当前位置:文档之家› 空冷器管束泄漏原因分析及预防措施

空冷器管束泄漏原因分析及预防措施

空冷器管束泄漏原因分析及预防措施
空冷器管束泄漏原因分析及预防措施

空冷器管束泄漏原因分析及预防措施

摘要:本文从空冷器介绍入手,分析了空冷器翅片管发生泄漏的两个典型原因及相应的预防措施,最后从保证现场连续生产的要求出发,介绍了常规消缺的方法。

关键词:空冷器翅片管泄漏低温

一、空冷器

空气冷却器是以环境空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或冷凝的设备,简称“空冷器”也叫“空气冷却式换热器”。空气冷却器可用于管内流体冷却或冷凝,广泛应用于炼油、石油化工蒸汽的冷凝,化工工艺各种反应生成物的冷却,循环气体、循环水的冷却和火力发电站汽轮机排汽的冷凝。常用它代替水冷式管壳式换热器冷却介质,可节省大量工业用水,减少环境污染,降低基建费用。特别在缺水地区,以空冷代替水冷,可以缓和水源不足的矛盾。但耗电量、噪声和占地面积均大,冷却效果受气候变幻影响较大。

空冷器工作时,起换热功能的主要部件是它的管束-翅片管,翅片管是由光管和翅片组成。与光管相比,翅片管传热面积更大,传热效率更高,同样热负荷下,翅片管管壁温度有所降低,这对减轻金属面的高温腐蚀和超温破坏是有利的。但是,空冷器翅片管会由于各种各样的原因发生泄漏,翅片管一旦发生泄漏,将对工艺生产运行产生影响。那么,造成空冷器翅片管泄漏的原因有哪些呢?又该采取怎样的措施来降低泄漏发生的可能性,确保工艺生产连续进行呢?

二、翅片管泄漏原因分析及控制措施

1、腐蚀造成的泄漏及对策

空冷器运行中,工艺介质对设备产生腐蚀的物质主要有:硫的化合物、无机盐类、环烷酸、氮的化合物等。这些杂质虽然含量不多,但危害却极大。此外在工艺介质中加入的溶剂及酸碱化学剂也会形成腐蚀介质,加速设备的腐蚀。

某天然气装置再生器空冷器翅片管管束发生泄漏。截取部分泄漏管束,观察其宏观外貌,然后采取对管壁残留物质的化学成分分析、金相检验、断口分析以及X射线衍射分析等手段,对翅片管泄漏的原因进行了分析。结果表明:由于天然气中含有腐蚀性介质,介质中的二氧化碳使管内壁出现酸性水腐蚀环境,在水相部位管壁腐蚀明显减薄,二氧化碳分压较高引起严重的局部腐蚀,以致穿孔并最终发生泄漏。

对于腐蚀原因,为了减少管束内壁腐蚀而造成泄漏,可采取以下手段进行预防:一是合理选材,对于高腐蚀性介质,在选择空冷器时,根据工艺介质成分选择相应的耐腐蚀材料;二是定期清洗,通过高压清洗彻底洗净翅片管内壁上的结垢物,不仅能提高空冷器的换热能力,更能防止含有腐蚀性杂质的污垢附着在管壁上发生腐蚀;三是规范的工艺操作,管内介质、温度、压力均应符合设计条件,严禁超压,超温操作,管内升压、升温时,应缓慢逐级递升,以免因冲击骤热而发生高温腐蚀。

2、低温环境下的泄漏及对策

低温环境下空冷器发生泄漏主要发生在北方冬季,在零下二三十度的气温下,空冷器翅片管内液体介质结冰,同样质量情况下,冰的密度比水小,水结冰时分子空隙变大,体积膨胀使管束胀裂,损坏管束,发生泄漏。

榆林某化工厂,反应器急冷水空冷器在冬季就经常发生泄漏。由于反应器急冷水内催化剂颗粒较多,介质清洁度差,空冷器管束内介质流动不畅,冬季气温达到零下20摄氏度左右时,局部不流动液体由于低温结冰,逐渐造成整根管束内液体流速降低,进而整根管束冻结胀裂管束,在相同空冷器平台安装的凝结水空冷器却由于介质清洁度高从未发生过结冻损坏。

那么,在北方冬季气候下,如何实施有效的预防手段呢?第一,应采取有效的工艺操作流程,使进入空冷器管束内的介质固体物质减少,提高流体的流动性;第二,应在严寒天气来临前对空冷器实施清洗,清除管束内壁上附着的结垢物,确保管束内部流通通道畅通;第三,工艺操作上,对于容易发生凝固的介质,应先向管束内通入介质,再启动轴流风机,停止操作时,应先停止风机再停止向管束内通入介质,防止冻结发生;最后,要注意在停运设备进入备用状态时,一定要将设备内残留液体排尽,并在设备介质进出口打上盲板,防止阀门内漏或返液。

三、泄漏发生后的常规消缺措施

空冷器管束发生泄漏后,由于工艺生产的连续性要求,一般没有过长的时间来停车处理,对于能短暂停运泄漏空冷器的生产装置来说,如何抓紧短暂的停运时间,消除泄漏缺陷呢?那就要求能在线处理缺陷,而不用将整台空冷器拆除,吊运回维修间离线处理。对于泄漏后能从管束最上层上部或最下层下部立即发现泄漏部位的情况来说,只需简单的排液后,拆除相应管束堵帽,打紧楔型堵头、

点焊固定就能立即投入生产。而对于不能立即发现泄漏管束的情况呢?由于一般空冷器管束覆盖区域较大,管束数量多,就需要在泄漏位置下方观察,并在相应区域做好标记,排液后,在标记区域一根根拆除管束两端堵帽,一端用塞子塞上,另一端通入水(北方冬季由于水易结冰,通入低压蒸汽)来试漏,找出泄漏管束后再堵管处理。

空冷器

一、空冷器基础知识 1.什么是空冷器? 答:空气冷却器是以环境空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或冷凝的设备,简称“空冷器”,也称“空气冷却式换热器”。空冷器也叫做翅片风机,常用它代替水冷式壳-管式换热器冷却介质,水资源短缺地区尤为突出。 2.空冷器主要由哪几部分设备或部件构成? 答: 空冷器主要由管束、风机、构架及百叶窗所组成。 3.空冷器如何分类? 答:以空冷器冷却方式分类,可分为:干式空冷器,湿式空冷器,干-湿联合空冷器,两侧喷淋联合空冷器;以空冷器管束布置型式分类,可分为:水平式空冷器,斜顶式空冷器,立式空冷器,圆环式空冷器;以空冷器通风方式分类,可分为:自然通风式空冷器、鼓风式空冷器、引风式空冷器。 4.空冷器翅片管有那些型式? 答:空冷器翅片管有L型翅片管,LL型翅片管,G型(镶嵌式)翅片管,KL 滚花型翅片管,DR型双金属轧制翅片管,TC型椭圆管套矩形片翅片管,T60型板翅片翅片管等结构形式。 5.空冷器管箱有哪些型式? 答:空冷器管箱有丝堵型管箱,可卸盖板管箱,集合管式管箱,可卸帽盖板管箱,全焊接圆帽管箱,整体锻造管箱等结构形式。 6.空冷器的风机有哪些基本型式? 答: 引风式风机的优点有:1.气流分布均匀,2.噪音较小,3.管束下部空间可以利用,缺点有:1.风机安装在管束的上部,受管束高温的影响,不利于维护风机。2.经管束后进入风机的空气温度较高,故引风式比鼓风式消耗功率约大10%。3.管束需从下部检修,操作不方便。 8.鼓风式风机有哪些优缺点? 答: 鼓风式风机的优点有:1.易于产生湍流,对传热有利。2.操作费用较低。3.可以从上部检修管束,操作方便。缺点有:1.气流分布不均匀。2. 管束上部敞开容易受日光和雨水的影响。 二、设计

空冷器知识

空冷器管束泄漏的处理方法 1.换热管堵漏 空冷器管束经过一段时间的运行后,由于腐蚀等原因造成穿漏,可以采用化学粘补、打卡注胶和堵管等修理方法处理。当换热管泄漏量小时,可在不停车的情况下将管外的翅片除去,然后再进行化学粘补包扎或打卡注胶堵漏;如果不能用上述方法消漏,则应将管束停车吹扫干净,拆开管箱上的丝堵,在换热管两端用角度3°~5°的金属圆台体堵塞,以达到消漏。 2. 换管 当空冷器管束非均匀腐蚀或制造缺陷而泄漏时,可采用换管消漏。首先将要更换的管子拆下,清洗管箱管孔。更换新管时,将管子中间稍拉弯曲,即可从两端管板孔穿入,穿入后进行胀接或焊接。空冷器翅片管的管子材料如何选用? 一般来说,翅片管的基管和翅片可采用各种金属材料进行组合,但在具体选用时既要考虑被冷介质的性质,操作条件,也要考虑材料本身的工艺性能、价格等因素。管子的材料一般用碳钢、不锈钢、铜、铝、钛、镍、铜合金、蒙乃尔合金以及碳钢-不锈钢双金属管,也有在碳钢管内衬一层搪瓷。 应用最多的是无缝钢管。在工作压力和温度较低而对防腐要求又不高的空冷器中,可采用高频焊接的有缝碳钢管,以降低造价。铝和铝合金管子只在低于0.2 MPa和150℃条件下使用。 空冷器风机的叶片制造材料主要有两种: 1.铸铝叶片 强度及耐温性均好,但总量因素使其只能用于薄翼型叶片,空气效率较低。 2.玻璃纤维增强塑料(玻璃钢)叶片

●强度好,耐温性差,一般为空腔薄壁结构或泡沫塑料填充,适用于各种叶型截面,制造精度 高,空气效率亦高。 叶片损坏原因: ●叶片安装不当 ●叶片材质缺陷 处理方法: ●重新装配叶片并调整好叶片的角度;每台风机叶片的安装角度应按空冷器单元或组的设计总 装图规定的角度,或按操作工况要求的角度安装。叶片角度误差不得大于±0.5°,安装角度的测量部位在叶片的标线位置(叶片出厂时,一般在叶片上涂有黄色或其他颜色标线位置标记)。 ●更换叶片 空冷器的检修维护 空冷器检修包括哪些主要内容: ?清扫检查管箱及管束。 ?更换腐蚀严重的管箱丝堵、管箱法兰的联接螺栓及丝堵、法兰垫片。 ?检查修复风筒、百叶窗及喷水设施。 ?处理泄漏的管子。 ?校验安全附件。 ?整体更换管束。 ?对管束进行试压。 ?检查修理轴流风机。 空冷器管束的维护注意事项 1.检查管束各密封面不得有泄漏现象.如有泄漏时,丝堵式管箱可将丝堵适当拧紧,仍无效果时,应停机更换垫圈或换丝堵(凡需更换垫片或螺接紧固件时,应先停机并将介质防空,然后进行). 2.翅片管端泄漏时,允许将管子重胀.重胀次数不得超过2次,并注意不要过胀.无法用胀接修复时应更换翅片管.作为临时措施,也允许用金属塞堵塞. 3.如需到管束表面上检查时,应在翅片管上垫以木板或橡胶板,以免损坏翅片. 4.铝翅片如被碰倒时,应用专用工具(扁口钳)扶直. 5.定期清除翅片上的尘垢以减少空气阻力,保持冷却能力.清除方法用压力水或压缩蒸汽冲刷. 6.检查管束热偿结构工作是否正常,浮动管箱移动必须灵活,不允许有滞卡现象. 7.定期维护时,应用蒸汽及水冲刷管束内部,务必将污垢除净.并应检查腐蚀厚度,其值不应超过规定值(碳钢为3毫米).检查后重新安装时.应更换丝堵垫片及法兰. 8.定期维护时,应在管束外表面(不包括翅片表面)涂一层银粉漆. 空冷器管束操作时应注意的事项 1.管内介质、温度、压力均应符合设计条件,严禁超压,超温操作. 2.管内升压、升温时,应缓慢逐级递升,以免因冲击驟热而损坏设备. 3.空冷器正常操作时,应先开启风机,再向管束内通入介质.停止操作时,应先停止向管束内通入介质,后停风机. 4.易凝介质于冬季操作时,其程序与3条相反. 5.负压操作的空冷器开机时,应先开启抽气器,管内达到规定的真空度时再启动风机,然后通入管内介质,停机时,按相反程序操作.冬季操作时,开启抽气器达到规定真空度后,先通入管内介质,再启动风机,以免管内冻结无法运行. 6.停车时,应用低压蒸汽吹扫并排净凝液,以免冻结和腐蚀. 7.开车前应将浮动管箱两端的紧定螺钉卸掉,保证浮动管箱在运行过程中可自由移动,以补偿翅片管

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

电子镇流器的工作原理与常见故障修

电子镇流器的工作原理与常见故障修 一、概述 自GE公司的因曼博士(Inman)等在1938年发明了实际应用的荧光灯,到现在已有近70年的历史。虽然新型光源不断出现,但在一定的时间范围内,荧光灯作为主要照明光源的地位可能难以改变。在日光灯发展的过程中,廉价实用的电感镇流器和启辉器,解决了荧光灯的启动与限流问题,对荧光灯迅速发展和普及曾起到过积极推动作用。然而,时至今日,资源变得越来越紧张了,电感镇流器消耗太多的有色金属使人们一定要想办法用更廉价的电子产品来替代它,电子镇流器在上世纪八十年代应运而生,到目前已 经非常普及。 电子镇流器所用元器件少,电路简单,容易制造,并且市场需求量大,是电子爱好者开始创业时的首选产品,有条件的同学,如果打算出去后大干一场的话,也可以考虑先制造电子镇流器。据我所知在仙 桃市,就有几个人在专门制造电子镇流器。 本讲座开办的目的是让同学们关注灯具的变化,了解日光灯电子镇流器的工作原理,学会修理和制 造电子镇流器。 二、普通日光灯的缺陷 普通日光灯的缺陷除消耗有色金属太多外,其对电能的损耗也是不容忽视的。电感镇流器的绕组的欧姆损耗和铁芯的涡流损耗较大,约占灯功率损耗的15%左右。在荧光灯如此普及的今天,电感镇流器所消耗的总能量是十分巨大的。此外,电感镇流器的功率因数较低,一般为0.5左右,会造成电网的严重污染,电力部门不得不加大功率因数补偿电容,增加了电力成本。 三、电子镇流器的特点 电子镇流器的工作原理是将工频(50Hz或60Hz)电源变换成20~50KHz左右高频电源,直接点灯,无需其它限流器件。与电感镇流器相比,电子镇流器具有以下优点: 1、节能: 1)照明效率提高 普通荧光灯的工作频率为50Hz,其照明高效率因所谓的正电(或负电)降落的存在而很低,当电源频率在1000Hz以上时,这种正电(或负电)降落现象消失。而电子镇流器工作频率一般都在20一50kHz,不产生正电或负电电位跌落,这就是电子镇流器能提高照明效率的原因。 2)电子镇流器自身功率损耗低。 电子镇流器的自身消耗功率较难测量,经间接测量估算,工作点调整较好的电子镇流器,其自身消 耗一般都在灯功率的5%以下。 2、其它优点 由于应用了高频电感,电子镇流器体积小,重量轻;低电压可启动点燃灯管;无需启辉器;无频闪, 无噪声等等。 四、电子镇流器的组成与主流电路分析 1、电子镇流器的组成

空冷器检修施工方案

空冷器检修施工方案文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

附录E 编号: 空冷器检修施工方案 装置名称: 设备名称: 设备位号: 工作令号: 编制: 审核: 会签: 审批: 二○一年月日

目录 一、项目名称、概况 二、检修内容 三、施工验收标准、质量管理程序文件 四、施工组织及HSE、质量控制体系 五、主要施工工器具 六、施工方法和步骤 七、关键质量控制点及质量验收指标 八、人员配备及相关资质要求 九、检验仪器设备清单 十、HSE措施和注意事项 十一、施工网络进度、施工平面图 十二、备品备件表 十三、检修施工危害分析记录表 十四、检修施工作业环境因素表 十五、应急措施

一、项目名称、概况 1、设备简介 (1)设备名称: (2)设备位号: (3)设备型号: (4 2 二、检修内容 1、拆除与旧设备连接的所有管线与法兰。 2、清扫检查管箱、换热管及翅片。 3、更换腐蚀严重的管箱丝堵、管箱法兰的联接螺栓及丝堵、法兰垫片。 4、打开堵头,检查管箱内、管子胀口及管内部腐蚀及结垢。 5、检查修复风筒、百叶窗及喷水设施。 6、处理泄漏的管子。 7、整体更换管束。 8、新空冷器试压消漏。 9、吊车配合新旧空冷器拆装。 10、平台、梯子及钢结构拆装。 11、空冷器接管重新配管安装。 12、空冷器接水槽及接管恢复,重新焊接,试水消漏。 13、各连接阀门及油漆保温等恢复。

三、施工验收标准、质量管理程序文件 1、SHS 01010-2004 《空气冷却器维护检修规程》 2、HG 20201-2000 《工程建设安装工程起重施工规范》 3、SHS 01034-2004 《设备及管道油漆检修规程》 4、GB 50205-2001 《钢结构工程施工质量验收规范》 5、SH 3501-2011 《石油化工剧毒、可燃介质管道工程施工及验收规范》 6、GB 50235-2010 《工业金属管道工程施工及验收规范》 7、JGJ 46-2005 《施工现场临时用电安全技术规范》 8、SH 3505-1999 《石油化工施工安全技术规程》 9、Q/YPMC-M01-2012 《质量手册》 10、Q/YPMC-QP01~33-2012 所有相关程序文件和管理制度 四、施工组织及HSE、质量控制体系 1、施工组织 2、质量保证体系

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

空冷器样本

空冷式换热器 1.空冷器型号的说明 为方便用户,我公司空冷器型号均参照GB/T15386-97《空冷式换热器》编制。 1.1管束 1.1.1管束型号的表示方法: □□□□□□□/□□□□ 翅片管基管材料(见1.1.2) 法兰密封面形式(见表1) 管程数(用罗马数字表示) 翅片管形式(见表3) 翅化比(见表2) 管箱型式(见表1) 设计压力 管束换热面积 管排数 管束公称直径:长×宽m 管束型式(见表1) 1.1.2管束型式与代号见表 表1 管束型式与代号 翅片管基管材料:当选用碳钢时可缺省,当选用武汉市润之达石化设备有限公司S、Cl-腐蚀稀土合金材料09Cr2AlMoRE时标注D,12Cr2AlMoV时标注R,选用其的抗H 2 它材料也应标注。 标注示例: a.鼓风式水平管束:长9m、宽2m;6排管;基管换热面积140m2;设计压力4Mpa;可卸盖板式管箱;双金属轧制翅片管,翅化比23.4;Ⅵ管程;接管法兰密封面凹凸面;材料09Cr2AlMoRE,管束型号为:GP9×2-6-140-4.0K1-23.4/DR-VIMFMD。 b.引风式水平管束:长9m、宽3m;6排管;基管换热面积193m2;设计压力2.5Mpa;丝堵式管箱;L型翅片管,翅化比23.4;Ⅱ管程;接管法兰密封面环连接面;材料为碳钢的管束型号为:YP9×3-6-193-2.5S-23.4/L-ⅡRJ。

表2 翅化比及迎风面积比(参照JB/T4740-1997)

1.2构架 1.2.1构架型号表示方法: □□□□ 风箱型式(见表3) 风机直径×102mm/台数 构架公称尺寸长×宽m(对斜顶式构架为长×宽×斜边长) 开(闭)型 构架型式(见表3) 标注示例: a.鼓风式空冷器水平构架长9m、宽4m;风机直径3000mm,2台,方箱型风箱;闭式构架型号为:GJP9×4B-30/2F。 1.2.2型式与代号 表3 1.3风机 1.3.1风机型号表示方法: □□□□□□□ 电动机功率KW 风机传动方式(见表4) 叶片数(见表4) 叶片型式(见表4) 叶轮直径×102mm 风量调节方式(见表4) 通风方式(见表4) 标注示例: a.鼓风式,停机手动调角风机;直径2400mm、B型玻璃钢叶片;叶片数4个;悬挂式电动机轴朝上V带传动、电动机功率18.5KW的风机型号:G-TF24B4-Vs18.5 b.引风式,自动调角风机;直径3000mm、R型玻璃钢叶片;叶片数6个;悬挂式电动机轴朝上V带传动、电动机功率15KW的风机型号:Y-2FJ30R6-Vs15

机组故障及处理

机组故障及处理 1、机组遇下列情况之一者,值长应立即报告调度转移负荷,解列、停机,必要时可按“事故停机”停机,并查明原因进行处理。 各瓦温急剧上升或持续上升。 瓦温超过规定数值。 冷却水中断且瓦温不正常地升高。 轴承油面不正常升高或下降。 机组转动与固定部分有金属碰击声或其它不正常的噪音危及机组安全运行时。 机组摆度、振动值超过规定标准危及机组安全运行时。 顶盖排水泵故障,水位不断上涨,水导轴承将被淹没。 发生其它严重危及机组安全运行的情况。 2、机组发生机械故障时,上位机有语音报警,应按以下步骤处理: 值班人员应立即到现场检查故障状况及故障性质。 根据故障信号指示进行分析处理。 处理完毕,全面检查,将处理情况向值长汇报。 复归信号并做好文字记录。 3、制动屏内电磁阀故障时应将制动系统由“自动”改为“手动” 4、在正常停机或紧急停机时,若机组导叶已全关但转速长时间不能降到制动转速20%Ne,则应关闭工作闸门并检查导叶剪断销是否剪断、拐臂连杆是否松动以及导叶开度反馈系统是否故障等,如无异常,证明导叶关闭不严,记入缺陷记录薄,待机组检修时处理。 5、在正常停机过程中,制动系统发生故障不能加闸时,应将导叶开至空载使机组继续运行,制动系统恢复正常后再停机,事故停机时,如遇此情况,可远方关闭工作闸门停机。 6、当机组发生剧烈振动,摆度接近规定值,或者在较大振动范围内运行时,应立即调整负荷,加强监视,使机组迅速脱离振动范围运行,并作好停机准备。 7、系统振荡或机组甩负荷时,应加强监视调速器的运行情况,压油装置工作是否正常,并对机组进行一次全面检查,发现问题及时汇报,并设法处理。 8、顶盖水位过高故障处理 检查备用顶盖排水泵是否启动,若没有运行则手动启动。 检查主用泵没有启动或没有抽上水的原因,并作出相应处理。 若水泵运行正常,水位确已升高,则检查漏水增大原因,是否主轴密封漏水过大、真空破坏阀及导水机构漏水严重等,及时处理。 若水位持续上升可能淹没水导轴承时,应转移负荷或联系停机处理。 若是液位传感器故障,应对顶盖水位加强监视并手动抽水,及时联系维护人员处理。 若水导轴承已进水,立即停机并汇报调度以及生产主管领导。 9、轴承油位不正常(上导、推力、水导)处理 上位机报“油位过高或过低。” 检查故障轴承油槽实际油位;若油位正常,则检查油位信号器及回路是否有故障。 若实际油位确已升高,可以判断为油冷却器渗漏水造成,应立即停机。 若实际油位降低时,检查轴承油槽及排油阀等有无漏油,如有漏点不能处理则通知维护人员,并监视轴承温度决定是否停机。 10、漏油泵故障处理 现象:上位机报“漏油泵故障”。 处理:检查动力电源是否消失,接触器是否故障,控制电源开关是否跳闸,液位信号器是否完好,进行维护处理。 11、轴承温度(上导、推力、水导)及空气冷却器温度升高处理 检查冷却水压、水流是否正常,如不正常,应迅速处理。 检查各轴承油位、油色是否正常,有无漏油之处。 对比同一部位的温度,判断是否由测温元件故障引起。

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

电子镇流器电路原理图及故障分析

电子镇流器电路原理图及故障分析 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来越被广泛使用。电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管VT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿;C2则通过VT2的基极-发射极放电,VT2导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b的感应电势逐渐减小至零。VT2基极电位呈下降趋势,IC2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为:+VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1起到了限流的作用。 因接错输出线,导致灯管工作电流波峰比(Ilcf)和灯丝电流波峰比(Ifcf)严重偏离正常值!这样会加重灯管快速黑头或整流效应!

空冷器和水冷器有什么区别

空冷器和水冷器有什么区别? 以光管传热面积为基础进行比较,空冷器的投资费用是水冷器的2~3倍以上(仅指硬件费用),其主要原因有两个。第一,空气的热导率远比水的热导率低,这势必会使传热系数降的更低。第二,由于设计时取用的环境温度总是比水高,所以空冷器的对数平均温差总是较低,尤其是在工艺介质出口温度很低的情况下更是如此。 由于这两个原因,故在相同热负荷下空冷器所需的传热面积比水冷要大的多。且其较大传热面积所需之复杂支撑系统,又更多地增加了费用。 但是,正如工程师们所知,设备的投资(或固定)费用仅是整个费用的一部分,重要的是应考虑总费用,即固定投资费用与操作费用之和。水冷器的操作费用比空冷器大得多,这是因为其中包含了初始生水、补充冷却水、水处理化学药品、工厂凉水塔的费用。水很缺乏时,水冷器的操作费用就回增加,因此从经济考虑,更倾向于使用空冷器。 空冷器的优缺点 空冷器与水冷器相比有几个很重要的优点: 其中之一就是水不直接用作冷却介质,因此用在水上的费用高,如生水、补充水及水处理用化学药品的费用都没有。冷却器的设置以工厂本身均毋需靠近水源(如河流或湖泊),故水源的热损失和化学污染得以预防。维护费用也减少,因为不在需要频繁清洗冷却器水侧的水垢、微生物结垢及沉积物等所花费的费用。且还去掉了相应的管线,安装也更加简单。 另一个优点是空冷器可以连续操作,即使在动力失效时也可以通过自然风在降低了换热能力的条件下来运转。 最后,介质流体出口温度(以及在这方面的热负荷)的控制可以通过各种方法来完成,例如启动或关闭风机,使用二档或可变速率的电动机,使用自调风机(即使风机运转时,叶片也可调)等等。 限制范围:当然,空冷器也有许多局限性。如前所述,与水相比,空气的热导率和比热要低的多,故使空冷器的初始费用要比水冷器多得多。 在寒冷的气候下,必须附加防寒设施以保证介质不致低于冷冻温度,这也增加了最初的投资费用。 比较经济的方法是让介质流体的出口温度与环境空气之间的温差在10~15℃的范围内,在

空冷器使用说明及注意事项参考

空冷器管束操作时应注意的事项 1.管内介质、温度、压力均应符合设计条件,严禁超压,超温操作. 2.管内升压、升温时,应缓慢逐级递升,以免因冲击驟热而损坏设备. 3.空冷器正常操作时,应先开启风机,再向管束内通入介质.停止操作时,应先停止向管束内通入介质,后停风机. 4.易凝介质于冬季操作时,其程序与3条相反. 5.负压操作的空冷器开机时,应先开启抽气器,管内达到规定的真空度时再启动风机,然后通入管内介质,停机时,按相反程序操作.冬季操作时,开启抽气器达到规定真空度后,先通入管内介质,再启动风机,以免管内冻结无法运行. 6.停车时,应用低压蒸汽吹扫并排净凝液,以免冻结和腐蚀. 7.开车前应将浮动管箱两端的紧定螺钉卸掉,保证浮动管箱在运行过程中可自由移动,以补偿翅片管热胀冷说的变形量. 空冷风机系统的维护保养及使用注意事项 1、日常巡检 ●运行中有无异常性声音和振动. ●回转部件有无过热、松动. 2、定期维护保养 ●每三个月通过注油嘴加注锂基润滑油. ●定期调整三角带的松紧度,并检查三角带胶带的磨损程度,磨损严重的 应及时予以更换. ●全面检查各零、部件的紧固状态一年一次. ●风筒与叶轮的径向间隙检查一年一次.

●叶片角度及叶片沿风机轴向跳动应每年检查、调整一次. ●清除风机叶片表面油污,检查叶片损坏,半年一次. 3、使用注意事项 ●风机使用角度不得超过规定的调角范围以防电机过载. ●加注黄油不应超过油腔的2/3,以免轴承过热. ●每次检修和更换电机时,必须注意接线相应,应保证风机叶轮俯视顺时 针方向旋转. ●皮带传动机构的皮带应保持一定的张紧力。如过于松弛,则电机的动力 无法有效的传递至风机,风机效率下降,甚至造成皮带飞出的事故。 ●如皮带过紧,摩擦阻力增大,容易造成电机超负荷,长时间运行还会 造成电机,风机轴弯曲,轴承松动,致使振动,噪音增大,影响设备运行。 ●定期检查更换风机的皮带,确保风机使用正常。 兰州长征机械有限公司 2015年1月

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

变频器常见故障及处理方法

变频器常见故障及处理方法 1 引言 IGBT变频调速器,自研制开发投入市场以来,以其优越的调速性能,可观的节能量已为广大的电机用户所接受,正以每年大规模的销售量走向社会,为电力、建材、石油、化工、煤矿等各行业的发展提供了优质的服务,其用户群已遍布生产的各行各业,成为广大用户所喜爱的产品。 这里笔者结合自己在长期的售后服务工作中经历的一些常见故障及处理方法,提出来与广大的用户及维修工作者进行探讨,以期把该产品使用得更好,更切实的为顾客服务。 2 变频器运行中有故障代码显示的故障 在变频器的使用说明书中,有一栏具体阐述了变频器有故障代码显示的故障,具体如表1所示。注:表1中Io、Vo分别是输出额定电流、输入额定电压;Vin是输入电压。 现就这几种情况作一下分析。 表1 故障代码显示的故障 2.1 短路保护 若变频器运行当中出现短路保护,停机后显示“0”,说明是变频器内部或外部出现了短路因素。这

有以下几方面的原因: (1) 负载出现短路 这种情况下如果把负载甩开,即将变频器与负载断开,空开变频器,变频器应工作正常。这时我们用兆欧表(或称摇表)测量一下电机绝缘,电机绕组将对地短路,或电机线及接线端子板绝缘变差,此时应检查电机及附属设施。 (2) 变频器内部问题 如果上述检测后负载无问题,变频器空开仍出现短路保护,这是变频器内部出现问题,应予以排除。如图1所示。 图1 变频器主电路示意图 在逆变桥的模块当中,若IGBT的某一个结击穿,都会形成短路保护,严重的可使桥臂击穿,甚至于送不上电,前面的断路器将跳闸。这种情况一般只允许再送一次电,以免故障扩大,造成更大的损失,应联系厂家进行维修。 (3) 变频器内部干扰或检测电路有问题 有些机子内部干扰也易造成此类问题,此时变频器并无太大的问题,只是不间断的、无规律的出现短路保护,即所谓的误保护,这就是干扰造成的。 变频器的短路保护一般是从主回路的正负母线上分流取样,用电流传感器经主控板的检测传至主控芯片进行保护的,因此这些环节上任何一处出现问题,都可能造成故障停机。 对于干扰问题,现低压大功率的及中高压变频器都加了光电隔离,但也有出现干扰的,主要是电流传感器的控制线走线不合理,可将该线单独走线,远离电源线、强电压、大电流线及其他电磁辐射较强的

板式空冷器使用过程中出现的问题及改进

板式空冷器使用过程中出现的问题及改进 摘要:针对板式空冷器的腐蚀现状,通过腐蚀形貌观察、失效分析和机理研究,指出了空气冷却器失效的主要原因与影响因素。在此基拙上提出了具体的防护措施与建议。 关键词:板式空冷器腐蚀建议 在伴有加热或冷却的操作中,总是存在着各种各样的传热过程。换热器是用于传递热量的装置,近年来选用空气冷却器作为冷却设备倍受用户欢迎。与水冷相比,板式空冷器是一种结合板式和空冷式换热器优点而发展起来的新型换热装置,具有换热效率高、占地小、可大型化等优点,被广泛应用于石油、化工、电力等行业。由于冷却器常接触腐蚀性原料,极易发生开裂泄漏。某石油炼厂硫磺回收装置16台板式空冷器首次冷态投用,两天后进行系统升温,达到操作温度,仅经过五天的运行,8台空冷器最外层板片发生开裂泄漏。将开裂板片作焊死报废处理后经一个月运行,其中4台空冷器次外层板片又相继发生泄漏。 1、板式蒸发空气冷却器的使用情况 板式蒸发空气冷却器是一种将板式换热器与空冷式换热器的优点结合在一起的新型空气冷却器,具有传热效率高,压降小的优点。适合于压降要求严、占地面积紧张的干净介质冷凝冷却的场合。 管道泵将水箱中的脱盐水输送到板束上方的喷淋管线,由喷淋管线的喷嘴将脱盐水向下喷淋到板束表面,并形成连续水膜。同时用风机送风,自下而上掠过板束,从而达到冷却目的。该空气冷却器的传热过程一方面依靠水膜与空气的显热传递进行;另一方面利用水膜迅速蒸发来强化板束外的传热。由于水的汽化潜热很大,水膜的蒸发强化了板束表面的传热,使设备总体传热效率比单纯的空气冷却器要好。 板式蒸发空气冷却器板束板材选用的是316L。316L属于超低碳奥氏体不锈钢。由于含有较高的铬和镍,并呈单向的奥氏体组织,这类钢有较高的的化学稳定性和耐腐蚀性,而且钢的冷热加工性和焊接性也很好。尽管超低碳奥氏体不锈钢是一种优良的耐腐蚀钢,但是在有应力的情况下,特别是在含有氯化物的介质中,常产生应力腐蚀破裂,而且介质温度越高越敏感。 2、板式蒸发空气冷却器板束泄漏原因 (1)氯离子的侵蚀。从板式空气冷却器的使用情况来看,循环使用的脱盐水中氯离子是造成不锈钢板束腐蚀穿孔的主要原因。在顶板式空气冷却器发生泄漏后,对报废板束进行了腐蚀检测。通过对采回来的样品表面铁刷打磨,发现有许多黑

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

浅析空冷器管束组装工艺

浅析空冷器管束组装工艺 对于空冷器来讲,管束结构是它的关键零件,气体经由它来实现换热。所以,积极的分析空冷器管束组装工艺的措施,对于提升其总体质量来讲有着非常重要的作用。 标签:空冷器;组装工艺;具体措施 所谓的空冷却器,它是将空气当成是冷却媒介,是一种热交换设备,其被大量的应用到炼油以及石化等领域之中。其中管束结构是它的重要零件,设计有序,质量合格,是确保其运作稳定的关键因素。 1 对于管束结构的组成分析 1.1 翅片管的支撑结构 设备的横向管束以及翅片管排与排之间多采用波纹板进行支撑。在具体使用时,其外面的翅片管稳固,确保它不会发生振动,中心的翅片管由于受到外在管线的重力干扰,它的振动比对于最外面的管线要小很多,而中心还是使用波纹板,此种结构才是最优秀的支撑结构。 对干一湿联合式空冷的立放管束和斜式管束,如果此时使用波纹结构就会导致管线发生下垂。用定距盒作为翅片管的支撑件可以使翅片管四周受力,避免它下垂。具体的讲,因为管的累积误差和生锈现象,会导致出现很大的干扰因素,进而导致管子口形成一种力,如果厉害的话会导致其受损,进而引发渗漏问题。 针对支撑结构所面临的不利因素,参照管壳式换热器的折流板结构,使用支撑物质将材料放到下面,几块支撑板叠起后与管板一次划线钻孔而成,这就确保了管控之间的同心度,降低了管线制作的难度,而且要在所有的支撑板中设置一个套筒,将翅片支撑起来,这样就可以避免管线垂降,避免错位问题出现。 1.2 选取翅片种类 如今的类型非常多,比如:I型简单绕片管、L型绕片管、LL型绕片管、镶嵌翅片管、双金属轧片式翅片管、椭圆翅片管等几种,它们有着各自的优点。和别的翅片比对来看,双金属轧片式翅片管经过轧制,其内外管联系密切,不但能够提升传热性,还能够防止碳钢管发生缝隙。除此之外,还比较稳定,不容易发生变形,以及可以使用高压物质清除杂物等的优势。所以,比对来看,使用这种管线的效果会更好。 2 关于其工艺步骤 2.1 开展好前期的准备活动

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

相关主题
文本预览
相关文档 最新文档