点和上述个点构成的点集,并按下式规则把上述正方形纸片剪成一些三角形,使得:每个三角形三个顶点都是M中元素;除顶点之外,每个三角形不再含M中的元素,试问:

①共可剪出多少个三角形?

②如果三角形每边剪一刀,共要剪几刀?

分析与思考:(1)如果逐点或逐个三角形来考虑,那就太繁琐了。由于三角形三内角和为定值,而正方形每个顶点不管这样剪总可以提供90°,内部的每个点可以提供360°,因此可以从三角形内角和总数方面作整体性考虑。如图,中有两类点:

第一类为四边形的顶点,即等。

第二类是四边形内部的那2000个点,如等。

研究以第一类点为顶点的所有三角形的相关角,如以D为公共顶点的∠1,∠2,∠3,它们的和为90

以第二类点中每个点为顶点的三角形的相关角的和为360°,例如,以P 为顶点的三角形有3个,其中,以P为公共顶点的3个角之和

为,

故符合条件的所有三角形的内角和为

从全局入手解决局部问题

本来是个局部的数学问题,为解决它,“升格”为全局问题,通过对全局问题的研究,导致原问题的解决。

例3 求包含在正整数与()之间的分母为3的所有不同约分数之和。

思考与分析:这样的所有分数是

它既非等差数列,又非等比数列,当然不好求和,但我们看到包含正整数与之间的可约分分数为

它的各项和容易求出为。

这两类分数统一在整体

之中,而这整体分数为等差数列,各项和为

化归思想例将1976 分拆成自然数之和,再将其相乘,试求(并证明)所有这种乘积中之最大值。

日本数学发展史

简述日本数学发展史 专业:09数学与应用数学 学号:N0939121 姓名:彭璐

人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。 日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。 和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地﹝通过朝鲜﹞传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。 十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》﹝1627﹞使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。 十七世纪初,日本数学家开始写出自己的著作,如毛利重能的《割算书》﹝1622﹞、今村知商的《竖亥录》﹝1639﹞等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系──和算。 关孝和在日本被尊为「算圣」,十七世纪末到十八世纪初,以他为核心形成一个学派﹝关流﹞,这一学派的主要成就是「点术」和「圆理」。「点术」是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。「圆理」可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术﹝极值问题﹞,并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。 除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行「和算废止,洋算专用」政策,和算迅速衰废﹝只有珠算沿用至今﹞,同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。 美国,法国,英国,日本以及德国是公认的数学大国。日本的数学在20世纪后半叶进步很快,尤其在代数,微分几何,代数几何等领域日本数学家都做出了巨大的贡献。Kobayashi和Nomizu的两卷本Foundations of Differential Geometry是微分几何的经典教材。1960年仅37岁就因病去世的Yamabe是当时几何分析领域的绝对权威。日本数学家Oka在二十世纪三,四十年代解决了一系列多复变函数论的难题,被法国著名数学家H.Cartan誉为super-human task。代数数论中Iwasawa理论就是日本数学家岩泽健吉的杰作,成为后来Wiles证明费马大定理的主要工具之一。 下面介绍一下日本的数学家。

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

数学史

五上: 早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古 代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际 问题的史料。一直到三百年前,法国的数学家笛卡儿第一个提倡用x、y、 z 等字母代表未知数,才形成了现在的方程。 大约在两千年前,我国数学名著《九章算术》中的“方田章”就论 述了平面图形面积的算法。书中说:“方田术曰,广从步数相乘得积步。” 其中“方田”是指长方形田地,“广”和“从”是指长和宽,也就是说: 长方形面积= 长×宽。还说:“圭田术曰,半广以乘正从。”就是说: 三角形面积= 底×高÷2。 我国古代数学家刘徽利用出入相补原理来计算平面图形的面积。出入 相补原理就是把一个图形经过分割、移补,而面积保持不变,来计算出 它的面积。如下图所示,它们显示了平面图形的转化。 五下: 1、6 的因数有1、 2、 3、6,这几个因数的关系是:1+2+3=6。 像6 这样的数,叫做完全数(也叫做完美数)。 28 也是完全数,而8 则不是,因为1+2+4 ≠8。完全数非常稀少, 到2004 年,人们在无穷无尽的自然数里,一共找出了40 个完全数, 其中较小的有6、28、496、8128 等。 2、为什么判断一个数是不是2 或5 的倍数,只要看个位数?为什么 判断一个数是不是3 的倍数,要看各位上数的和? 24 = 20 +() 2485= 2480 +() 20、2480 都是2 或5 的倍 数,所以一个数是不是2 或5 的倍数,只要看? 24 = 2×10+4= 2×(9+1)+4= 2×9+(2)+(4) 2485= 2×1000+4×100+8×10+5 = 2×(999+1)+4×(99+1)+8×(9+1)+5 = 2×999+4×99+8×9+()+()+()+() 3、哥德巴赫猜想从上面的游戏我们看到:4=2+2,6=3+3,8=5+3,10=7+3,

中国数学发展史

中国数学发展史——宋元数学 中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

数学发展简史数学发展简史

数学发展简史数学发展 简史 Last revised by LE LE in 2021

数学发展简史数学发展简史 一、数学起源 1.希腊人发现了推理的作用 古典时期(公元前600-前300年)的希腊人,认识到人类有智慧、有思维,能够发现真理。 2.最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。 3.继毕达哥拉斯学派之后,最有影响的是由柏拉图学派,他控制了公元前4世纪这一重要时期希腊人的思想,他是雅典柏拉图学院的创立者,存在了九百年之久。 4.亚里士多德是柏拉图的学生,他批评柏拉图的冥世思想以及把科学归结为数学的认识。他是一个物理学家,他相信真正的知识是从感性的经验通过直观和抽象而获得。他认为,基本概念应该是不可定义的,否则就没有起始点。他又区分了公理和公设。公理――对所有思想领域皆真。 公设――适用于专业学科,如几何学。 5.欧几里得(Euclid)、阿基米得(Archimedes)、丢番图等属于希腊文化的第二个重要时期,亚历山大里亚时期(公元前300年-公元600年) 欧几里得(公元前约300年),他的代表作《几何原本》是一本集希腊数学大成的巨着,成为两千年来用公理法建立演绎的数学体系的典范。 二、数学的繁荣(文艺复兴(15世纪初到17世纪的200年) 1.希腊人的宗旨――自然是依数学设计的,与文艺复兴时的信念――上帝是这个设计的作者,融汇在一起,统治了欧洲。 2.笛卡儿(Descartes,1596-1650) 被誉为数学王冠上的明珠之一,但他首先是一个哲学家,其次是宇宙学家,第三是物理学家,第四是生物学家,第五才是数学家。 极其敏锐的直觉和对结果的演绎――这就是笛卡儿认识哲学的实质。 笛卡儿认为:思维只有两种方法,这就是:直觉和演绎。 笛卡儿对数学本并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即《解释几何》。 在科学上,笛卡儿的贡献,虽然不如像哥白尼、开普勒以及牛顿那样辉煌灿烂,但也不容轻视。 3.帕斯卡(Pascal):是17世纪伟大的数学家之一。 4.伽利略与笛卡尔齐名,他的主要贡献是他在科学方法上的许多变革。 a) 他要研究和证明的是一些运动的性质而不考虑为会什么会这样。 b) 他坚持向自然科学家提议:不要研究为什么会这样,只要讨论怎样定量描述。 c) 他的另一个原则是:科学的任一分支都可用数学模型模仿出来。 5.牛顿是剑桥大学的数学教授,被称为最伟大的数学家之一,牛顿认为数学是枯燥和乏味的,只是表述自然定律的一种工具。 牛顿的真正的成就在于证明了开普勒经过多年观测和研究得出的开普勒三定律可以由万有引力定律和运动三定律用数学方法推导出来。拉普拉斯曾说过,牛顿是最幸运的人,因为只有一个宇宙,而他成功地发现了它的定律。 6.

数学函数的发展史

总课题:数学的发展史 子课题:函数的发展史 一、组长:李 组员:刘田仁姬孙二、指导老师:张

三、班级:高一12班 四、成员简介: 李:性格开朗、刻苦认真担任组长 刘:喜欢英语、大方担任搜集 仁:喜欢信息、刻苦认真担任写作 姬:开朗大方、热情担任搜集 孙:爱好动漫、画画性格外向担任整理 田:开朗大方刻苦认真担任整理 五、选题的原因: 开阔视野,增长见识。提高我们的数学修养‘可以使我们更好的融合在一起,加强团结,了解数学。 六:研究计划: 共六人:姬刘担任搜集 李仁担任写作 孙田整理资料 七:研究成果: 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分 有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一)1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

最新国家开放大学电大《数学发展史》教学考一体化网考形考作业试题及答案

最新国家开放大学电大《数学发展史》教学考一体化网考形考作业试题及答案 100%通过 2014秋期河南电大把《数学发展史》纳入“教学考一体化”平台进行网考,针对这个平台,本人汇总了该科所有的题,形成一个完整的题库,内容包含了单选题、判断题,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。本文库还有其他教学考一体化答案,请查看。 一单选题 1.获得第一位数学家和论证几何学鼻祖美名的是(泰勒 斯) 2.我们通过莱茵德纸草书和莫斯科纸草书来研究古(埃 及)人数学的知识 3.亚历山大后期几何学最富创造性的成就是(三角学) 的建立 4.“给我一个支点,我可以移动地球”是(阿基米德) 的名言 5.古希腊“穷竭法”的始祖是(安提丰) 6.毕达哥拉斯学派对正十二面体的作图最为诱人,因为 它是由(正五边形)围成 7.在金字塔的建造中,保持斜面坡度的均匀性十分重 要,从而促使埃及人引进相当于角的(正切)的概念8.根据诺依格包尔等人的研究,普林顿322数表与所谓 (整勾股数)有关 9.美索不达米亚人创造了以(60)进制为主的楔形文记 数系统 10.《圆锥曲线论》是希腊演绎几何的最高成就,阿波罗 尼奥斯用(纯几何)的方法得到了今天解析几何的一些主要结论 11.单位分数的广泛使用成为埃及数学重要而有趣的特 色,埃及人将所有的真分数都表示为一些单位分数的(和) 12.下列地域中的古代文明不属于“河谷文明”的是(希 腊) 13.《四元玉鉴》是(朱世杰)的代表著作 14.《九章算术》的“商功”章主要讨论(体积的计算) 15.下列不属于《算经十书》的是(《墨经》) 16.秦九韶是“宋元四大家”之一,其代表作是(数书九 章) 17.婆罗摩笈多在他的著作《婆罗摩修正体系》中比较完 整地叙述了(零)的运算法则 18.用圆圈符号“0”表示零的发明是对世界文明的杰出 贡献,它是(印度)数学的一大发明 19.(刘徽)是中算史上第一位建立可靠的理论来推算圆 周率的数学家 20.婆什迦罗有两本代表印度古代数学最高水平的著作 《莉拉沃蒂》和( 《算法本源》) 21.9世纪天文学家(阿尔·巴塔尼)对希腊三角学进 行了系统化研究,创立了系统的三角术语,如正弦、 余弦、正切、余切 22.“一尺之棰,日取其半,万世不竭”出自我国古代名 著( 《庄子》) 23.奥马.海亚姆在代数学方面的成就集中反映于他的 《还原与对消问题的论证》一书中,该书最杰出的贡献是用圆锥曲线解(三次方程) 24.中国数学史上最先完成勾股定理证明的数学家是公 元3世纪三国时期的( 赵爽) 25.《缉古算经》是世界上最早讨论(三次方程组)代数 解法的著作 26.解析几何的真正发明归功于法国的两位数学家笛卡 儿与( 费马) ,尽管他们的工作出发点不同,但却 殊途同归 27.数学符号的系统化首先应归于法国数学家(韦达) 28.苏格兰数学家纳皮尔在球面天文学的三角学研究中 首先发明了( 对数方法) 29.欧洲人在数学上的推进是从(代数学)开始的,它是文 艺复兴时期成果最突出,影响最深远的领域,拉开了 近代数学的序幕 30.解一阶常微分方程Mdx+Ndy=0的(积分因子法)是由 欧拉和克莱洛分别独立地提出的 31.专门的偏导数记号是由(雅可比)在行列式理论中正 式创用并逐渐普及的 32.18世纪微积分最重大的进步是由(欧拉)作出的 33.首首先引进如下一批符号:f(x)-函数符号;∑-求 和号;e-自然对数底;i-虚数单位的数学家是( 欧 拉) 34.历史上第一篇系统的微积分文献是牛顿的( 《流数 简论》 ) 35.我们今天所说的因式分解定理,最早是由(笛卡尔) 提出的 36.“行列式”这个名称是由(柯西)首先提出的 37.沃利斯是在牛顿和莱布尼茨以前将分析方法引入微 积分贡献最突出的数学家,他的最重要的著作是( 《无穷算术》) 38.(莱布尼茨)引进的符号“d”和“ò”体现了微积分 的实质,并沿用至今 39.(欧拉)在1937年证明了e是无理数 40.(黎曼)开创了解析数论的新时期,并使复分析成为 这一领域的重要工具 41.五次和高于五次的一般方程的求解问题是由(阿贝 尔)解决的

中国数学史-

中国数学史 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

数学发展简史

数学发展简史 (摘自张顺燕《数学的源与流》,高等教育出版设2001) 大数学家庞加莱说:“若想预见数学的未来,正确的方法是研究它的历史和现状”。法国人类学家斯特劳斯说:“如果他不知道他来自何处,那就没有人知道他去向何方”。我们需要知道,我们现在出在何处,我们是如何到达这里的,我们将去何方。数学史将公司我们来自何处。 数学的发展史大致可以分为四个基本上本质不同的阶段。 第一个时期——数学形成时期。这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念。简单的计算法,并认识了最简单的几何形式,逐步的形成了理论与证明之间的逻辑关系的“纯粹”数学。算术与几何还没有分开,彼此紧密地交错着。 第二个时期称为初等数学,即常数数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,知道17世纪,大约持续了两千年。在这个时期,逐渐形成了初等数学的主要分支:算术、几何、代数、三角。 按照历史条件不同,可以把初等数学史分为三个不同的时期:希腊的、东方的和欧洲文艺复兴时代的。 希腊时期正好与希腊文化普遍繁荣的时代一致。到公元前3世纪,在最伟大的古代几何学家欧几里德、阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元6世纪。当时最光辉的著作是欧几里德的《几何原本》。尽管这部书是两千多年钱写成的,但是它的一般内容和叙述的特征,却与我们现在通用的几何教科书非常接近。

希腊人不仅发展了初等几何,并把它导向完整的体系,还得到许多非常重要的结果。例如,他们研究了圆锥曲线:椭圆、双曲线、抛物线;证明了某些属于射影几何的定理,一天问学的需要为指南,建立了球面几何,以及三家学的原理,并计算出最初的正弦表,确定了许多复杂图形的面积和体积。 在算术与代数方面,希腊人也做了比绍工作。他们奠定了数论的基础,并研究了丢番图方程,吗发现了无理数,找到了求平方根、立方根的方法,知道了算术级数与几何级数的性质。 在几何方面希腊人已接近“高等数学”。阿基米德在计算面积与体积时已接近积分运算,阿波罗尼奥斯关于圆锥曲线的研究接近于解析几何。 应该指出,当时我国的算术与代数已达到很高的水平。在公元前2世纪到1世纪已有了三元一次方程组的解法。同时在历史上第一次利用负数,并且叙述了对负数进行运算的规则,也找到了求平方根与立方根的方法。 随着希腊科学的终结,在欧洲出现了科学萧条,数学发展的中心移到了印度、中亚细亚和阿拉伯国家。在这些地方从5世纪到15世纪的一千年中间,数学主要由于计算的需要,特别是由于天问学的需要而得到发展。印度人发明了现代记数法,引进了负数,并把正数与负数的对立和财产的对立联系了起来,他们开始像运用有理数一样运用无理数,他们给出了表示各种代数运算包括求更运算的符号。由于他们没有对无理数与有理数的区别困惑,从而为代数打开了真正的发展道路。 “代数”这个词起源于9世纪的数学家和天问学家穆罕穆德花拉子花。花拉子花的著 作基本上建立了解方程的方法。从这时起,求方程的解作为代数的基本特征被长期保持了下来。他的代数著作在数学史上起了重大作用,因为这部作品被翻译成拉丁语,曾长期作为欧洲主要的教科书。

数学发展史

数学发展简史 数学是人类最古老的科学知识之一。就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开始,迄今已有5000年的历史。 那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。用的较多也较容易理解的是恩格斯的定义。他说, 数学,是研究数量关系与空间形式的一门科学。 20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与接受。 第一阶段:数学的萌芽阶段(公元前3000年—公元前600年) 这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。在这一阶段里,数学还没有发展成为一门有明确结构的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。数学文化在这一阶段的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。这一阶段的世界数学文化呈一种多元发展态势。 第二阶段:数学的形成阶段(公元前5世纪—公元16世纪) 这一阶段,通常称之为数学科学的形成时期,它的开始是以希腊人的出场为典型标志,结束于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。 这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数(注:这是数学史上第一次危机。《原本》第五卷中将

数学发展史_论文

数学史与数学文化课 期末小论文 数学家与数学发展史 班级:中华旅企13-3班姓名:罗礼雄 学号:201305006820 数学家与数学发展史

数学是研究现实世界中数量关系和形式的学问,简单的说就是研究数和形的科学。众所周知数学与人类社会的发展和人们的生活息息相关,随着社会的进步,科学的发展,数学也在不停地前进;而数学的发展又离不开数学家们的探索和研究,数学家在数学发展史中占据这不可磨灭的作用。 数学从产生到茁壮成长再到成熟经历了数千年的时间,时至今日,自然科学的众多分支在各个行业和领域大放异彩,但是数学可以说仍然是科学界的女皇。那么到底是一股什么样的神秘力量在不断地推动数学的发展?数学是怎样对人类社会产生深远的影响?答案是显而易见的,数学家一直是不断地推动数学的发展力量之一。 由于生产和劳动上的需求,在古代便产生了以简单的为基础的古代数学,他们用手指或实物计数,由于生产力的需求和发展,他们逐渐过度到用数字计数。 经过一个上了一个学期的有关数学发展史课程和10多年来不断学习数学的学习经历,我个人认为数学的发展有三大动力。 恩格斯很早时就指出:“科学的发生和发展,一开始就是由生产决定的”,这里的生产是指人们使用工具来创造各种生产资料和生活资料。数学作为研究客观物质世界的数量关系和空间形式的一门科学,它的发生和发展也是由生产决定的。 尽管数与形的最初观念可以追溯到原始社会,但是由于当时生产水平的低下,虽然经历了上万年的漫长时间,也只积累了一些零碎的、萌芽的数学知识。到了古希腊奴隶社会最发达时期,社会生产有了较

大发展,几何学才取得了决定性的进步。 文艺复兴时期,机械的广泛使用,航海事业的迅速发展,以及我国四大发明的传播,促成了西欧生产的巨大变化,推动了自然科学的迅速发展。在这时期,在意大利的封建社会中,代数学取得了快速的发展。17世纪欧洲生产的发展,促进了力学和技术的发展,从而向数学提出了从一般的形态上研究运动的问题。出于研究运动,变量的观念产生了,并且成了数学研究的主要对象,同时也产生了函数的概念。数学向着研究变量和函数方面发展,随后就产生了解析几何、微积分等数学分支。 微积分的基本理论在实践中的成功应用,证明它反映了生产和科学技术的某些客观规律,数学终于在较短的时间里取得了辉煌的成就。在古代虽然已有了朴素的极限思想,但是那时候的生产水平低下,科学技术不发达,研究都停留在静力学和固定不动的范围内,不可能产生微积分。 1705年,英国物理学家纽可门制成了第一个能供实用的蒸汽机;1768年,瓦特制成了近代蒸汽机。由此引起的工业革命,大大提高了人类社会生产力,从而促进了十八、十九世纪数学的大繁荣。 20世纪40年代,生产力得到进一步发展,科学技术突飞猛进。1945年,第一颗原子弹爆炸、第一台电子计算机问世;1957年,第一颗人造地球卫星发射成功。超高温、超高压、微观、宏观及大科学出现,于是现代数学发展神速、硕果累累。 综上所述,数学的发展不能脱离社会生产的发展。在绝大多数情

中国数学发展的简单历史知识

中国数学发展的简单历史知识 中国古代是一个世界上数学先进的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方面都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。 乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。 在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时代已有多元方程组、一元二次方程及不定方程几种。 一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。 具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

相关主题
文本预览
相关文档 最新文档