当前位置:文档之家› 弹性力学的广义变分原理

弹性力学的广义变分原理

弹性力学的广义变分原理
弹性力学的广义变分原理

弹性力学的广义变分原理

摘要:研究了在弹性力学的三类变量广义变分原理中,变量三个变量是否独立,是否包含了应力应变关系。指出了在应用广义变分原理时应满足下列条件:泛函

中的应变能用应变表示、应变余能用应力表示:在用广义变分原理求实际问题的

近似解时。三类变量的试探函数可以独立选择,但各类变量之间应不违背力学基

本关系。为了解除应力应变关系的变分约束,我们提出了一个高阶拉格朗日乘子法。用这个高阶拉氏乘子法,我们从胡鹭原理和海赖原理分别导出了前所未知的

更普遍的广义变分原理。我们也证明了在这两类变分原理之间,有等价定理和相

关的等价关系存在。

关键词:弹性力学;广义变分原理

前言:弹性力学广义变分原理是弹性力学最小势能原理和弹性力学最小余能

原理的推广,其特点是,变分式中各量都可有独立的变分,并且事前不受任何限制。

1.广义变分原理Ⅰ

1.1广义函数及其构造。

弹性力学最小势能原理和弹性力学最小余能原理的推广,其特点是,变分式

中各量都可有独立的变分,并且事前不受任何限制。在弹性力学空间问题中,最

一般的广义变分原理可叙述为:弹性力学空间问题的解必须满足弹性体的广义势

能变分为零的条件,该条件又称为驻值条件,即

方程,包括应变-位移关系,应力-应变关系、平衡方程和边界条件。上述变分原理的独立变量有位移、应变、应力三类,因此称为三类变量广义变分原理。它

是中国力学家胡海昌于1954年首先提出的,日本的鹫津久一郎于1955年也独立

地得到这一原理,所以又称胡-鹫津原理。

弹性力学广义变分原理有一种稍弱的形式,即二类变量广义变分原理,又称

为赫林格-瑞斯纳原理。它由E.赫林格于1914年和E.瑞斯纳于1950年分别独

立提出,其数学表达式为:

在有限元法和工程弹性理论中,广义变分原理有广泛的应用。例如,在板壳

弯曲的有限元计算中,用它处理变形的不协调性,可得到较好的结果。对于解决

几何非线性问题,胡-鹫津原理是一个有力的工具。在工程弹性理论中,广义变分原理可用于推导各种近似理论;在弹性振动和稳定理论中,可用于求固有频率和

临界载荷,并能获得较好的结果。

用拉氏乘子法建立广义变分原理的广义泛雨的方法,这样就使构造广义泛雨

的方法建立在严格的数学方法的基础上,使深入分析广义变分原理及促使它们进

一步发展建立了理论基础。利用变分问题描述弹性力学问题,各类广义变分原理

实质上是旅于势能密度与余能密度的数学形式的展础上,在各种变分约束条件,

变分条件和一般约束条件下的匹配问题。由于已知的广义变分原理中的广义泛雨,都是基于势能声度和余能密度基础上构造的,这样应力应变的关系式对广义泛雨

万而言是一般约束条件,因此无法利用(线性)拉氏乘子法解除一般约束条件,

所以实质上为二类内变雨数的广义变分原理。

1.2广义函数的规一化。

考虑到历史的原因,我们称势能极值原理与余能极值原理为标准型变分原理.

对各类广义变分原理而言,当把变分条件还原为变分约束条件时,通过自变雨数

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

分析力学基础 一

分析力学基础(一) 华中科技大学CAD中心 张云清 2009-12-18机械系统动力学计算机辅助分析

分析力学基础() 分析力学基础(一) 一.经典力学概论 概 二.分析力学的基本概念 三.虚位移原理、达朗伯原理 四.动力学方程的三种形式 四动力学方程的三种形式 五.分析力学的变分原理 2009-12-18机械系统动力学计算机辅助分析

经典力学概论 典力学研象于 ?经典力学的研究对象是速度远小于光速的宏观物体的机械运动; 牛力学 ?牛顿力学 ?拉格朗日力学 ?变分原理 变原 ?哈密尔顿力学 ?分析力学(拉格朗日力学和哈密尔顿力学)析力学(格力学和密尔力学)?运动稳定性 ?刚体动力学学 ?多体系统动力学是经典力学的在现代工程需求下的进一步发展 2009-12-18机械系统动力学计算机辅助分析

牛顿力学 ?1687年牛顿(Newton )《自然哲学的数学原理》出版-------〉牛力学; 牛顿力学; ?牛顿贡献--发现了制约物质宏观机械运动的普遍规律:–万有引力定律 –动力学基本规律 –研究这些规律的方法—微积分 速度加速度力力牛力学–力学的概念—速度、加速度、力、力矩-----矢量------〉牛顿力学----矢量力学; 牛顿力学天体运动的观测资料归纳产生的力学理论,研究对象是不受–---- 约束的自由质点; ?1743年,法国的达朗贝尔(D’Alembert)--D’ Alembert原理;?1755年、1765年,瑞士的欧拉(Euler)将牛顿定律推广到刚体和理想流体,矢量力学------Newton-Euler力学; 2009-12-18机械系统动力学计算机辅助分析

变分原理在物理学中的应用

变分原理在物理学中的应用 [摘要]从变分法出发,简述了变分原理的建立和发展;并就变分原理在各个学科的应用予以列举,为变分原理的初学者作以引导。 [关键字] 变分法;变分原理;发展历程;应用。 引言 变分原理愈来愈引起重视。固体力学变分原理的发展最为成熟,流体力学变分原理近年来也获得突破, 电磁学、传热学等领域变分原理在不断应用和发展。这是因为变分原理与有限元结合起来使古典的变分原理焕发青春[1]。本文就变分原理的发展历程和变分原理在物理学中的应用予以概括, 以形成一个了解变分原理的脉络,为更好的应用变分原理打下基础。 1.变分原理发展简史 年份历史事件 1696年约翰·伯努利提出最速曲线问题开始出现 1733年欧拉首先详尽的阐述了这个问题. 他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。 1786年拉格朗日确定了变分法, 但在对极大和极小的区别不完全令人满意。 1810~1831年Vincenzo Brunacci, Carl Friedrich Gauss, Simeon Poisson,Mikhail Ostrogradsky和Carl Jacobi对于这两者的区别都曾做出过贡献。 1842年柯西Cauchy浓缩和修改了变分法,建立了一套严格的理论。 1849~1885年Strauch, Jellett, Otto Hesse, Alfred Clebsch和Carll写了一些其他有价值的论文和研究报告。 1872年Weierstrass系统建立了实分析和复分析的基础,基本上完成了分析的算术化。他关于这个理论的著名教材是划时代的, 并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。 1900年希尔伯特(Hilbert)发表的第20和23个数学问题促进了变分思想更深远的发展。 20世纪初David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue和Jacques Hadamard 等人做出重要贡献。 20世纪30年代Marston Morse 将变分法应用在Morse理论中。

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

分析力学

分析力学的基本内容和基本研究方法 分析力学的研究手段和研究内容 分析力学是经典力学的一部分。它应用纯粹数学分析方法研究质点组机械运动的普遍规律, 由法国数学家和力学家拉格朗日,英国数学家和天文学家哈密顿等人总结发而成。分析力学使牛顿力学得到更广泛的应用。在量子力学、统计物理、量子场论等部门中也都有重要应用。学好这门课程,不但为以后学习专业课打下基础,而主要的是训练我们如何运用力学原理把一个实际问题加以分析、简化,然后借助于数学分析来解决这个问题,最后,再对所得结果加以讨论,并和实际情况相比较。在“四化”建设中,经典力学仍然有它的重大作用,作为一个物理工作者,对这些知识和技能,应当熟练掌握才行。根据自己过去学习的经验,把研究分析力学的方法介绍出来供大家参考。由于笔者水平的限制,难免有错误之处, 欢迎读者批评指正。 研究分析力学的方法:(1)建立原理(虚功原理、达朗贝尔原理、哈密顿原理、最小作用量原理);(2)由原理推导方程(拉格朗日第二类方程、哈密顿正则方程);(3)解方程即方程式积分(正则变换、泊松定理、哈密顿定理)。 分析力学研究的主要内容是:导出各种力学系统的动力方程,如完整系统的拉格朗日方程、正则方程,非完整系统的阿佩尔方程等;探求力学的普适原理,如汉密尔顿原理、最小作用量原理等;探讨力学系统的特性;研究求解运动微分方程的方法,例如,研究正则变换以求解正则方程;研究相空间代表点的轨迹,以判别系统的稳定性等。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学中也可用变分原理(如汉密尔顿原理)导出运动微分方程。它的优点是可以推广到新领域(如电动力学)和应用变分学中的近似法来解题。从20世纪60年代开始,为了设计复杂的航天器和机器人的需要,发展多刚体系统,并且跳出了使用动力学函数求导的传统方法来建立动力学方程,所建立的方程能方便地应用电子计算机进行计算。 一、虚位移原理(虚功原理) 虚位移原理:对于具有理想约束的质点系,其平衡条件是:作用于质点系的主动力在任何虚位移中所做的虚功和等于零。 虚位移原理是应用功的概念分析系统的平衡问题,是研究静力学平衡问题的一种途径。对于只有理想约束的物体系统,由于求知的约束反力不做功 二、动力力学普遍方程 虚功原理设某力学组处在平衡状态, 在组中任取一质点 p,并设作用在质点上的 i

分析力学

《分析力学》简介 The Brief Introduction of Analytical Mechanics 一.分析力学与经典力学 分析力学是理论力学的一个分支,是对经典力学的高度数学化的表达,它通过用广义坐标为描述质点系的变数,运用数学分析的方法,研究宏观现象中的力学问题。分析力学是独立于牛顿力学的描述力学世界的体系,其基本原理同牛顿运动三定律之间可以互相推出。 经典力学最初的表达形式由牛顿给出,大量运用几何方法和矢量作为研究工具,因此它又被称为矢量力学(也称为“牛顿力学”)。拉格朗日,哈密顿,雅可比等人使用广义坐标和变分法,建立了一套同矢量力学等效的力学表述方法。同矢量力学相比,分析力学的表述方法具有更大的普遍性。很多在矢量力学中极为复杂的问题,运用分析力学可以较为简便的解决。分析力学的方法可以推广到量子力学系统和复杂动力学系统中,在量子力学和非线性动力学中都有重要应用。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆开成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学是经典物理学的基础之一,也是整个力学的基础之一。它广泛用于结构分析、机器动力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。 二.发展历程 从十八世纪开始,在力学发展史上又出现了与矢量力学并驾齐驱的另一力学体系,即分析力学。 1788 年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作。分析力学是建立在虚功原理和达朗贝尔原理的基础上。两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程。1760~1761 年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的。 分析力学的特点是对能量与功的分析代替对力与力矩的分析。为了避免未知理想约束力的出现,分析力学的一种方法是在理想约束力与约束方程间建立起一种直接的关系,导出了比矢量力学一般方法程式化更为明显的动力学方程-拉格朗日第一类方程。分析力学的另一种方法是从独立坐标出发,利用纯数学分析方法,将用独立坐标描述的动力学方程用统一的原理与公式进行表达,克服了在矢量动力学中建立这种方程依赖技巧的缺点。这种统一的方程即拉格朗日第二类方程。上述工作均由拉格朗日(https://www.doczj.com/doc/5616616934.html,grange)于1788年奠定的。以拉格朗日方程为基础的分析力学,称为拉格朗日力学。 1834年哈密顿(Hamilton)将拉格朗日第二类方程变换成一种正则形式,将动力学基本原理归纳为变分形式的哈密顿原理,从而建立了哈密顿力学。对于一个动力学系统,尽管建立该系统的拉格朗日第二类方程或哈密顿正则方程不依赖于技巧,但它的数学推导过程相当繁琐,因此用来建立自由度比较多的系统动力学方程相当困难,并且容易出错。利用拉格朗日第一类方程解决系统的动力学问题,与矢量动力学的一般方法一样,尽管建立方程比较容易,但其求解规模很大。正是由于这个原因,在力学发展史上因拉格朗日第一类方程并不比矢量动力学一般方法优越,而被搁置一边。 随着近代计算技术的发展,解决具有程式化特征的数学问题,规模再大也能迎刃而解。

弹性力学的变分原理

第十一章弹性力学的变分原理 一.内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二.重点 1. 几何可能的位移和静力可能的应力; 2. 弹性体的虚功原理; 3. 最小势能原理及其应用; 4. 最小余能原理及其应用; 5. 有限元原理的基本概念。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力

应变余能函数 应力变分方程 最小余能原理的近似解法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有限元整体分析 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 附录3 变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

分析力学解题指导

第五章分析力学 解题指导 在前面各章都是按“牛顿方式”研究力学问题,即为矢量力学。它和分析力学在观点和方法上都有区别。矢量力学所牵涉到的量大都是矢量。力和动量是它的两个基本量;而分析力学是拉格朗日和哈密顿等人所建立的变分原理为基础的,牵涉到的量为标量,基本量是能量。搞清矢量理学与分析力学的主要区别,对解决分析力学有关问题大有好处。我们将其主要区别归纳如下: 1、处理有关约束问题时:在矢量力学中须用约束力代替约束条件,但往往由于约束力性质未知,所以事先既要讨论对它作出的某些假设,事后又常常要将它从方程中消去;分析力学在承认这些条件的前提下进行讨论,而不追问需要在何处用什么力来维持这些条件。这样,解题就会方便得多,这是分析力学的一个优点。 2、在建立运动微分方程时,在分析力学中可以根据统一的最小作用量原理求得。这样又极值原理所得方程与坐标系无关。当应用矢量力学寻找加速度时,尤其在空间问题中往往要用坐标系或柱坐标中的分量是去解题,这无疑给读者会带来一些困难,这也是在矢量力学中很少使用柱,球坐标系的原因(除非迫不得已);而在分析力学中这个困难就不复存在。 3、在处理质点组问题时,矢量力学是将个别质点孤立出来,分析每个质点所受的力,再用牛顿定律建立它们的运动微分方程;而分析力学是将质点组看成一个整体,只需求出一个仅与各质点位置(速度)有关的标函数。单凭微分便能获得有关各力的知识,并得到整个质点组的运动微分方程。 4、分析力学是以普通原理为基础(微分或积分的方法),采用分析手段导出系统整体的基本运动微分方程,并研究这些方程本身及积分的方法,与数学的关联更加紧密。因此,线性常微分方程组及非线性微分方程经常会碰到,数学上求泛函数的极值方法则是分析力学中哈密顿原理的基础了。所以,具有高等数学知识的读者不难解决较复杂的力学问题。为了能更具体理解分析力学的解体方法,

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

弹性力学

弹性力学 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 弹性力学的发展简史 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。 第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。 1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力

学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利──里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。 弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

§1.1分析力学

第一章分析力学 到现在为止,我们所研究的力学问题,基本上是用牛顿运动定律来求解的。但用牛顿运动运动定律来求质点组的运动问题时,常常需要求解大量的微分方程组。如果质点组受到约束,则因约束反力都是未知的,所以并不能因此而减少,甚至是增加了问题的复杂性。十八、十九世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题。因此迫切需要寻求另外的方法来处理这一问题。 1788年,拉格朗日写了一本大型著作《分析力学》,在这一本著作中,完全用数学分析的方法来解决所有的力学问题,而无需借助以往常用的几何方法,全书一张图也没有。在此基础上逐步发展成为一系列处理力学问题的新方法,称之为分析力学。 分析力学以拉格朗日和哈密顿等所建立的变分原理为基础,将力学的基本定律表示为分析数学的形式。通过分析的方法来解决任意力学体系的运动问题,它所涉及的量是标量。而牛顿力学涉及的量如力、速度、加速度等多为矢量。由此看来,分析力学和牛顿力学只是同一个力学领域应用不同的数学描述而已。对于自由质点和简单问题,两种方法无优劣(lie)之分,对复杂问题,分析力学的优越性就体现出来了。 分析力学是从能量的观点来研究力学问题,因而具有更广泛的应用价值。它广泛的应用于结构分析、机器动力学与振动、航天力学、多刚体系统、机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。许多新兴学科,如量子力学、相对论、电动力学、连续介质力学、天体力学、统计力学等等,都可以用到分析力学的理论和方法。但是,由于分析力学中的数学推理较多,在历史上也发生过一些不良倾向,容易使人忘记力学的物理实质,对此我们应当引以为戒。

分析力学的形成及其不同的表示

分析力学的形成及其不同的表示 摘要:分析了分析力学的历史背景及发展历程,介绍了分析力学的一些重要方程 和几种不同的表示方法. 关键词:约束力;虚功原理;非惯性系;拉格朗日方程;哈密顿原理;哈密顿正 则方程;积分形式;微分形式 引言:分析力学的基本内容是阐述力学的普遍原理,由这些原理出发导出质点系 的基本运动微分方程,并研究这些方程本身以及它们的积分方法.分析力 学作为一般力学的一个分支,以广义坐标为描述质点系的变量,以虚位移 原理和达朗贝尔原理为基础,运用数学分析方法研究宏观现象中的力学问 题,不必考虑理想约束,可以很方便地建立力学体系的运动微分方程,对一 些力学问题的解法进行优化,可以更加快速的求解.近20年来,又发展出 用近代微分几何的观点来研究分析力学的原理和方法.分析力学是经典物 理学的基础之一,也是整个力学的基础之一.它广泛用于结构分析、机器动 力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领 域,也可推广应用于连续介质力学和相对论力学. 一、分析力学的历史背景 分析力学是18世纪后叶随着工业革命的迅速发展而建立起来的. 到现在为止,我们所研究的力学问题基本上是以牛顿运动定律来求解的,但是在求质点组的运动问题时,常常要解算大量的微分方程组,如果质点组受到约束,则因约束反力都是未知的,所以并不能因此减少甚至增加了问题的复杂性.18、19世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题.因此,迫切需要寻求另外的方法来解决这些问题.许多科学家将分析的方法用于力学解决了许多当时没有解决的问题,分析力学正是在这种历史的大背景下产生的. 二、分析力学的发展历程 1788年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作.分析力学是建立在虚功原理和达朗贝尔原理的基础上.两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程.1760~1761年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的.1834年,汉密尔顿推得用广义坐标和广义动量联合表示的动力学方程,称为正则方程.汉密尔顿体系在多维空间中,可用代表一个系统的点的路径积分的变分原理研究完整系统的力学问题.从1861年有人导出球在水平面上作无滑动的滚动方程开始,到1899年阿佩尔在《理性力学》中提出阿佩尔方程为止,基本上已完成了线性非完整约束的理论.20世纪分析力学对非线性、不定常、变质量等力学系统作了进一步研究,对于运动的稳定性问题作了广泛的研究. 三、分析力学的形成 (一)分析力学的基本方程及条件 对于完整保守系统,其基本方程及条件如下: 1、广义速度广义位移关系 q dt q d v ==/, (3.1.1) 式中广义速度向量()()()[] T n t v t v t v v ,,,21 =,广义位移向量

相关主题
文本预览
相关文档 最新文档