当前位置:文档之家› 啤酒发酵罐课程设计要点

啤酒发酵罐课程设计要点

啤酒发酵罐课程设计要点
啤酒发酵罐课程设计要点

生物反应器课程设计

-----啤酒露天发酵罐设计

姓名:周若飞

班级:生工091

学号:3090402130

目录

一、啤酒发酵罐结构与动力学特征

1、啤酒的概述

2、啤酒发酵容器的演变

3、啤酒发酵罐的特点

4、露天圆锥发酵罐的结构

5、发酵罐发酵的动力学特征

二、露天发酵罐设计

1、啤酒发酵罐的化工设计计算

2、发酵罐热工设计计算

3、发酵罐附件的设计及选型

三、发酵罐的计算特性和规范

1、技术特性

2、发酵罐规范表

四、发酵罐设计图

一、啤酒发酵罐结构与动力学特征

1、啤酒的概述

啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。

2、发酵罐的发展史

第一阶段:1900年以前,是现代发酵罐的雏形,它带有简单的温度和热交换仪器。

第二阶段:1900-1940年,出现了200m3的钢制发酵罐,在面包酵母发酵罐中开始使用空气分布器,机械搅拌开始用在小型的发酵罐中。

第三阶段:1940-1960年,机械搅拌,通风,无菌操作和纯种培养等一系列技术开始完善,发酵工艺过程的参数检测和控制方面已出现,耐蒸汽灭菌的在线连续测定的pH电极和溶氧电极,计算机开始进行发酵过程的控制。发酵产品的分离和纯化设备逐步实现商品化。

第四阶段:1960-1979年,机械搅拌通风发酵罐的容积增大到80-150m3。由于大规模生产单细胞蛋白的需要,又出现了压力循环和压力喷射型的发酵罐,它可以克服—些气体交换和热交换问题。计算机开始在发酵工业上得到广泛应用。

第五阶段:1979年至今。生物工程和技术的迅猛发展,给发酵工业提出了新的课题。于是,大规模细胞培养发酵罐应运而生,胰岛素,干扰素等基因工程的产品走上商品化。

3、啤酒发酵罐的特点

1、单位占地面积的啤酒产量大;而且可以节约土建费用;

2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

3、发酵温度控制方便、有效,麦汁发酵时对流好,发酵速度快,可以缩短发酵周期(相对卧式罐、发酵槽而言);

4、可以回收利用二氧化碳,并可有利于啤酒的口味稳定性与非生物稳定性(相对开口容器而言);

5、可以一关多用,生产工艺比较灵活;简化生产过程与操作,而且酒损也现对减少;

6、制作相应要比其他发酵罐简单;

7、便于自动控制,如自动清洗和自动灭菌,节省人力与洗涤费用,卫生条件好。

4、露天圆锥发酵罐的结构

(1)罐体部分

露天圆锥发酵罐的罐体有灌顶、圆柱体与锥底3部分组成,其中:灌顶:为圆拱形,中央开孔用于可拆卸大直径法兰,以安装CO2与CIP 管道及其连接件,灌顶还装有真空阀,安全阀与压力传感器。

圆柱体:为发酵罐主体,发酵罐的高度主要决定于圆柱体的直径与径高比,由于大直径的光耐压低,考虑到使用钢板的厚度,一般直径<6.0m。

圆锥底:它的夹角多为60—90°,也有90—120°,但这多用于大直径的罐及大容量的罐;如夹角过小会使椎体部分很高。露天圆锥发酵罐圆锥底的高度与夹角有关,大致占总高的1/4—1/3。圆锥底的外壁一般安装冷却夹套、阀门与视镜、取样管阀、测温、测压的传感元件或温度计,CO2洗涤装置等。

(2)温度控制部分

发酵罐的温度控制部分主要由冷却层、保温层、测温元器件、温度记录及温度控制装置等组成,其中:冷却层是调节发酵罐内液体温度的主要部分,按其结构可分为盘式和夹套式两种;

发酵罐的保温层一般使用聚氨酯泡沫塑料或脲醛泡沫塑料,也有使用聚苯乙烯泡沫塑料,在发泡保温时,为了未来的维修剥离及复原的方便,罐身与发泡塑料之间最好能用塑料薄膜隔离;发酵罐的测温元件有直接感应与遥控两种;发酵罐的温控装置实际起供、断冷却水的作用。

(3)操作附件部分

发酵罐的操作附件比较多,主要包括:进、出管道、阀门和视镜;CO2

回收和CO 2洗涤装置;真空/过压保护装置;取样阀;原位清洗装置(CIP );换间板。 (4)仪器与仪表部分

发酵罐对一次仪表、二次仪表、记录装置、报警装置以及微机程序控制、自动控制的应用很广泛,这些仪器、仪表主要对发酵罐的物料数量(以容积或液位表示)、压力、温度三个参数进行显示、自动记录、自动控制及报警,还有测定浸出物含量与CO 2含量的一次仪表,这样就可以进行真正的自动控制。 5、发酵罐发酵的动力学特征

发酵罐发酵的主要特点是采用较高的发酵温度和高凝性酵母、进一步提高发酵液浓度,保持茁盛的酵母层和缩短发酵时间进行可控发酵,其主要动力学特征有:

①由于采用凝聚性酵母,S 3>S 1,使发酵速度 3区>1区;导致B 3<B 1浓度差,促进发酵液的对流;

H

D

②由于3区发酵速度快,产生CO2多,加上液压,使P3>P1而形成压力差推动发酵液对流;

③由于发酵时控制t3>t1,形成温度差对流。

这三种推动力随罐高H增大而增大,由于传统发酵槽仅2m,而露天的圆柱锥形罐一般大于8m,所以此推动力将加速发酵,尤其在双儿酰还原阶段B、P趋于一致,但t3~t1可控,又因罐高,酵母沉降慢,发酵液仍保持强对流而促进代谢发酵。

二、露天发酵罐设计

1、啤酒发酵罐的化工设计计算

㈠、发酵罐的容积确定

设计需要选用V有效=22.5m3的发酵罐

则V全=V有效/φ=22.5m3/75%=30m3

㈡、基础参数选择

1.D∶H:选用D∶H=1∶4

2.锥角:取锥角为70°

3.封头:选用标准椭圆形封头

4.冷却方式:选取槽钢盘绕罐体的三段间接冷却

5.罐体所承受的最大内压:2.5㎏/cm3外压:0.3㎏/cm3

6.锥形罐材质:A3钢材外加涂料,接管均用不锈钢

7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜

8.内壁涂料,环氧树脂

㈢、D 、H 确定

由D ∶H=1∶4,则锥体高度H 1=D/2tan35°=0.714D 封头高度 H 2=D/4=0.25D

圆柱部分高度 H 3=(4-0.714-0.25)D=3.036D 又因为V 全=V 封+V 锥+V 柱

=323124

2443H D D H D ??∏

+?∏+??∏

=0.187D 3+0.131D 3+2.386D 3=30m 3 得D=2.23m

查JB1154-74《椭圆形封头和尺寸》取发酵罐直径D=2400mm 再由V 全=30m 3 D=2.4m 得径高比 D ∶H=1:3.72 由D=2400mm 查表得 椭圆形封头几何尺寸为:

h 1=600mm h 0=40mm F=6.52m 2 V=2.00m 3 筒体几何尺寸为:

H=6614mm F=49.84㎡ V=29.9m 3 锥体封头几何尺寸为:

h 0=40mm r=280mm H=1714mm F=πd 2/4[(0.7+0.3cos α)2/sin α+0.64]=10.64㎡ V=πd 3/24[(0.7+0.3cos α)2/tan α+0.72]=3.60m 3 则锥形罐体总高:H=600+40+6614+40+1714=9008mm

总体积:V 全=2.00+29.9+3.60=35.5m 3 实际充满系数ψ=22.5/35.5=63.3% 罐内液柱高:

H ′=[22.5-3.75/(3.14×1.22)/4] ×102+(1714+40)=3413㎜ ㈣、发酵罐的强度计算 ⑴罐体为内压容器的壁厚计算

①.标准椭圆封头

设计压力为1.1×2.5=2.75㎏/㎝2 S=

[]C P

PDg t

+-?σ2

式中:P=2.75㎏/㎝2

[σ]:A 3钢工作温度下的许用力取1520. ㎏/㎝2

ψ:焊接系数,本设计采用双面对接焊作为局部无探伤0.9 壁厚附加量:C=C 1+C 2+C 3

查表得:C 1:钢板厚度的负偏差取0.8负偏差 C 2:腐蚀裕量取1.5mm C 3:制造减薄量取0.6

则:S=(2.75×2400/2×1520×0.9-2.75)+3.4=5.814mm 取S 0=8mm 直边高h 0=40mm 校核 σ=

???

?

??h D s PD 24中中

=[2.75×(2400+8)/4×8] ×(2400+8)/2×900 =369.12≦[δ]t ②.筒体

P 设=1.1×(P 工作+P 静)

=1.1×(2.5+0.61)=3.42㎏/㎝2 S=

[]C P

PD

+-?σ2(取C 1=0.6,C 2=2,C 3=0.6)

=3.42×2400/(2×1520×0.9-3.42)+3.2=6.2mm 取S=7mm 校核 σ2=

s

PD 2中=588.0≦ψ[σ]t

③.锥形封头 1)过渡区壁厚 S=

[]C P

Dg KP t

+-5.02?σ设

P 设=1.1×(2.5+0.9)=3.74㎏/㎝2(0.9为静压) K=0.716 S=

[]C P

Dg KP t

+-5.02?σ设

=0.716×3.74×2400/(2×1520×0.9-0.5×3.74) +C =2.35+C

=2.35+0.6+2+0.59 =5.54mm

2)锥体 S=

[]C P

PDg

f t

+-?5.0?σ

S 0=

[]P

PDg

f t

5.0-??σ =0.60×3.74×2400/(1520×0.9-0.5×3.74) (f 查表为0.60) =3.94mm

S= S 0+C=3.94+0.6+2+0.59=7.13mm 取S=8mm h 0=40mm 校核锥体所受最大应力处: σ=

45

cos 2s PD 中

=3.74×(2400+8)/(2×10×cos35°) =687.14≦[σ]t ⑵锥体为外压容器的壁厚计算

①.标准椭圆封头 设S 0=5mm R 内=0.9Dg=2160mm

R 内/100S 0=2160/100*5=4.32 查图表4-1得B=275

[P ]=B ×S 0/R 内=275×5/2160=0.64㎏/㎝2>0.3㎏/㎝2 满足要求

取C 1=0.5mm ,C 2=2mm ,C 3=0.5mm

则S=S0+C=8mm

②.筒体

设S0=5mm

L/D=0.69

D=2400/6=400

查图表4-1得 B=210

[P ]=210×6/2400=0.53㎏/㎝2>0.3㎏/㎝2

S0=6mm

故可取C1=0.6mm,C2=2mm,C3=0.6mm

则S= S0+C=9.2mm 取S=10mm

③.锥形封头

因为α=35°

所以22.50°<α<60°

按第四章发酵罐设计的中封头设计可知,加强圈间中锥体截面积最大直径为: 2×2215/2×tan35°=1551mm

取加强圈中心线间锥体长度为1157.5mm

设S0=5mm

L/D=1157.5/2400=0.482

D/S0=2400/5=480

查表4-1得B=275

[P ]=B×S0/D=275×6/2400=0.69㎏/㎝2>0.3㎏/㎝2

故取S0=6mm

C 1=0.6mm ,C 2=2mm ,C 3=0.6mm 所以S= S 0+C=9.2mm 取S=10㎜

综合前两步设计,取两者中较大的。由生产经验确定 标准椭圆型封头厚度为8mm h 0=40mm 圆筒壁厚 10mm 标准型封头壁厚 10mm h 0=40mm ⑶锥形罐的强度校核

①、内压校核 液压试验 P 试=1.25P 设

由于液体的存在,锥体部分为罐体受压最中之处即最危险 设计压力 P=3.74㎏/㎝2 液压试验 P 设=1.25P=4.68㎏/㎝2 查得A3钢σ=2400㎏/㎝2 ()[]()

C S C S Dg P --+=

2试试σ

=4.68×[2400+(10-3.2)]/2×(10-3.2) =828.2㎏/㎝2

0.9ψσ=0.9×0.9×2400=1944㎏/㎝2>σ试 可见符合强度要求,试压安全 ②.外压试验 以内压代替外压

P=1.5×(S+C)=1.5×(1.0+0.3)=1.3㎏/㎝2

P试=1.25P=1.63㎏/㎝2<P内试

故可知试压安全

③.刚度校核

本设计中允许S=2×2400/1000=4.8mm

而设计时取厚度为S=10mm,故符合刚度要求

2、发酵罐热工设计计算

㈠计算依据

计采用A3钢作为发酵罐材料,用8号槽钢做冷却夹套,分三段冷却,筒体二段,锥部一段,夹套工作压力为 2.5㎞/㎝2冷媒为20%(V/V)酒精溶液,T进=-4℃,T出=-2℃,麦汁发酵温度维持12℃(主发酵5—6天,封头及筒体部分保温层厚度为200mm,锥底部分为98mm)

㈡总发酵热计算

Q=q×v=119×22.5=2677.5㎏/hr

q每立方米发酵麦汁在主发酵期间每小时放热量;

v为发酵麦汁量

㈢冷却夹套型号选择

选取8号槽钢起截流面积为A=hb-截面积

=8×4.3-10.24=24.16㎝2冷却剂流量为(三段冷却)

3×24.16×10-4×1=7.284×10-3m3/s

查得20%(V/V)酒精溶液Δt平=-3℃下的

ρ=976㎏/m3

Cρ=1.04kcal/㎏·℃

冷却剂的冷却能力为:

Q=7.248×103×976×1.041×2×2400

=35347.6 kcal/hr>8330kcal/hr

故可选取8号槽钢为冷却夹套。

㈣发酵罐冷却面积的计算

考虑生产过程中,随着技术的改进,工艺曲线可能更改,按目前我国生产工艺曲线看,日降温量较大的为13℃→5℃,为了将来工艺更改留下裕量,设计取13-5=8℃为设计的日降温量,取0.6℃/hr为设计的小时降糖量,则由Q0=KAΔtm求得冷却面积。

①传热系数K的确定

1)醪液α1的计算

t1+t2 2 4 6 8 10

C 25 150 170 185 204

α1=0.64×C×42

t-

1t

=0.64×185×45

13-

=198.9kcal/㎡hoC

2)冷却夹套的α2的计算

润湿周边=80+(80+4×8.0)+2×(43-1)=276㎜

de=

湿润周边

流体流动截面面积

?4

=204mm=20.4㎝ de=

4

.2016

.244?=4.74㎝=0.0474m 20%(V/V )酒精在定性温度t=(﹣4-2)/2=﹣3℃下

μ=5.05CP=5.05×103Pa ·s λ=0.402kcal/hrm ℃=0.468W/㎏℃ C p =1.041kcal/㎏℃=4.358×103J/㎏℃ ρ=976㎏/㎡ υ=1m/s

Re=du ρ/υ=9160=104

故可视为强制湍流流动 得n=0.4

α2=0.023λ/d(Re)0.8(C p μ/λ)0.4=1348.4kcal/hr ·m ·℃ 因为计算时冷却盘管为直管,先修正: α=α(1+1.77d/R )

=1348.4×(1+1.77×0.0474/1.829) =1410.3kcal/hr ·m ·℃ 3)筒体部分传热系数K

3

32211122

1111A Rs A A b A Rs A KA ++++=αλα 代入数据可得:

A1-筒体内层传热面面积12.3062㎡ A2-筒体平均传热面积12.3562㎡

A3-筒体外壁平均传热面积12.304㎡ Rs1-啤酒液污垢系数0.000675㎡h ℃/kcal Rs2-冷却剂污垢系数0.000307㎡h ℃/kcal 1-发酵液传热系数192.5kcal/ ㎡h ℃ 2-夹套冷却剂的传热系数206.4kcal/ ㎡h ℃ Λ-筒体材料导热系数4.562kcal/㎡h ℃ b-筒体壁厚0.01m

h

h h h h h h h K 3562.1200815.03062.123562.12000307.04501.0304.123562.12000675.0304.125.1933562.121+?++?+?=

=7.058×10﹣3

所以:K=141.7kcal/㎡·℃ 注:h 为假设夹套高度(m ) ②锥形罐筒体需冷却的热量 1)醪液放热 Q 醪=Q 1+Q 2

Q 1=34765×0.055×146.6=2803.1kcal/hr Q 2=34765×0.9519×0.6=19855.68kcal/hr 所以 Q 醪=Q 1+Q 2=22658.78kcal/hr 2)外界与罐体的传热量

a.封头部分Q 1=KF (t 外平+t 0附-t 内)

代入数据得 KF=2.02×(10%+1)×(32+8.5-5) =78.88kcal/hr b.筒体部分:

代入数据:

5

4333222111111A A A A A KF αλδλδλδα++++= 得:KF=15.67kcal/K ·℃ Q 2=KF (t 外平+t 0附-t 内) =1.1×15.67×(32+8.5-5) =611.91kcal/hr

③筒体冷却面积A 初定

3.119

14ln 9

1421ln 21=-=???-??t t t t t m ℃

Q=KA Δt m

A=22958.78/(141.7×11.3)=14.34㎡ 则醪液的冷却负荷为:

14.34/34765=0.413㎡/T >0.3m 3/T 故冷却面积能够满足要求。 ④发酵罐冷却面积的确定 1)筒体部分

由前面叙述可知,筒体部分相同的冷却段,选用8#槽钢筒体冷却段面积为14.34㎡ 则槽钢长=14.34/0.08=179m 取相邻两槽钢间距为80mm 一圈槽钢长:

l 0=[(3.14×2.4)2+0.122]?=7.54m

179长的槽钢课绕圈数179/7.54≈24圈

则二段各绕12圈

冷却高度为

12×(80+40)-40=1400mm

筒体实际冷却面积为

24×11.567×0.08=22.2㎡/T

2)锥底部分

锥体部分醪液量为10.213×1.0484=10.70kg

锥体部分冷却面积为

10.70×0.439=4.70㎡/T

则槽钢长为4.70/0.08=58.76m

绕制高度为1000mm

3、发酵罐附件的设计及选型

①入孔

1)、选用入孔BIIPg6Dg450×8H1=220JB-64-28材料A3钢

2)、补强圈尺寸确定如下

D内=484mm

D外=760mm

补强圈的厚度S补

按下式计算,考虑罐体与入孔节均有一定的壁厚裕量,故

补强圈取8mm

S补=(d×S0)/(D2-D1)=(45×0.52)/(76-484)=0.85cm

②视镜

1)选用带劲视镜Pg6Dg150JB595-64-4

2)补强圈尺寸确定如下:

内径D1=163mm 外径=300mm

补强圈的厚度S补按

S被=d*S0/D2-D1=150*8/300-163=8.8mm

考虑罐体与视镜筒节约有一定的壁厚余量,故补强圈取8mm

③接管

1)CO2回收接管

YB804-70 Dg40无缝钢管重3.6kg/m

法兰 Pg6Dg40HG5010—58 重1.219kg

2)温度计取样接管

见发酵罐总装图

3)冷却剂进口接管

YB804-70 Dg50无缝钢管重4.65kg/m

法兰 Pg6Dg50HG5010—58 重1.348kg

4)滤酒管

YB804-70 Dg50不锈钢管重7.15kg/m

法兰 Pg6Dg50HG5010—58 重2.38kg

去滤酒馆于管内高度为1.2m即1200mm

5)麦汁进料及Y排放接管

Dg125球阀控制酒量 Dg50玻璃视镜观测Y排放情况 Dg50接管

基于PLC的啤酒发酵自动控制系统设计课程设计(论文)

辽宁工业大学PLC技术及应用课程设计(论文)题目:啤酒发酵过程中温度的PLC控制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

啤酒露天发酵罐的设计

安徽工程大学课程设计任务书 课题名称:生物反应器设计(啤酒露天发酵罐设计) 姓名:吕超绍 指定参数: 1.全容:40m3 2.容积系数:75% 3.径高比:1:3 4.锥角:700 5.工作介质:啤酒 设计内容: 1.完成生物反应器设计说明书一份(要求用A4纸打印) 1)封面 2)设计任务书 3)生物反应器设计化工计算 4)完成生物反应器设计热工计算 5)完成生物反应器设计数据一览表 2.完成生物反应器总装图一份(用CAD绘图A4纸打印)设计主要参考书: 1.生物反应器课程设计指导书

2.化学工艺设计手册 3.机械设计手册 4.化工设备 5. 化工制图 露天发酵罐设计计算步骤 第一节发酵罐的化工设计计算 一、发酵罐的容积确定 在选用时V全=40m3的发酵罐 则V有效=V全×?=40×75%= 30m3(?为容积系数) 二、基础参数选择 1.D:H: 选用D:H=1:3 2.锥角:取锥角为700 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,锥体一段,槽钢材料为A3钢,冷却介质采用20%、-4℃的酒精溶液 5.罐体所承受最大内压:2.5㎏/㎝3 外压:0.3㎏/㎝3 6.锥形罐材质:A3钢外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料:环氧树脂 三、D、H的确定 由D:H=1:3,则锥体高度H1=D/2tan350=0.714D(350为锥角

的一半) 封头高度H 2=D/4=0.25D 圆柱部分高度H 3=(3.0-0.714-0.25)D=2.04D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2 /4×H 1+24 π×D 3 + 4 π×D 2 ×H 3 =0.187D 3+0.13D 3 +1.60D 3 =40 得D=2.75m 查JB-T4746-2002《椭圆形封头和尺寸》取发酵直径D=2800mm 再由V 全=40m 3 ,D=2.8m 得径高比为: D: H=1:2.9 由D=2800mm 查表得 椭圆封头几何尺寸为: h 1=700mm h 0=40mm F=8.85m 2 V=3.12m 3 筒体几何尺寸为: H=5712mm F=50.24m 2 V=35.17m 3 锥体的几何尺寸为: h 0=40mm r=420mm H=2169mm F=()220.70.3cos 0.644 sin d a a ππ ?? -++? ??? =0.619m 2

发酵罐设计

安徽工程大学课程设计任务书 班级:课题名称:生物反应器设计(啤酒露天发酵罐设计) 学生姓名: 指定参数: 1.全容:50m3 2.容积系数:75% 3.径高比:1:2 4.锥角:900 5.工作介质:啤酒 设计内容: 纸打印) 1.完成生物反应器设计说明书一份(要求用A 4 1)封面 2)设计任务书 3)生物反应器设计化工计算 4)完成生物反应器设计热工计算 5)完成生物反应器设计数据一览表 纸打印) 2.完成生物反应器总装图一份(用CAD绘图A 4 设计主要参考书: 1.生物反应器课程设计指导书 2.化学工艺设计手册 3.机械设计手册 4.化工设备 5.化工制图 接受学生承诺: 本人承诺接受任务后,在规定的时间内,独立完成任务书中规定任务 接受学生签字:生物工程教研室 2010-11-15

啤酒露天发酵罐设计 第一节 发酵罐的化工设计计算 一、发酵罐的容积确定 在选用时V 全=50m 3的发酵罐 则V 有效=V全×?=50×75%= 37.5m 3(?为容积系数) 二、基础参数选择 1.D:H: 选用D:H=1:2 2.锥角: 取锥角为900 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,锥体一段,槽钢材料为A 3钢,冷却介质采用20%、-4℃的酒精溶液 5.罐体所承受最大内压:2.5㎏/㎝3 外压:0.3㎏/㎝3 6.锥形罐材质:A3钢外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料:环氧树脂 三、D 、H 的确定 由D:H=1:2,则锥体高度H 1=D/2tan450=D/2(450为锥角的一半) 封头高度H 2=D/4=0.25D 圆柱部分高度H 3=(2-0.5-0.25)D=1.25D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2/4×H 1+24π×D 3+ 4 π ×D 2×H 3 =50 m 3 得D=3.43m 查JB-T4746-2002《椭圆形封头和尺寸》取发酵直径D=3400mm 再由V 全=50m 3,D=3.4m

发酵工程课程设计

发酵工程课程设计 设计说明书 45M 3机械搅拌通风发酵罐的设计 起止日期: 2013 年 12 月 30 日 至 2014 年 1 月 5 日 包装与材料工程学院 2013 年12 月 31 日 目 录 学生姓名 金辉 班级 生物技术111班 学号 成 绩 指导教师(签字)

第一章前言 发酵罐,指工业上用来进行微生物发酵的装置。其主体一般为用不锈钢板制成的主式圆筒,其容积在1m3至数百m3。在设计和加工中应注意结构严密,合理。能耐受蒸汽灭菌、有一定操作弹性、内部附件尽量减少(避免死角)、物料与能量传递性能强,并可进行一定调节以便于清洗、减少污染,适合于多种产品的生产以及减少能量消耗。 用于厌气发酵(如生产酒精、溶剂)的发酵罐结构可以较简单。用于好气发酵(如生产抗生素、氨基酸、有机酸、维生素等)的发酵罐因需向罐中连续通入大量无菌空气,并为考虑通入空气的利用率,故在发酵罐结构上较为复杂,常用的有机械搅拌式发酵罐、鼓泡式发酵罐和气升式发酵罐。 乳制品、酒类发酵过程是一个无菌、无污染的过程,发酵罐采用了无菌系统,避免和防止了空气中微生物的污染,大大延长了产品的保质期和产品的纯正,罐体上特别设计安装了无菌呼吸气孔或无菌正压发酵系统。罐体上设有米洛板或迷宫式夹套,可通入加热或冷却介质来进行循环加热或冷却。发酵罐的容量由300-15000L多种不同规格。发酵罐按使用范围可分为实验室小型发酵罐、中试生产发酵罐、大型发酵罐等。 发酵罐广泛应用于乳制品、饮料、生物工程、制药、精细化工等行业,罐体设有夹层、保温层、可加热、冷却、保温。罐体与上下填充头(或雏形)均采用旋压R角加工,罐内壁经镜面抛光处理,无卫生死角,而全封闭设计确保物料始终处一无污染的状态下混合、发酵,设备配备空气呼吸孔,CIP清洗喷头,人孔等装置。发酵罐的分类:按照发

年产5万8°啤酒发酵车间设计

课程设计报告 题目:年产5万8°啤酒发酵车间设计 学院化学化工与生命科学学院 专业生物工程 班级10生物工程 姓名汪新荣 学号10008037 组员刘照闫春伟 指导老师陈小举 2014年1月2日

2013—2014 学年第一学期 化学化工与生命科学学院生物工程专业 设计题目:年产5万吨8°啤酒发酵车间(工厂)设计完成期限:自2013 年12月20日至2014 年1月2日共二周 一、主要内容及基本要求 主要内容: 1.拟在巢湖市选择厂址新建年产5万吨啤酒工厂 2.设计范围:以发酵车间为主体设计,只做初步设计 基本要求:生产技术方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范,综合指标达到同类工厂先进水平,“三废”环保符合国家有关规定 二、重点研究的问题 生产工艺流程的选择和设计;物料衡算;发酵主车间布置设计以及专业设备选型。三、工作计划和进度 设计进度安排 (1)2013年12月20-21日查阅相关资料 (2)2013年12月22-23日完成开题报告 (3)2013年12月23-30日完成设计的撰写和图纸的绘制 (4)2013年12月31日-2014年1月2日修改设计 四、设计成果形式 1) 完成设计报告2) 绘制工艺流程图

摘要 本设计是年产五万吨8°的啤酒厂设计,此啤酒的酿造方法采用75%的麦芽,25%的大M,经过糊化,糖化,煮沸,过滤,冷却,发酵而成。发酵设备采用圆筒体锥底发酵罐,发酵周期是14天。本设计内容主要包括物料衡算,热量衡算,冷耗衡算和设备选型的计算及重点设备选型及计算。本次设计还进行了“三废”处理和副产物综合利用的设计。糖化方法采用双醪浸出糖化法,发酵方法采用下面发酵法。本设计的图纸主要包括发酵罐图,厂区图。本论文对啤酒生产线工艺设计中的关键部分—原料的糊化、糖化、麦汁过滤、煮沸、发酵、啤酒过滤进行了研究。在核心设备上选用国际先进装置,在提高啤酒质量、降低生产成本方面相对现实的生产工艺具有较大优势。 关键词:啤酒;糖化;发酵;发酵罐

啤酒发酵论文

啤酒发酵过程的研究 专业班级: 作者: 学号: 指导老师:

啤酒是人类最古老的酒精饮料,是水和茶之后世界上消耗量排名第三的饮 料。啤酒于二十世纪初传入中国,属外来酒种。啤酒以大麦芽﹑酒花﹑水为主 要原料﹐经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。 啤酒一般典型特征表现在多方面。在色泽方面﹐大致分为淡色﹑浓色和 黑色3种﹐不管色泽深浅﹐均应清亮﹑透明无浑浊现象﹔注入杯中时形成泡 显﹐且酒体爽而不淡﹐柔和适口﹐而浓色啤酒苦味较轻﹐具有浓郁的麦芽香 味﹐酒体较醇厚﹔含有饱和溶解的CO2﹐有利于啤酒的起泡性﹐饮用後有一 种舒适的刺激感觉﹔应长时间保持其光洁的透明度﹐在规定的保存期内﹐不 应有明显的悬浮物。 啤酒发酵过程是指啤酒酵母在一定条件下,利用麦汁中的可发酵性物质而 进行的正常生命活动,而啤酒就是啤酒酵母在生命活动之中所产生的产物。由 于酵母菌类型的不同,发酵的条件和产品要求、风味等的不同,造成发酵方式 也不相同。 1、啤酒发酵的过程方法和注意事项 1.1 酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培 的目的是及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产 的进行和获得良好的啤酒质量。一般把酵母扩大培养过程分为二个阶段:实验 室扩大培养阶段(由斜面试管逐步扩大到卡氏罐菌种)和生产现场扩大培养阶 段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。扩培过程中要求严格无 菌操作,避免污染杂菌,接种量要适当。 1.2 啤酒酵母扩大培养的方法 1.2.1实验室扩大培养阶段 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3 天 8~9℃,7~8天 --→0代酵母 1.2.2酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保

啤酒发酵罐设计

啤酒发酵罐设计:一罐法发酵,即包括主、后发酵和贮酒成熟全部生产过程在一个罐内完成。 1)发酵罐容积的确定: 根据设计,每个锥形发酵罐装四锅麦汁, 则每个发酵罐装麦汁总量V=59.35×4=237.4 m3 锥形发酵罐的留空容积至少应为锥形罐中麦汁量的25%, 则发酵罐体积至少应为237.4(1+25%)=296.75 m3, 为300 m3。 取发酵罐体积V 全 2)发酵罐个数和结构尺寸的确定: 发酵罐个数N=nt/Z=8×17/4=34 个 式中n—每日糖化次数 t—一次发酵周期所需时间 Z—在一个发酵罐内容纳一次糖化麦汁量的整数倍 锥形发酵罐为锥底圆柱形器身,顶上为椭圆形封头。 设H﹕D=2.5﹕1,取锥角为70°,则锥高h=0.714D V全=лD2H/4+лD2h/12+лD3/24 得D=5.1 m H=2.5D=12.8 m h=3.6 m 查表知封头高h封=h a+h b=1275+50=1325 mm 罐体总高H总= h封+H+h=1325+12800+3600=17725 mm 3)冷却面积和冷却装置主要结构尺寸确定: 因双乙酰还原后的降温耗冷量最大,故冷却面积应按其计算。 已知Q=862913 kJ/h 发酵液温度14℃3℃ 冷却介质(稀酒精)-3℃2℃ △t1=t1-t2′=14-2=12℃ △t2=t2-t1′=3-(-3)=6℃ 平均温差△t m=(△t1-△t2)/㏑(△t1/△t2) =(12-6)/ ㏑(12/6) =8.66℃ 其传热系数K取经验值为4.18×200 kJ/(m2﹒h﹒℃) 则冷却面积F=Q1/K△t m =862913/(4.18×200×8.66) =119.2 m2 工艺要求冷却面积为0.45~0.72 m2/ m3发酵液 实际设计为119.2/237.4=0.50 m2/ m3发酵液

年产10万吨11度单色啤酒发酵罐设计

前言 本设计为顺应近几年来啤酒工业飞速发展的需求,在啤酒工艺成熟的基础上,同时体现了啤酒酿造的新工艺,为企业的开源节流提供了新的依据。 设计题目为年产10万吨11度淡色啤酒厂发酵罐设计,此啤酒的酿造方法采用70%的麦芽,30%的大米,经过糊化,糖化,煮沸,过滤,冷却,发酵而成。发酵设备采用圆筒体锥底发酵罐,发酵周期是17天。本设计内容主要包括物料衡算,热量衡算,冷耗衡算和设备选型的计算及重点设备选型及计算。糖化方法采用双醪浸出糖化法,发酵方法采用下面发酵法。本设计的图纸主要为发酵罐装配图。本文对啤酒生产线工艺设计中的关键部分—原料的糊化、糖化、煮沸、麦汁过滤、啤酒过滤及其设备选型进行了粗略研究。对发酵过程及其设备选型进行了较为详细的探讨。 关键词:啤酒工艺;设备选型;技术经济;发酵;糖化;发酵罐.

目录 第一章绪论 (6) 1.1 设计选题的目的 (6) 1.2 设计工作的意义 (6) 1.3 课题研究内容及方法 (6) 1.3.1 设计依据 (6) 1.3.2 设计范围 (6) 1.3.3 指导思想 (6) 1.4 工艺选择 (6) 1.5 设备的选择 (7) 第二章啤酒工艺选择与论证 (7) 2.1 啤酒原料 (7) 2.1.1 酿造用水 (7) 2.1.2 麦芽 (7) 2.1.3 酒花 (7) 2.1.4 辅料 (7) 2.1.5 酵母 (8) 2.2 麦汁制备 (8) 2.2.1 麦芽及辅料的粉碎理论 (8) 2.2.2 麦芽的粉碎 (8) 2.2.3 辅料的粉碎 (8) 2.2.4 糖化工艺的选择与论证 (8)

2.3 麦汁过滤 (9) 2.3.1 麦汁过滤的基本要求及技术指标 (9) 2.3.2 麦汁过滤方法及影响因素 (9) 2.4 麦汁煮沸 (9) 2.4.1 麦汁煮沸设备选择及优缺点 (9) 2.4.2 麦汁煮沸工艺 (10) 2.5 麦汁后处理 (10) 2.5.1 热凝固物及冷凝固物的分离 (10) 2.5.2 麦汁的冷却 (10) 2.5.3 麦汁的充氧 (10) 2.6 啤酒发酵的工艺论证 (10) 2.6.1 啤酒酵母 (10) 2.6.2 啤酒发酵工艺技术控制 (11) 2.6.3啤酒发酵工艺 (12) 2.6.4 啤酒发酵方法的选择 (15) 2.7 酵母的添加与回收 (17) 2.8 发酵设备的降温控制 (17) 2.9 啤酒过滤 (17) 2.9.1 啤酒过滤理论 (17) 2.9.2 啤酒过滤方式的选择与论证 (17) 2.10 啤酒的包装 (18) 第三章物料衡算 (18)

啤酒 发酵课程设计

长春工业大学化学与生命科学学院生物工程专业 《发酵工程》课程设计说明书 一、总论 1.1概论 传统啤酒发酵工艺 (1)主发酵又称前发酵,是发酵的主要阶段,也是酵母活性期,麦汁中的可发酵性糖绝大部分在此期间发酵,酵母的一些主要代谢产物也是在此期内产生的。发酵方法分两类,即上面发酵法和下面发酵法。我国主要采用后种方法。下面重点介绍下面啤酒发酵法。 加酒花后的澄清汁冷却至6.5~8.0℃,接种酵母,主发酵正式开始。酵 ,这是发酵的主要生化反母对以麦芽糖为主的麦汁进行发酵,产生乙醇和CO 2 应。主要步骤如下: ①用直接添加法添加酵母在密闭酵母添加器内将回收的酵母按需要量与麦汁混匀(约1:1),用压缩空气或泵送入添加槽内,适当通风数分钟。 ②酵母添加量添加量常按泥状酵母对麦汁体积百分率计算,一般为 0.5%~0.65%,通常接种后细胞浓度为800万~1200万个/ml。接种量应根据酵母新鲜度,稀稠度,酵母使用代数、发酵温度、麦汁浓度以及添加方法等适当调节。若麦汁浓度高,酵母使用代数多,接种温度及酵母浓度低,则接种量应稍大,反之则少。 ③发酵第一阶段又称低泡期。接种后15~20小时,池的四周出现白沫,并向中间扩展,直至全液面,这是发酵的开始。而后泡沫逐渐培厚,此阶段维持2.5~3天,每天温度上升0.9~1℃,糖度平均每24小时降1°Bx。 ④发酵第二阶段又称高泡期。为发酵的最旺盛期,泡沫特别丰厚,可高达25~30cm。由于麦汁中酒花树脂等被氧化,泡沫逐渐变为棕黄色。此阶段2~3天,每天降糖1~1.5%。 ⑤发酵第三阶段又称落泡期。高泡期过后,酵母增殖停止、温度开始下降,降糖速度变慢,泡沫颜色加深并逐步形成由泡沫、蛋白质及多酚类氧化

年产10万吨啤酒工厂发酵车间设计_课程设计任务书

课程设计说明书题目:年产10万吨啤酒工厂发酵车间设计

专业课程设计任务书 设计题目:年产10万吨啤酒工厂发酵车间设计 学号:学生姓名:专业: 指导教师姓名:系主任: 一、主要内容及基本要求 主要内容: 1.拟在湘潭市西郊羊牯塘选择厂址新建年产10万吨啤酒工厂 2.设计范围:以发酵车间为主体设计,只做初步设计。 3.以生产工艺(流程)设计为主导,为其它配套专业(如全厂总平面、土建、采暖通风、水电、环保、行政管理、技术经济与概算等单项工程设计)提供设计依据和提出要求,兼顾非工艺设计。 基本要求: 生产方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范,综合指标达到同类工厂先进水平,“三废”环保符合国家有关规定。 二、重点研究的问题 生产工艺流程的选择和设计;物料衡算;发酵主车间布置设计以及专业设备选型。三、进度安排(指导教师填写)

四、应收集的资料及主要参考文献(指导教师填写) [1]管敦仪主编,啤酒工业手册(上)[M]. 轻工业出版社,1985:69-346 [2]管敦仪主编,啤酒工业手册(中)[M]. 轻工业出版社,1985:33-108 [3]管敦仪主编,啤酒工业手册(下)[M]. 轻工业出版社,1985:12-207 [4]张学群、张柏青,啤酒工艺控制指标及检测手册[M]. 中国轻工业出版社,1993 [5]刘芳,啤酒工业废水治理技术研究[J]. 酿酒科技,1999,(9):47-51 [6]吴延东,啤酒工厂糖化设备的组合比较[J]. 酿酒科技,2002,(1):33-37 [7]李大勇,啤酒工厂糖化工艺选择[J]. 酿酒科技,2002,(3):22-30 [8]王坚,啤酒高浓度发酵工艺技术要点[J]. 山西食品科技,2000(5):58-63 [9]乔玉胜,啤酒麦汁一段冷却新技术[J]. 酿酒科技,2001, (2):20-24 [10]无锡轻工业学院,轻工业部上海轻工业设计院组编,食品工厂设计基础[M]. 中国轻工业出版社,1992:8-262 [11]中国食品发酵工业研究院,中国海诚工程科技股份有限公司,江南大学主编.食品工程全书(第三卷)食品工业工程[M]. 中国轻工业出版社,2005 [12]P.F.斯坦伯里,A.惠特克.发酵工艺学原理[M]. 中国医药科技出版社,1992 [13]王念春.啤酒厂自动化控制方案的设计与实现[J]. 测控自动化,2004.1 [14]郑岳传. 现代化啤酒厂设备的选择[J]. 食品与发酵工业,2001, 5:75-84

浅谈精酿啤酒设备的选择发酵罐

浅谈精酿啤酒设备的选择发酵罐 三分手艺,七分工具!想要酿一款不错的啤酒,除了对酿酒师的水平、日积月累的经验!一套靠谱的精酿啤酒设备。那肯定是事半功倍。 另外糖化系统在加热的形式上也有不同 细心的人不难发现 在传统糖化两器设备(美式设备)组合形式中,煮沸旋沉一个锅、糖化过滤一个锅。这时就要牵扯到到底蒸汽夹套是安装在糖化过滤槽,还是安装在煮沸沉淀锅。(根据自己熟悉的工艺) 在过滤槽增加加热套底部是安装不上加热套的。这样不能在底部加热,加热面积会很小 啤酒发酵罐 我重点说下100L-5000L以内的这种小型密封式的锥形发酵罐。 发酵罐的一个主要作用是发酵——从麦汁到成熟的啤酒的一个过程。所以对于温度控制有相当严格的要求。一个好的发酵罐设计,首先需要考虑到温控系统。对于温控系统发酵罐的基本构造一般情况下分为四层,最里面是内胆,中间是通冷媒的夹套,夹套和内胆直接相连,胶套外面是发泡保温层,保温层外面就是我们看到的发酵罐外壁。冷媒通过向夹套内通进行循环来实现温度控制。故夹套的面积多少影响温控效果。不管是是盘管、米勒扳、夹套式等换热面积最重要。另

外保温层的厚度以及保温层里面打的发泡的均匀性很重要(夏天发酵罐发汗,就是保温层没有做好,引起来的)这样不但节能,并且温度比较容易控制。 (1)底部为锥形便于生产过程中随时排放酵母,要求采用凝聚性酵母。圆锥底的夹角一般为60o~80o,也有90o~110o,但这多用于大容量的发酵罐。发酵罐的圆锥底高度与夹角有关,夹角越小锥底部分越高。一般罐的锥底高度占总高度的1/4左右,不要超过1/3。圆锥底的外壁应设冷却层,以冷却锥底沉淀的酵母。锥底还应安装进排污口、出酒口、温度传感、制冷夹套等。罐的直径与高度比通常为1:2~1:4,不能太高,以免引起强烈对流,影响酵母和凝固物的沉降(2)罐体为圆柱体,是罐的主体部分。发酵罐的高度取决于圆柱体的直径与高度。由于罐直径大耐压低,一般锥形罐的直径不超过6m。罐体外部用于安装冷却装置和保温层,并留一定的位置安装测温、测压元件。罐体部分的冷却层有各种各样的形式,如盘管、米勒扳、夹套式,并分成2~3段,用管道引出与冷却介质进管相连,冷却层外覆以聚氨酯发泡塑料等保温材料, (3)罐顶为一圆拱形结构,中央开孔用于放置可拆卸的大直径法兰,以安装CO2和CIP管道及其连接件,罐顶还安装防真空阀、过压阀和压力传感器等,罐内侧装有洗涤装置, (4)发酵罐人孔:人孔的作用在于为了方便进入,检修以及加料等。 在面对选择“上部人孔”和“侧部人孔”上我们也会纠结具体选择哪种比较合适?这里,我想跟大家说的是选择适合自己的最好, 在选择人孔的时候要针对不同场地。对场地高度特别苛刻的,上不人孔没办法进入工作,选择侧部人孔就比价舒服。高度比较高。操作人员不方便操作,由于发酵罐顶部是一个堆积灰尘的最佳位置,“上部人孔”会是一个明显的隐患。

过程控制课程设计——啤酒发酵罐温度控制系统

内蒙古科技大学信息工程学院过程控制课程设计报告 题目:啤酒发酵罐的温度控制系统设计 学生姓名:赵晓红 学号:0967112235 专业:测控技术及仪器 班级:09测控2班 指导教师:左鸿飞

前言 啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。 啤酒的发酵过程是一个微生物代谢过程。它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。在发酵期间,工艺上主要控制的变量是温度、糖度和时间。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。 在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

啤酒糖化发酵课程设计说明书

啤酒糖化发酵工艺设备课程设计说明书 作者:刘啟香学号:2012304030102 院系:化学工程学院 专业:生物工程 题目:青海省海南藏族自治州年产25万吨11°浅 色啤酒厂糖化发酵工艺设备设计 重点设备——煮沸锅 指导教师:魏群刘月华 2015年11月吉林

摘要 摘要 本设计设计生产年产25万吨11度淡色啤酒,酿造原辅料分别采用65%的麦芽,35%的大米。主要从啤酒在国内外的发展、厂址选择、原辅料选择、环保等方面入手,注重对啤酒生产过程中,糖化发酵工艺条件的优化、物料衡算和设备选型等方面进行了阐述,以及重点设备煮沸锅的改良,煮沸时酒花分三次添加。糖化方法采用双醪二次煮出糖化法,在糖化过程中采用程序升温进行蛋白质休止,增加一次分醪煮沸对强化蛋白质分解,促进凝固氮的去除非常有利;发酵方法采用大型露天锥形发酵罐法,发酵周期为20天。 关键词:工艺条件;物料衡算;煮沸锅;设备选型

Abstract Abstract This design design production capacity of 250000 tons of 11 degrees beer, brewing raw materials, respectively, using 65% malt, rice by 35%.Mainly from the development of beer at home and abroad, such as site selection, choice of raw materials, environmental protection, pay attention to in the process of beer production, saccharifying fermentation optimization of process conditions, material balance and equipment type selection and so on are expounded, and the key of improving equipment boiling pot, hop when boiling add three times.Saccharification method adopts double mash secondary boiled mash method, used in the process of saccharification temperature programmed resting on protein, increase a boiling points mash to strengthen protein decomposition,promote coagulation of nitrogen removal is very good;Fermentation method by using large open-air cylindro-conical fermenter, fermentation period for 20 days. Key words:Process conditions;Material balance ;Boiling pot;Equipment selection

年产9万吨啤酒发酵罐的设计

1.1 啤酒的起源 啤酒的渊源可以追溯到人类文明的摇篮,东方世界的两河流域底格里斯河与幼发拉底河、尼罗河下游和九曲黄河之滨。最原始的啤酒可能出自居住于两河流域的苏美尔人之手,距今至少已有 9000 多年的历史。早在公元前 3000 年左右的埃及古王国时代,已经有作为饮料的麦酒(啤酒)和葡萄酒了。法老、贵族、祭司等人饮葡萄酒,一般平民消费价格低廉的麦酒。考古发掘证实,在古王国时代的墓葬中,不论是国王、贵族或平民,都将酒作为随葬品。自此之后,世界酒业彼此影响,飞速发展,经历了封建时代和工业社会,形成三大酒系(酿造酒、蒸馏酒和配制酒),精品众多,各国都有名闻世界的独特产品。 1.2 我国啤酒工业发展简况 综观仅有百年历史的中国啤酒工业,可以发现在改革开放以后涌现出了一大批具有品牌、技术、装备、管理等综合优势的优秀企业,如“青啤”、“燕京”、“华润”、“哈啤”、“珠江”、“重啤”、“惠泉”、“金星”等国际和国内的知名企业。由于啤酒的运输、保鲜等行业特点,加之地方保护主义作崇,使中国啤酒工业形成了诸侯割据、各自为政的"春秋战国"局面。纵然中国啤酒产量已突破2500万吨,位居世界第一;纵然已有四家中国啤酒集团的年产量超过100万吨,但与国际啤酒大国及啤酒发达国家相比,在集团化、规模化、质量、效益、品牌等方面我们均还比较落后。虽然“青啤”、“华润”、“燕京”等已开始踏上集团化、规模化道路,但在质量、效益等方面与国际品牌尚有一定差距。 未来几年里,我国啤酒行业的发展趋势为: 1.我国啤酒市场竞争会更加激烈;市场竞争趋于规范化,市场竞争由价格竞争转向品牌竞争和服务竞争。效益成为企业最终的追求目标。 2.整个行业逐步进入成熟期,行业内的整合速度进一步加快,整合过程规范化。企业向集团化、规模化发展,股份制优势更加明显。 3.啤酒企业的品牌意识增强,更加注重品牌战略的实施,市场对名牌产品的需求增加。企业的市场竞争能力增强,重视企业内部核心能力的培养。 4.在市场营销中,广告的投入量加大,包装形式多样化,营销方式多样化。 5.产品特点:首先,啤酒品种更加多样化、功能更加齐全。新品趋向特色型、风味型、轻快型、保健型、清爽型等。

啤酒发酵工艺流程

实验一单细胞蛋白(SCP)的生产 一、实验目的 1.了解单细胞蛋白的开发优势及技术现状。 2.掌握单细胞蛋白的液体深层培养法及工艺控制规律。 3.了解发酵过程中菌体浓度及生物量的一般检测方法。 二、实验原理 所谓SCP(SingleCellProtein)就是指那些工厂化大规模培养、作为人类食品和动物饲料的蛋白质来源的酵母、细菌、放线菌、霉菌、藻类和高等真菌等微生物的干细胞。SCP工业,主要是饲料酵母工业。酵母是一种单细胞微生物,生长繁殖快,菌体营养丰富。饲料酵母是一种营养价值很高的蛋白饲料,成品呈微黄色粉末状,具有酵母特殊香味。酵母蛋白质含量一般都在70%左右,比大豆高1倍。与肉蛋白、鸡蛋蛋白、大豆蛋白相比,单细胞蛋白所含的氨基酸组分齐全,有18-20种氨基酸,尤其是谷物中所缺乏赖氨酸含量较高。此外,维生素含量也十分丰富。每千克酵母类单细胞可使奶牛的产奶量增加6-7㎏,用含有10%单细胞蛋白饲料养鸡,产蛋提高21%-35%。1吨单细胞蛋白可节约5-7吨饲料粮,可产1.5吨鸡肉或3万枚鸡蛋。我国单细胞蛋白(酵母)年产量近3万吨,多用于医药、面包生产和饲料。用于生产饲料酵母的原料来源广泛,有矿物资源(如石油、甲烷、泥炭等)、纤维资源(如秸杆、木屑等)、糖类资源(如糖蜜、红薯等)、石油二次制品、废弃资源(包括有机废水、废渣、动物粪便等)。从我国目前的情况出发,生产饲料酵母等单细胞蛋白值得优先开发的原料有废糖蜜、薯干、纸浆废液,豆制品厂、味精厂、淀粉加工厂的废液等,用这些原料生产饲料酵母,首先是产品无毒性,另外也有利于解决工厂和城市的污染问题。 酵母细胞的发酵特点:目前,最广泛用于生产作为蛋白资源的酵母是假丝酵母,该酵母生长繁殖速度快,每2-4小时可繁殖一代,培养10小时左右就能繁殖到种子菌体量的15倍。发酵过程中,要保证罐内的液体混合良好和较适当地提供氧气,还要控制好温度和pH。采用流加间歇发酵可以保证糖被具有良好活性的酵母呼吸消耗,以达到最适产量。底物浓度过高,即使在有氧条件下,酵母也会发酵产生碳水化合物。如果酵母生长速率过快,底物也会发酵。因此,在培养过程中,底物浓度应维持在一定较低的水平,并维持一定的通风量。 酵母生物量的检测方法及分离:最普遍的检测方法是细胞干重法、显微镜记数法和光密度法。菌体的分离常采用过滤法和离心分离法。 三、实验仪器与材料 (一)仪器 10L发酵罐、恒温培养箱、超净工作台、显微镜、大容量冷冻离心机、高压灭 (二)材料

啤酒发酵课程设计.

目录 一、总论 1.1概论 1.2设计依据 1.3设计指导思想 1.4设计范围 二、生产工艺 2.1生产方法的选择 2.2啤酒发酵流程CAD图纸(附) 三、设备选择 3.1主要工艺设备选型计算 3.2 啤酒罐CAD图纸(附) 四、设计结果的自我总结与评价 五、参考文献

合肥学院生物工程专业化工课程设计说明书 啤酒发酵罐课程设计 一总论 1.1概论 圆筒体锥底立式发酵罐 圆筒体锥底立式发酵罐(简称锥形罐),已广泛用于发酵啤酒后生产。锥形罐,可单独用于前发酵或后发酵,还可以将前,后发酵合并在该罐进行(一罐法)。这种设备的优点在于能缩短发酵时间,而且具有生产上的灵活性,帮能适合于生产各种类型啤酒的要求。目前,国内外啤酒工厂使用较多的是锥形发酵罐这种设备一般置于室外。冷媒多采用乙二醇或酒精溶液。也可使用氨作冷媒,优点心能耗低。采用的管径小,生产费用可以降低。最终沉积在锥底的酵母,可打开锥底阀门,把酵母排出罐外,部分酵母留作下次待用,安全阀和玻璃视镜。 影响发酵设备造价的因素 主要包括发酵设备大小,形式,操作压力及所需的新华通讯社却工作负荷,容光焕发器的形式主要指其单位容光焕发积所需的表面积,这是影响造价的主要因素。罐的高度与直径的比例为1.5-6:1.常用3:1或4:1.罐内真空主要是系列的发酵罐在密闭条件下转罐可进行内部清洗时造成成的,由于型发酵罐在工作完毕后放料的速度很快.有可能造成成一定期负压,另外即便函罐内留学生存一部分二氧化碳.在进行清洗时,二氧化碳有被子除去的可能所以也可能造成真空。由于清洗液中含有碱性物质能与二氧化碳起反应而除去罐内气体。 结构及特点 啤酒发酵罐是啤酒厂的主要设备之一,其发酵温度控制是依靠调节冷却系统的冷却流量来实现。目前国内外较多采用罐体外壁的夹套通入低温酒精水冷却罐内发酵液,而酒精水的降温是通过液氨蒸发来冷却的,其缺点是需要酒精水的中间换热循环。而本设计对目前现有的啤酒发酵罐,作了进一步发展和改进,其主要特点如下: ⑴把大罐的夹层当作蒸发器,液氨直接在夹套内蒸发,利用其气化潜热冷却罐内的啤酒液,从而省却了酒精水的中间换热循环,节省能耗12%以上。 ⑵把夹套当作蒸发器,由于夹套内的压力比酒精水系统的要高,为此,设置

啤酒发酵罐的温度控制设计与仿真

内蒙古科技大学 本科生课程设计论文 题目:啤酒发酵罐的温度控制设计与仿真学生姓名:张胜男 学号:1167112232 专业:测控技术与仪器 班级:11-2 指导教师:左鸿飞 2014年12 月14 日

前言 过程控制课程设计是测控技术与仪器专业的实践教学环节。本次过程控制课程设计主题为啤酒厂发酵罐温度控制系统的设计,要求我们了解发酵罐温度控制的工艺背景、设计控制方案以及仪表选型等。啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

内蒙古科技大学课程设计任务书

目录 1. 工艺简介及控制系统设计 (4) 1.1. 啤酒生产工艺 (4) 1.2被控对象特性及控制要求 (4) 1.2.1被控对象特性 (4) 1.2.2被控对象的控制要求 (5) 1.3啤酒发酵温控系统设计 (5) 1.3.1发酵温控系统主、副被控参数的选取 (6) 1.3.2主、副调节器调节规律的选择 (7) 1.3.3主、副调节正、反作用方式的选择 (7) 1.3.4串级系统的整定 (8) 2. 控制系统的建模 (8) 2.1 数学模型的定义及特征 (8) 2.2 建模应用 (9) 2.3建立数学模型的目的 (9) 3. 系统仿真技术 (10) 3.1 系统仿真技术概述 (10) 3.2使用MATLAB对实验结果进行仿真 (10)

发酵罐的设计

目录 第一章啤酒发酵罐结构与动力学特征 (3) 一、概述 (3) 二、啤酒发酵罐的特点 (3) 三、露天圆锥发酵罐的结构 (4) 3.1罐体部分 (4) 3.2温度控制部分 (5) 3.3操作附件部分 (5) 3.4仪器与仪表部分 (5) 四、发酵罐发酵的动力学特征 (6) 第二章发酵罐的化工设计计算 (7) 一、发酵罐的容积确定 (7) 二、基础参数选择 (7) 三、D、H的确定 (7) 四、发酵罐的强度计算 (9) 4.1 罐体为内压容器的壁厚计算 (9) 五、锥体为外压容器的壁厚计算 (11) 六、锥形罐的强度校核 (13) 6.1内压校核 (13) 6.2外压实验 (14) 6.3刚度校核 (14)

第三章发酵罐热工设计计算 (14) 一、计算依据 (14) 二、总发酵热计算 (15) 第四章发酵罐附件的设计及选型 (19) 一、人孔 (19) 二、接管 (19) 三、支座 (20) 第五章发酵罐的技术特性和规范 (21) 一、技术特性 (21) 二、发酵罐规范表 (22) 参考文献 (24)

发酵罐设计实例 第一章啤酒发酵罐结构与动力学特征 一、概述 啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

啤酒发酵实验

实验室啤酒发酵一、实验目的:熟悉静止培养操作,观察啤酒发酵过程,掌握发酵过程中一些 指标的分析操作技能。 二、实验原理:啤酒酵母将麦芽汁发酵,产生酒精等发酵产物(啤酒)。 三、实验器材: ⑴. 100升发酵罐。 ⑵. 0~10O BX糖度表。 (3).10℃-30℃可调生化培养箱。 培养基: ⑴. 麦芽汁发酵培养基10Plato, 50升,糖化制取。 ⑵. 麦芽汁琼脂培养基:麦芽汁加2%琼脂,自然pH。 ⑶. 麦芽汁液体培养基:酵母扩大培养用。 菌种:啤酒生产用酵母菌株。 四、实验步骤: (1)麦汁制备 (2)酵母菌种分离纯化与质量鉴定 (3)菌种扩大培养 (4)啤酒主发酵:麦汁50升,10O BX ,11℃→接种量×107个细胞/mL →主发酵,11℃,5~7天→至时结束(嫩啤酒)。在主发酵过程中,每天测定下列项目:糖度、细胞浓度、出芽率、染色率、酸度、α-氨基氮、还原糖、酒精度、pH、双乙酰。然后以时间为横坐标,这些指标为纵坐标,叠画于方格纸上。

(5)后发酵 五、作业要求 (1). 画出发酵周期中上述上述指标的曲线图,并解释它们的变化。 (2). 记下操作体会与注意点。 实验一协定法糖化试验 一、实验目的:协定法糖化试验是欧洲啤酒酿造协会(EBC)推荐的评价麦芽质量的标准方法,我们用该法进行小量麦芽汁制备,并借此评价所用麦芽的质量。二、实验原理:利用麦芽所含的各种酶类将麦芽中的淀粉分解为可发酵性糖类,蛋白质分解为氨基酸(具体参见理论部分第二节)。 三、实验器材和试剂: 1 实验室糖化器:由水浴和500~600 mL的烧杯组成糖化仪器,杯内用玻棒搅拌或用100℃温度计作搅拌器(此时搅拌应十分小心,以免敲碎水银头)。实验时杯内液面应始终低于水浴液面。最好采用专用糖化器:该仪器有一水浴,水浴本身有电热器加热和机械搅拌装置。水浴上有4~8个孔,每个孔内可放一糖化杯,糖化杯由紫铜或不锈钢制成,每一杯内都带有搅拌器,转速为80~100转/分,搅拌器的螺旋桨直径几乎与糖化杯同,但又不碰杯壁,它离杯底距离只有1~ 2 mm。 2 白色滴板或瓷板,玻棒或温度计。 3滤纸,漏斗,电炉。 4碘溶液,:克碘和5克碘化钾溶于水中,稀释到1000毫升。 四、实验步骤 1. 协定法糖化麦汁的制备 (1)取50g麦芽,用植物粉碎机将其粉碎。

相关主题
文本预览
相关文档 最新文档