当前位置:文档之家› 汽车中的板簧的断裂失效分析

汽车中的板簧的断裂失效分析

汽车中的板簧的断裂失效分析
汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析

专业:材料工程(锻压)

类型:应用型

姓名:***

学号: 15S******

汽车中的板簧的断裂失效分析

引言

汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。

1.材质是什么?65Mn/低碳钢哪一类合适?

材质一般为硅锰钢。因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。因此,硅锰钢在我国应用在汽车的板簧上较为广泛。

65Mn钢更为合适,因为:

低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。

65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,φ12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。Mn是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn)。Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。总体上,钢中加入锰为0.9%~1.2%,使淬透性和综合性能有所提高,脱

碳倾向减小,但有过热倾向及回火脆性,易出现淬火裂纹。且锰钢价格便宜,资源丰富。常用作小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制作弹簧环、气门簧、离合器簧片、刹车弹簧及冷拔钢丝冷卷螺旋弹簧。

综上所述,应用65Mn钢更为合适。

2.所选材质的合金化原理、性能特点、典型热处理工艺。

2.1材质的合金化原理

65Mn钢化学成分见表2.1,一般其抗拉强度σb(MPa)≥980(100);屈服强度σs(MPa)≥784(80);伸长率δ10(%)≥8;断面收缩率ψ(%)≥30;硬度:热轧≤302HB,冷拉+热处理≤321HB。

表2.1 65Mn钢化学成分

C Si Mn P S Cr Ni Cu

含量0.62~0.70 0.17~0.37 0.90~1.20 ≤0.025 ≤0.020 ≤0.10 ≤0.15 ≤0.20 2.2材质的性能要求

板簧钢应具有优良的综合性能,如力学性能(特别是弹性极限、强度极限、屈强比)、抗弹减性能(即抗弹性减退性能,又称抗松弛性能)、疲劳性能、淬透性、物理化学性能(耐热、耐低温、抗氧化、耐腐蚀等)。因此所选材质应具有较高的强度以及适当的韧性,并且具有较高的弹性极限、较好的弹性减退抗力以及较高的屈强比,为了防止板簧在交变应力下发生疲劳和断裂,弹簧应具有较高的疲劳强度和耐蚀等性能,通常为σ0.2≥1160MPa,σb≥1280MPa,δ10≥5%,ψ≥25%。

汽车板簧在工作中反复承受交变弯曲应力,故对板簧的表面质量要求很高,不允许其表面有缺口、裂纹、折叠和斑疤等,表面即使存在微小缺陷和损伤,也会由此产生应力集中,形成疲劳源,导致板簧早期疲劳断裂口。有研究指出,断裂板簧的裂源正好萌生于小坑处,并且小坑处组织为针状马氏体,且有淬火裂纹存在。故板簧表面的小坑及裂纹是引起板簧早期疲劳断裂的根源。

为了满足上述性能要求,板簧钢应具有优良的冶金质量(高的纯洁度和均匀性)、良好的表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸。

2.3材质典型的热处理工艺

板簧的主要制造工艺过程为:下料一钻孔一轧制切头一校正一第一片卷耳一端磨一淬火一回火一喷丸一探伤一油漆一测试。即使是同样的材料,其热处理是否合理,导致的寿命相差也很大。因而通常材料在淬火得到马氏体后,进行回火处理,可得到碳化物尚未发生明显的聚集长大,保持弥散的分布状态的回火组织。淬火所造成的第二类内应力也几乎全部消除,但并未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限。

在淬火前对65Mn钢加热到860度,油淬,在380度中温回火。采用回火屈氏体转变机制是:马氏体在中温回火温度,其过饱和的碳原子析出与铁原子结合生成颗粒状碳化物,马氏体组织中碳浓度减少,晶格改组转变成铁素体组织,形成由极细小的颗粒状渗碳体分布在铁素体基体上这种机械混合物称之为回火屈氏体。板簧钢的高弹性极限性能主要依靠这种组织来实现。碳化物尚未发生明显的聚集长大,保持弥散的分布状态,马氏体制发生回复过程,由淬火所造成的第二类内应力几乎全部消除,但未发生再结晶,仍保留马氏体针状结构和强化效果,故而有较高的弹性极限,硬度54.1HRC。

淬火工艺为:淬火温度为850~880℃,淬火时间有板厚决定。淬火介质为10号轻柴油,在油中冷却50~75s,油温控制在20~50℃。

图2.1 65Mn钢淬火温度与硬度的关系

中温回火工艺:中温快速回火,以提高生产效率和强度。回火温度及时间视板厚而定,见表2.2。

表2.2回火工艺参数

板厚/mm ≤8 >8

时间/min 18 30 回火炉前部温度/℃480±20 460±20

回火炉后部温度/℃680±20 650±20

图2.2 65Mn钢回火温度与硬度关系图2.3 65Mn钢经回火后硬度与冲击性关系

图2.2描述了65Mn回火硬度随回火温度升高而发生变化的规律,由图可见,在180-280℃范围内回火时,其硬度随回火温度升高而变化不大。在300℃回火时,硬度略有升高,为57-58HRC。图2.3描述了65Mn在870℃冷淬火后经不同温度回火后的硬度值与冲击韧度的关系。图2.3所示的冲击韧度有两个峰值,其中一个峰值约为400J/cm2,对应的硬度为50-52HRC,这个硬度对冷作模具而言,显然是偏低的。另一峰值韧度约为380J/cm2,其对应的硬度值为57-58HRC。对于膜片弹簧成形压淬模而言,硬度为50-55HRC较为合宜,硬度为55HRC时,冲击值为谷点(实际回火脆性为350℃左右),应避开。回火最后得到的组织为回火屈氏体。

喷丸的目的是为了提高弹簧的强度和疲劳寿命,要对热处理后的板簧进行喷丸处理。经喷丸处理的疲劳寿命一般可达未喷丸的5~10倍。

3.服役环境的要素

弹簧在冲击、振动或长期交应力下使用,所以要求板簧钢有高的抗拉强度、弹性极限、高的疲劳强度。在工艺上要求板簧钢有一定的淬透性、不易脱碳、表面质量好等。考虑板簧可能的服役环境为:

(1)汽车板簧需承受来自汽车车厢以及载物的重量,各弹簧片受力变形,产生弯曲变形;

(2)汽车在行驶过程中,当路面不平时,汽车发生较大幅度和频繁的颠簸,则汽车板簧需承受冲击载荷,并因此造成单向循环弯曲应力;

(3)当汽车行驶速度过高时,也会加大汽车板簧的变形幅度,导致板簧加速疲劳而损坏;

(4)紧急刹车会瞬间加大汽车板簧的受力,长期频繁的紧急刹车会对汽车板簧造成严重的损坏;

(5)汽车在转弯时,若转弯速度较大,则会产生过大的离心力,加大外侧板簧的负荷;

(6)汽车行驶的环境如果较为恶劣,零部件容易发生腐蚀。

4.有可能发生的断裂模式是什么?

汽车钢板弹簧在汽车行驶过程中承受各种应力的作用。其中以反复弯曲应力为主,绝大多数是疲劳破坏,如图4.1所示。

图4.1 板簧的失效

板簧可能发生的失效:

(1)过载断裂:当汽车超载时,载荷的重量超过板簧的承载能力,此时板簧往往发生永久性塑性变形,当工作载荷超过其所能承受的极限载荷时,将发生过载断裂。

(2)脆性断裂:汽车长时间在北方寒冷空气下行驶时,可能因为低温发生脆性断裂。

(3)疲劳断裂:由于汽车板簧长期在交变载荷下工作,则容易发生疲劳断裂。当长时间在恶劣的环境下行驶时,可能因金属发生腐蚀而出现腐蚀疲劳断裂。

5.如何设计实验确定失效的类型及其机理?

可通过对汽车板簧的化学成分分析,对断口处的显微组织分析等试验方法,分析疲劳断裂件中疲劳裂纹的萌生,疲劳裂纹的扩展,以及最后断裂。

具体的分析实验步骤为:

(1)化学成分

失效的汽车板簧用65Mn弹簧钢制备而成,在失效板簧本体上取样做化学成分分析,观察测试结果是否符合国家规定的65Mn弹簧钢标准。

(2)宏观分析

观察板簧的断口形貌,寻找疲劳源区,疲劳裂纹扩展区,以及瞬时断裂区。

板簧叶片表面(主要是受拉面)如有裂痕,缺口,凹坑等,会使叶片在受负荷时产生应力集中,引起早期疲劳破坏,所以板簧的疲劳断裂源往往在板簧的表面处。

在疲劳断口处如能观察到清晰可见的贝纹线,则此处为疲劳裂纹的扩展区,外观较为光滑,主要特征是围绕疲劳源存在一系列平行的同心弧线,即为疲劳线。而瞬间断裂区的外观较为粗糙,与静载断口形貌相似。

一般疲劳断裂的过程为:局部塑性变形—疲劳裂纹的形成—疲劳裂纹的扩展—瞬间断裂。疲劳裂纹的萌生和扩展过程是疲劳破坏的起始和重要的损伤阶段。金属所受的交变应力的最大值低于材料的屈服强度,在较低的应力下,材料的变形是局部的,非均匀的,变形严重的地方抗腐蚀能力低,颜色发暗。

微裂纹多在表面形成,主要原因为:一是因为板簧所受到的载荷使其发生弯曲变形,弯曲疲劳时表面变形最大;二是由于表面脱碳强度降低所导致。65Mn 弹簧钢保温时间较长时,很容易造成表面脱碳,位错与碳化物或夹杂物相互作用,使相界开裂,与基体剥离,形成微孔,微孔合并后形成裂纹源。

(3)微观分析

用扫描电子显微镜对断口作进一步观察,并对对失效件在断口裂源处纵向取样作显微分析,一般疲劳裂纹的扩展途径不是唯一的,可以沿晶扩展,也可以穿晶扩展。在交变应力的作用下,由于位错沿着滑移面往复运动而造成围观裂纹的萌生和扩展。断口是不均匀的,有许多相互连接而与主裂纹相交的小裂纹,在主

裂纹的侧面还有与主裂纹近似平行的小裂纹。在交变应力的作用下变形是不均匀的,也不是同时的,有先有后,在形成的裂纹扩展的同时又有新的裂纹萌生及扩展,先扩展的裂纹为主裂纹,周围新萌生的微裂纹可称为次生裂纹。

(4)硬度测试

对失效样件进行硬度测试,测试样件是否符合技术要求,一般失效件裂源区硬度偏高。

由实验的分析,可以推断提高汽车板簧的疲劳寿命的建议,一般可从以下几方面考虑:

(1)选择优良的原材料,材料中的夹杂物以及杂质越少越好。

(2)加热时应在保护气氛或在真空进行,避免表面脱碳。

(3)进行表面研磨,提高表面光洁度。

(4)进行表面强化硬化处理。

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析 专业:材料工程(锻压) 类型:应用型 姓名:*** 学号: 15S******

汽车中的板簧的断裂失效分析 引言 汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。 1.材质是什么?65Mn/低碳钢哪一类合适? 材质一般为硅锰钢。因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。因此,硅锰钢在我国应用在汽车的板簧上较为广泛。 65Mn钢更为合适,因为: 低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。 65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,φ12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。Mn是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn)。Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。总体上,钢中加入锰为0.9%~1.2%,使淬透性和综合性能有所提高,脱

汽车板弹簧材料的选择

汽车板弹簧材料的选择 汽车钢板弹簧在汽车行驶过程中承受各种应力的作用,其中以反复弯曲应力为主,绝大多数是疲劳破坏。所以要求弹簧钢应有高的弹性极限以及弹性减退抗力好,较高的屈强比,为防止在交变应力下发生疲劳和断裂,弹簧应具有高的疲劳强度和耐蚀等性能。其性能要求:σ0.2≥1160MPa;σb≥1280MPa;δ10≥5%;ψ≥25%,而且,同样材料处理是否正确,其寿命相差也很大。 图(1)板弹簧实物图 一、板簧材料的选择及分析 备选材料钢号有:20Cr、40CrNiMn、60Si2Mn、65Mn。下面比较一下这四种材料的性能及用途。 1、20Cr 该钢是我国目前产量最大的几个合金结构钢之一,用途广泛。硬度较高。且此钢比相同含碳量的碳素钢具有较好的淬透性、强度和韧度。为了提高该模具钢的耐磨性,常进行渗碳处理(注意:渗碳时钢的晶粒有长大倾向),然后进行淬火和低温回火,从而保证模具表面具有很高硬度、高耐磨性而心部具有很好的韧度。 常用于制造截面小于30mm的、形状简单的、转速较高的渗碳件或氰化件,如活塞销、小轴等;也可以用于调制钢零件。 2、40CrNiMn 高淬透性的调质钢,有高的强度、韧度和良好的淬透性和抗过热的稳定性,但白点敏感性高,有回火脆性。焊接性较差,焊前需经高温预热,焊后需消除应力,经调质后使用。 应用:一般制作强度高、塑性好的重要零部件,氮化处理后制作特殊性能要求的重要零件,如轴类、齿轮、紧固件等;在低温回火或等温回火后可作超高强度钢使用。 3、60Si2Mn

由于硅含量高,其强度和弹性极限均比55Si2Mn高抗回火稳定性好,淬透性不高,易脱碳和石墨化。主要用作汽车拖拉机上的板弹簧、螺旋弹簧等。也用于制造承受交变载荷及高应力下工作的重要弹簧、抗磨损簧等。 4、65Mn 钢中加入锰为0.8%~1.2%,使淬透性和综合性能有所提高,脱碳倾向减小,但有过热倾向及回火脆性,易出现淬火裂纹。且锰钢价格便宜,资源丰富。 应用:(1)可用于普通模具弹簧;(2)冷冲模具凸模;(3)弹簧环、汽门簧。 通过以上比较,我们发现60Si2Mn淬透性号、弹性极限、屈强比和疲劳极限均较高,能符合汽车板簧的性能要求。因此我们选择60Si2Mn作为所需材料。 二、60Si2Mn的各项指标 1、化学成分 硅锰弹簧钢(60Si2Mn)是同时加入硅、锰,能显著强化基体铁素体,大为提高了钢的弹性极限,屈强比可达到0.8~0.9,而且疲劳强度也显著提高。硅锰元素的共同作用提高了钢的淬透性,硅还有效地提高了回火稳定性,锰提高了耐磨性。但硅促进脱碳倾向,锰增大了钢过热敏感性,但是两者复合加入后,硅锰钢的脱碳和过热敏感性较硅钢、锰钢为小,但还是会因过热敏感性产生淬火裂纹,因脱碳对工件耐磨性、疲劳强度产生显著影响。 2、临界点 3、60Si2Mn的拉伸性能 三、板弹簧加工工艺 加工工艺路线:下料→校直→钻孔→卷耳→淬火+中温回火→喷丸→装配→预压缩。 1、热处理工艺

钢锭_坯_在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径

甘肃冶金 2001年3月 第1期钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径 贾 静 (兰州钢铁公司 甘肃省 兰州市 730020) 摘 要 分析了钢锭(坯)轧制过程中出现翘皮、裂纹、断裂等常见缺陷的原因,并且提出了解决问题的途径。 关键词 分析解决 缺陷 途径 1 前言 钢锭(坯)在轧制过程中会出现翘皮、裂缝、断裂等多种缺陷而致废。由于种种原因,90年代初以来,特别是近几年里,钢锭(坯)轧裂和翘皮的数量骤然上升并有居高不下之势。为此,我们将近几年来发生的钢锭(坯)轧废情况统计分析结果列于表1(数据以每年退换钢锭的数量为依据)。 表1 钢锭(坯)轧裂退换统计表 年 份钢 种废品数量致 废 原 因小 时(t) 1995 1996 1997 1998 1999Q195—Q235沸钢258钢锭重接19.08t,翘皮、断裂Q235镇静钢—  Q195—Q235沸钢118翘皮、断裂 150220M nSi连铸坯70夹杂、断裂 20M nSi钢47断裂 Q195—Q235沸钢44翘皮、断裂 150220M nSi连铸坯80夹杂、断裂 1502Q235连铸坯40脱方 Q235镇静钢100纵裂纹、发纹 Q195—Q235沸钢220翘皮、断裂 Q235镇静钢110裂纹、断裂 Q195—Q235沸钢20断裂、裂口 Q235镇静钢240纵裂纹、裂口、断裂 258 235 264 330 260 9 收稿日期:2000-12-28

表1的统计结果表明: 早期镇静钢锭质量比沸腾钢锭的好,但近两年来质量有下滑趋势。 钢锭(坯)在轧制过程中退废的主要缺陷是翘皮、裂纹和断裂。平均每年退换钢锭293t ,由此造成的经济损失30余万元。 根据金属学和钢的热塑性变形原理,结合现场生产的实际情况,作者对这些缺陷的成因从炼钢工艺和轧钢工艺两方面进行分析。2 炼钢工艺对钢锭质量的影响2.1 化学成分的影响 对于碳素结构钢来讲,就元素影响而言造成轧制过程中出现裂纹、断裂极为有关的元素有S 、M n 、P 、Cu 。2.1.1 元素S 、M n 的影响及S 的“ 热脆”缺陷对大量轧裂钢锭化学成分的分析结果表明,元素S 的超标准上限及元素Mn 的低标准下限是钢锭轧裂的重要原因。 高硫钢锭经轧制后通身四面都有严重裂缝,有时只经过粗轧几道就断成碎块。其致废的机理是:S 是生铁或燃料中天然存在的杂质,由于S 在固态Fe 中的溶解度很小,几乎不能溶解。它在钢中以FeS 的形式存在,而FeS 和Fe 易形成熔点较低(仅有985℃)的共晶体,当钢在1100~1200℃进行热加工时,分布于晶界的低熔点共晶体固熔化而导致开裂,这就是通常所说的S 的“热脆”现象。在冶炼中为了清除S 的有害作用,必须增加钢中的含M n 量,使Mn 与S 优先形成高熔点的M nS,其熔点高达1620℃而且呈粒状分布于晶粒中,从而可以有效地防止或避免S 在钢中的“热脆”现象。2.1.2 元素P 的影响及P 的“冷脆”缺陷 通常,元素P 超标的钢锭在热轧过程中不出现裂纹或断裂,但成品坯(材)冷却至室温就会发生“冷脆”现象,在远远小于钢材力学指标力的作用下就发生脆断。 其机理是:室温下钢中的P 可全部溶于钢的铁素体中,使钢的强度、硬度增加,塑性、韧性显著降低。这种钢坯(材)的“冷脆”现象在我厂的生产中偶有发生。2.1.3 元素Cu 的影响及富Cu 轧制的网状裂纹 1997年10月,我厂轧制的Q 235镇静钢68方坯有两批总重量101.36t 成品钢坯表面出现了严重的裂纹,其症状如图1所示,可见钢坯通身有网状裂纹。经取样做成分分析发现Cu 含量在0.6%~0.8%,严重超标。 图1 富铜轧制的网状裂纹 元素Cu 超标造成钢锭热轧开裂的原因是:由于西域废钢资源的特点,含Cu 量有时较高。当钢中含Cu 量超过0.4%且它在加热炉中的氧化性气氛中较长时间加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富Cu 合金,这层合金在约1100℃时熔化并浸蚀钢的表层,使钢在热加工时开裂并多形成网状裂纹。 因此,在技术标准中对碳素结构钢中残余铜元素的含量有明确规定,应该不高于0.3%。2.2 炼钢脱氧操作及浇注工艺的影响 我厂轧制钢锭从脱氧方式上分沸腾钢和镇静钢。由于钢液脱氧方式及结晶热力学的条件10

汽车前桥故障分析

中谷汽车前桥故障分析: 一、低速摆头 1.现象:汽车低速直线行驶时前轮摇摆,感到方向不稳;转弯时大幅度转动方向盘,才能控制汽车的行驶方向。 2.原因:转向节臂装置松动;转向节主销与衬套磨损松旷;轮毂轴承间隙过大;前束过大;轮毂螺栓松动或数量不全。 3.诊断:前轮低速摆头和转向盘自由空程大,一般是各部分间隙过大或有连接松动现象,诊断时应采用分段区分的方法进行检查。可支起前桥,并用手沿转向节轴轴向推拉前轮,凭感觉判断是否松旷。若松旷,说明转向节主销与衬套的配合间隙过大或前轴主销孔与主销配合间隙过大。若此处不松旷,说明前轮毂轴承松旷,应重新调整轴承的预紧度。若非上述原因,应检查前轮定位是否正确,检查前轴是否变形。如果前轮轮胎异常磨损,则应检查前束是否正确。 二、转向沉重 1.现象:汽车转向时,转动方向盘感到沉重费力;无回正感。 2.原因:转向节臂变形;转向节止推轴承缺油或损坏;转向节主销与衬套间隙过小或缺油前轴或车架变形引起前轮定位失准;轮胎气压不足。

3.诊断:诊断时先支起前桥,用手转动转向盘,若感到转向很容易,不再有转动困难的感觉,这说明故障部位在前桥与车轮。因为支起前桥后,转向时已不存在车轮与路面的摩擦阻力,而只是取决于转向器等的工作状况。此时应仔细检查前轮胎气压是否过低,前轴有无变形;同时也要考虑检查前钢板弹簧是否良好,车架有无变形。必要时,检查车轮定位角度是否正确。 三、高速摆振 1.现象:随着车速的提高,摆振逐渐增大;在某一较高车速范围内出现摆振,出现行驶不稳,甚至还会造成方向盘抖动。 2.原因:轮毂轴承松旷,使车轮歪斜,在运行时摇摆;轮盘不正或制动鼓磨损过度失圆,歪斜失正;使用翻新轮胎;转向节主销或止推轴承磨损松旷;横、直拉杆弯曲;前轮定位值调整不当;前束失调,两前轮主销后倾角或内倾角不一致等,汽车行前行驶时,前轮摇摆晃动;车轮不平衡;转向节弯曲;前钢板弹簧刚度不一致。 3.诊断:在进行高速摆振故障的诊断时,应先检查前桥、转向器以及转向传动机构连接是否松动,悬架弹簧是否固定可靠。支起驱动桥,用楔块固定非驱动轮,起动发动机并逐步换入高速档,使驱动轮达到产生摆振的转速。若这时转向盘出现抖动,说明是传动轴不平衡引起的,应拆下传动轴进行检查;若此时不出现明显抖动,则说明摆振原因在汽车转向桥部分。 怀疑摆振的原因在前桥部分时,应架起前桥试转车轮,检查车轮是否晃动,车轮静平衡是否良好,以及车轮钢圈是否偏摆过大。

重卡钢板弹簧断裂分析

重卡钢板弹簧断裂失效分析 白培谦 泮战侠 慕松 赵鹏英 杜飞 (陕西汽车集团有限责任公司质量管理部,陕西西安,710200) 摘 要:通过宏观检查、化学成分分析、硬度测试以及微观组织检查等结果分析,确定了重型卡车用钢板弹簧断裂原因。分析结果表明:因超载使钢板弹簧出现过度反弓,造成板簧卡中的螺栓与钢板弹簧动态接触,发生磨损腐蚀现象,在过大的交变应力下出现疲劳断裂。并提出了防止其发生断裂事故的预防措施。 关键词:钢板弹簧;磨损腐蚀;交变应力;疲劳断裂 Fracture Failure Analysis of Heavy Truck Leaf Spring Bai Pei-qian, PAN Zhan-xia, Mu Song, Zhao Peng-ying, Du Fei, (1.Shaanxi Automobile Group Co., Ltd. Quality Management Department, Xi ’an 710200, China ) Abstract:The fracture cause of heavy truck leafspring is researched by macrography, chemical composition analysis, hardness test and microstructure test. The research shows that leaf spring excessive inverse arch-shaped for overload causes Frictional Contact between plate spring bolt and leaf spring and erosion corrosion and the leaf spring is broken for fatigue fracture Under alternating stress. In the paper the measures of preventing leaf spring fracture accident is put forward. Key words: leaf spring; erosion corrosion; alternating stress; fatigue fracture. 钢板弹簧是汽车悬架中重要的弹性元件,主要影响汽车行驶的平顺性和操纵的稳定性,在车辆行驶过程中起到缓冲减振的作用。 同批次某矿山用短途重载卡车行驶约六千公里后发生四起钢板弹簧断裂事故。断裂钢板弹簧材料为50CrV A ,其生产工艺为:下料→钻孔→卷耳→淬火→回火→喷丸→装配→预压→喷漆。为了查明钢板弹簧断裂原因,对断裂失效件进行检查分析。 1 检查与结果 1.1 宏观检查 断裂发生在前钢板弹簧组第一片后侧板簧卡附近,见图1(a )箭头所示位置,距吊耳孔中心约26cm 处,断口侧表面可见明显磨损腐蚀痕迹,见图1(b )所示。在体视显微镜下观察钢板弹簧侧表面磨损腐蚀区域发现:断口侧表面磨损腐蚀区域呈现红褐色,仔细观察存在大量裂纹,且出现腐蚀坑,见图2。 (a ) (b) 图1 断裂位置及外观 Fig.1 the fracture position and appearance 收稿日期:

汽车轮毂的断裂失效分析

汽车轮毂的断裂失效分析 发表时间:2017-06-27T14:02:09.450Z 来源:《基层建设》2017年6期作者:李宗保刘字光孔庆渤[导读] 摘要:通过外观检查、成分测试、硬度测试、金相组织和扫描电镜观察等方法,对某品牌汽车3个轮毅轴承失效件进行分析,可以找出造成轮毅轴承最终断裂失效的原因。中信戴卡股份有限公司河北省秦皇岛市 066000 摘要:通过外观检查、成分测试、硬度测试、金相组织和扫描电镜观察等方法,对某品牌汽车3个轮毅轴承失效件进行分析,可以找出造成轮毅轴承最终断裂失效的原因。结果表明,3种轮毅轴承的内圈和外圈的组织都符合JB/T1255-2001标准的要求;1#轮轴轴承失效的原因是由于化学成分不合格和轴承内圈滚道的表面硬度较低;2#轮毅轴承的化学成分、硬度和组织都满足要求,失效原因在于密封性较差, 而使得外圈滚道中外界硬度相对较高的颗粒落入滚道,造成磨损加剧;3#轮毅轴承外圈碳含量较低,使得外圈滚道表面硬度偏低,且由于润滑条件不好引起了粘着磨损,加剧了轴承的磨损,并最终造成失效。关键词:轮毅轴承;断裂失效;分析研究一、前言。随着我国汽车产量不断增加,轮毅轴承的需求量也在日益增大。轮毅轴承是汽车的重要基础件,其质量对汽车整车质量的影响非常大,对其性能要求也越来越高。轮毅轴承的作用主要是作为承重件和为轮毅的传动提供精确引导,既承受径向载荷又承受轴向载荷。常用的汽车轮毅轴是由两套圆锥滚子轴承或球轴承组合而成,其套圈一般采用热锻毛坯结合后续机加工进行生产。轮毅轴承形状复杂,尺寸精度和形位公差要求高,锻造工艺性差。目前,国内外各主要轴承企业主要采用开式模锻工艺进行生产,锻件成形质量较差,材料的利用率较低。 某汽车在行驶过程中,其后轮毅轴在安装轴承附近发生断裂,该车累计行驶里程为17km。轮毅轴材料为65Mn弹簧钢,经毛坯一锻造一机械加工一调质处理一轴表面高频感应淬火(淬火层深度要求为1.5一3.Omm)后成形。通过对失效轮毅轴进行外观检查,对其断口进行宏、微观观察和能谱分析,对其金相组织和硬度进行检查,确定了裂纹性质,最后分析了其断裂失效的原因,并给出了建议。本研究对提高后轮毅轴的可靠性,防止同类事故的发生具有一定的工程应用价值。 二、检测分析。(一)宏观分析。对其中典型的3种轮毅轴承进行失效分析,编号为1#,2#和3#。对比3种轴承的宏观形貌可以发现,1#内圈存在剥落、滚道变黄,外圈有压痕、滚道变黄;2#外圈上卜滚道有条状压痕;3#外圈有小块压痕。对3种轮毅轴承进行内外圈圆度测量,1#轴承的外圈内侧滚道偏离了设计图纸的标准值,2#外圈外侧滚道圆度、内圈外侧滚道圆度和内圈外侧滚道圆度都偏离了小于2.2m的标准;3#外圈外侧滚道圆度、外圈内侧滚道圆度和内圈外侧滚道圆度偏离设计标准。这也可以解释为什么在轴承运转过程中发生振动和噪音的原因。(二)成分检测。选取比较典型的3组失效轮毅轴承进行化学成分检验,在钢研纳克生产的Lab Spark750直读式火花光谱仪上进行化学成分测试,并与国标GB/T18254-2000《高碳铬轴承钢》中GCr15钢的化学成分进行对比分析,可以发现,1#轮毅轴承内圈和3#轮毅轴承的外圈的C含量要低于GB/T18254-2000标准对GCr15钢的要求,其余元素的含量都满足国标要求。(三)硬度和金相测试。对3种失效轮毅轴承的外圈进行硬度和硬化层深度测试,并参照机械行业标准JB/T1255-2001《高碳铬轴承钢滚动轴承零件热处理技术条件》对外圈合格性进行评定。根据JB/T1255-2001标准中的要求,当套圈有效壁厚大于15mm时要求硬度在5761HRC,而当有效壁厚在15mm内时要求硬度大于5863HRC叭硬化层深度范围要求必须大于或者等于1mm。对比失效轮毅轴承外圈测试结果可知,3种轮毅轴承的硬化层深度满足要求,1#和2#轴承的硬度满足要求,但是3#轴承的硬度偏低,会增加轴承在运行过程中的磨损,从而造成失效,3#轴承硬度偏低与碳含量相对较低有关。对3种失效轮毅轴承表的外圈进行金相组织检测,3种轮毅轴承的金相组织都为结晶马氏体+针状马氏体+碳化物+残余奥氏体组织。参照JB/T1255-2001《高碳铬轴承钢滚动轴承零件热处理技术条件》中球化退火后的技术要求,按第一级别图评定2—4级为合格组织,即允许有细点状球化组织存在,不存在欠热、碳化物分布不均匀和过热现象,对比3种外圈的金相组织可知,3种轮毅轴承的组织都在2}3级,满足机械行业标准JB/T1255-2001的要求。对3种失效轮毅轴承的内圈进行硬度和金相组织测试,并参照机械行业标准JB/T1255-2001《高碳铬轴承钢滚动轴承零件热处理技术条件》对内圈合格性进行评定,经过检测发现1#轴承内圈的硬度偏低,而钢球的硬度在62HRC}65HRC,由此可见,在轴承高速运转过程中,1#内圈比较容易产生显微裂纹,随着运行时间的延长,这些显微裂纹会逐渐扩展,并最终造成轮毅轴承的失效;而2#和3#内圈的硬度与钢球相当,金相组织也满足JB/T1255-2001标准的要求。扫描电镜显微组织,分别对失效的3种轮毅轴承内圈和外圈滚道,以及新轮毅轴承的内圈和外圈滚道进行扫描,电镜显微组织观察。对于新轴承的外圈滚道而言,除了少量较浅的机加工刀痕外,整个滚道表面较为光滑,并没有孔洞或者机械损伤存在;对比3种失效轴承外圈滚道可见,1#外圈滚道的局部区域出现了剥落或者凹坑,但是数量较少;2#外圈滚道中有较多的细小凹坑存在,局部区域存在剥落,细小的凹坑弥散分布,可能是由于外界的硬度相对较高的颗粒落入滚道造成;3#外圈滚道中出现了蠕虫状的块状物凸起,这可能是由于润滑条件不够好而引起的粘着磨损。同样,对新轮毅轴承和3种失效轮毅轴承的内圈滚道进行扫描,电镜显微组织观察,对于新轴承的内圈滚道而言,表面较为光滑、平整,几乎看不到机械加工刀痕的存在,也没有发现孔洞或者机械损伤存在,内圈滚道表面质量较高;对比3种失效轴承内圈滚道,可以看见,1#内圈滚道表面聚集着大量尺寸不等的鹅卵石状的颗粒,能谱分析结果表明,这些颗粒主要含有C,O和Fe等元素,推测可能是在运行过程中,由于运转不当造成局部区域温度升高,而形成的铁的氧化物,如FeZ03和Fe30、化合物2#内圈滚道中有较多的细小白色颗粒状物质存在,此外还有一定数量的凹坑,对白色颗粒进行能谱分析,主要含有Fe和C元素,表明这些颗粒并不是外来的物质;3#内圈滚道中有较多的连续分布的凹坑,损伤较为严重,应该是在运行过程中产生的刮伤。 三、结论。

单趾弹簧扣件PR弹条断裂原因分析论文

单趾弹簧扣件PR弹条断裂原因分析摘要:采用化学分析、金相检验、硬度测定和受力分析方法,对单趾弹簧扣件pr弹条在使用过程中出现的断裂现象进行了分析。认为弹条断裂的原因是安装工艺不规范、导致弹条的工作弹程和应力超过设计状态引起的。 关键词:弹条断裂检验受力分析 abstract: the chemical analysis, metallographic examination, the hardness testing and stress analysis method, the single toe spring fastener pr play in use article appeared in the process of fracture is analyzed. think of the fracture reason is article installation process is not standard, lead to the work of the article cheng and stress caused by more than design state. key words: article the fracture inspection stress analysis 中图分类号:u213.2+1文献标识码:a文章编号: 1 前言 弹条是轨道结构的重要部件,其有效与否直接关系到行车的安全。它主要利用弹性变形时所储存的能量起到缓和机械上的震动和冲击作用,在动荷载下承受长期的、周期性的弯曲、扭转等交变应力。 某单位生产的弹条为单趾弹簧扣件pr弹条,其结构型式如图1

汽车悬置螺栓断裂失效分析

汽车悬置螺栓断裂失效分析 发表时间:2018-05-23T17:22:09.973Z 来源:《基层建设》2018年第6期作者:姚瑶 [导读] 摘要:本文分析了发动机安装支架和发动机支架的疲劳断裂问题。 江淮汽车集团股份有限公司乘用车制造公司安徽合肥 230601 摘要:本文分析了发动机安装支架和发动机支架的疲劳断裂问题。对螺栓的宏观、扫描电镜、化学成分和金相分析进行了分析,并对同一批次螺栓进行了力学性能试验。在各种物理化学试验的基础上,结合显微断裂和断裂机理,分析了螺栓的断裂原因。 关键词:汽车;悬置螺栓;失效分析 1前言 在开发多车发动机支架的过程中,将车辆用于发动机锻造钢悬架。在常规车辆的道路试验中,连接螺栓和螺栓断裂。本文从螺栓、螺柱断裂类型、螺栓连接强度计算和结构设计等方面分析了连接失效分析,并提出了改进建议。 2分析的内容 2.1分析样本 分析样品是一个完整的螺栓失效螺栓和失效螺栓。完整的螺栓是全新未使用的。 2.2分析内容 进行了断裂分析、化学成分分析、硬度测试、金相分析、扫描电镜和能谱测试。对完整的螺栓进行了化学成分分析、硬度测试、拉伸试验和金相分析。 2.2.1宏观断口分析。 断裂的连杆被分成两部分:螺纹部分的断裂部分留在连杆的深孔中,螺栓的另一部分暴露在外。打开螺丝孔后,将断头取出,螺孔内螺纹有外拉的痕迹。通过与相同模型的完全螺栓比较,发现螺栓的断裂位置位于螺纹的第一齿位置,螺纹部分没有明显的塑性变形。由于暴露螺钉的二次损伤,存在明显的多重冲击痕迹,杆体严重变形。虽然断裂具有一定的疲劳特性,但断裂边缘明显受到破坏。因此,暴露的螺杆部分没有断裂分析值。 2.2.2化学成分分析 样品采用螺栓,化学成分符合设计人员的技术要求。 2.2.3光学金相分析。 对失败螺栓基体的金相组织进行分析,组织相对均匀。在螺栓表面附近的组织形态学中未发现明显的脱碳。金相检查未发现异常。 2.2.4硬度分析。 结果表明,断裂螺栓的硬度与设计要求一致。 2.2.5SEM分析 采用扫描电子显微镜观察螺栓孔内的断裂情况,发现裂纹源位于断裂边缘。源区域面积较小,瞬时区域面积约为1/2。通过安装位置对准,线的螺纹有向外拉的位置。源区域的部分增大,疲劳阶段从断裂边缘开始,有许多与裂纹扩展方向垂直的小的疲劳条纹。 在源区没有明显的夹杂物和不均匀的冶金缺陷。随着裂纹扩展,疲劳条纹变得越来越长。在裂缝快速膨胀区,有一个明显的酒窝形状。扫描电镜(sem)在螺纹上观察,发现裂纹与断裂源部分平行。横截面的外表面有许多微裂纹。螺纹表面没有明显的加工缺陷。螺杆断裂为多个断口源,断裂源集中在截面的同一侧,锚杆和瞬态断裂带占整个断裂的比例(近1/2),这是典型的大应力低周疲劳断裂特征。通过对螺纹的观察,发现加工缺陷引起的应力集中,除了疲劳裂纹外,没有发现。因此,扫描电子显微镜(sem)的结果表明,连杆的断裂是在高单向弯曲循环加载作用下形成的。 3基于VDI2230方法的连接计算分析。 机械设计手册主要是指国家标准的螺栓连接计算方法。与VDI2230的计算方法相比,计算方法略粗糙,前考虑不全面。本文采用VD12230方法计算悬吊支架的连接,从表面处理、摩擦系数、结构尺寸、预紧力矩等方面分析了螺栓的连接强度。通过道路光谱采集,获得了悬吊支架的载荷和横向载荷,并得到了悬架的横向载荷。通过实验得到了连接结构的摩擦系数。 表一:摩擦系数 (1)使用VDI2230方法(MDESIGN分析软件)的帮助下,螺栓疲劳应力幅值是80mpa,电泳锻钢悬置支架的抗滑安全系数引擎联接螺栓底部SG=1.5,小于VDI2230SG1.8或更高的设计要求、安全系数;锻钢支架山经过电泳处理(相对结表面之间的摩擦系数是0.18),,通过嵌入预应力损失预紧的损失(VDI2230嵌入式)。因为螺栓利用率是72.3%,可以满足连接的安全系数增加扭矩。然而,螺栓的应力幅值很小,当扭矩接近屈服时,螺栓的应力幅值仍然高达71MPa。 (2)如果连接支撑面不进行电泳(螺栓的摩擦系数为0.23),则螺栓连接防滑的安全系数为SG=1.92,满足连接安全系数的要求;螺栓应力幅值为62MPa,不满足螺栓疲劳应力的要求。 (3)采用电导支架,然后螺栓扭矩增加,使螺栓计算利用率达到95%,螺栓疲劳应力幅值仍高达56mpa,仍然不能解决螺栓疲劳应力幅值过大的问题。结果表明,单纯增加预应力不能解决锚杆的疲劳破坏,表明锚杆应力幅值过大,导致螺栓疲劳断裂。 (4)通过增加基础凸集的3毫米直径,增加的面积的利用率95%结表面和螺栓,螺栓应力幅值明显降低,增加了底座直径的螺栓疲劳失效后问题解决了道路试验。指出零件结构的尺寸设计对螺栓连接的疲劳性能有重要影响,是提高螺栓连接在允许结构下的疲劳性能的一种方法。 (5)当然,在这种连接结构中,在弯矩作用下,3个紧固点分布,在弯矩作用下容易发生接触面积,在螺栓应力打开后会急剧增加,最终导致疲劳失效。如果你考虑在三角形分布中变化的扣分,可以有效地减少弯曲力,在三个螺栓上的载荷分布可以更均匀,防止单个螺栓发生早期疲劳断裂失效。然而,在发动机室空间中,很难进行有足够空间的三角形连接布置。

六西格玛改善质量成本的应用案例分析解读

六西格玛改善质量成本的应用案例分析 一、案例背景 S公司是中加合资企业.是通用汽车公司全球供应商,主要为上海通用、韩国通用大宇、北美通用供应自动变速箱中的传动阀,是汽车行业一级供应商。 在质量成本控制方面,S公司采用了六西格玛符合及非符合质量成本模型对质量成本进行监控。设立预防成本、鉴定成本、内部失效成本及外部失效成本四大一级科目。根据公司及所在汽车行业的具体情况,分别设立如下二级子科目。X年3月,因韩国通用大宇投诉的碰伤质量问题导致当月质量成本率超过10%,出现了明显异常,大大超出了6%的目标,也导致了当年截至3月质量成本平均率超标。 二、改善过程 从质量成本评估分析开始,细化、完善了数据统计系统。设立了外部分拣损失等三级细分科目。针对性的明细数据为指出质量成本超标的成因,提供了强大的数据支持。从案例定义及测量阶段开始,从后续的分析及改进阶段提供了指导方向。 针对碰伤缺陷特性,结合汽车行业QSB中的适宜的分析工具,递进式地采用了 4D过程要素检查法、鱼骨图多因素分析法、以及潜在失效模式的风险管理法识别出了引起碰伤的根本原因及其潜在风险。按照QSB中对改进措施的要求,从预防、预测、保护方面,有层次地采取了系统性改进措施,以从根本上消除缺陷所引起的潜在风险。 在重中之重的控制阶段,首先,利用潜在失效模式中的改进措施工具验证及重新评估了改进措施完成后的相关风险系数,为验证措施效果提供了风险管理保障;其次,将经验证的控制措施更新入了标准化作业规程,将措施进行了常态化、制度化;最后,利用QSB中的分层审核,把对控制措施的检查纳入了公司管理层对现场的日常检查机制。即巩固了改进效果的控制,也增强了管理层对改进方法和效果的理解,可谓实现了控制和质量意识宣传的双赢结果。

某SUV车型螺旋弹簧断裂失效分析及优化

龙源期刊网 https://www.doczj.com/doc/5912403075.html, 某SUV车型螺旋弹簧断裂失效分析及优化作者:李振杜阿雷刘超张树乾王猛 来源:《中小企业管理与科技·上旬刊》2015年第11期 摘要:某SUV车型在耐久试验过程中,螺旋弹簧上平端第一圈末处发生断裂。本文针对可能导致螺旋弹簧失效的机理逐一排查分析,找出螺旋弹簧断裂失效真因,进而对结构或者生产工艺进行优化提升。 关键词:螺旋弹簧;断裂;失效机理;优化提升 1 概述 某SUV车型在可靠性耐久试验中先后出现2次螺旋弹簧断裂(图1)的严重质量问题。 据对故障件分析,发生部位均出现上平端第一圈,现从螺旋弹簧材质检验、结构设计及工作角度、表面防腐处理工艺等方面进行分析,查明真因并进行优化。 2 原因排查 2.1 螺旋弹簧的材质问题 2.1.1 失效件的材料化验结果 2.1.2 硬度测试 用洛氏硬度计对断裂弹簧的硬度进行检验,其外层硬度为HRC49,中心处的洛氏硬度是HRC48,在技术要求的HRC47- HRC52范围内。 2.1.3 断口分析 由于弹簧断裂后又经历了一段氧化腐蚀时间,断面锈蚀严重,经高锰酸钾溶液清洗后的形貌如图2所示,由于锈蚀严重,清洗后仍有少量的氧化物附着,但仍可看出,裂纹起源 于弹簧内侧表面附近,断口与轴线呈45°螺旋状,无明显的塑形变形,断面上有粗大的裂纹扩展条棱,同时发现还有表面裂纹及内部裂纹。裂纹源表面的形貌如图3所示,裂纹源处的表面及其粗糙,有麻坑,而相邻其他地方较为平坦。由于清洗对断口真实面貌有一定的损伤,电镜下已分辨不出断裂机制,但仍留有有用的信息,图4为断裂源区形貌,断面分布有大量的氧化夹杂物,图5为瞬断区形貌,断口有夹杂物形成的孔洞。 2.1.4 金相分析

某轻卡板簧卷耳断裂的分析及改进

10.16638/https://www.doczj.com/doc/5912403075.html,ki.1671-7988.2018.20.033 某轻卡板簧卷耳断裂的分析及改进 吴林 (安徽江淮汽车集团股份有限公司,安徽合肥230022) 摘要:文章针对某轻卡板簧卷耳断裂问题首先进行故障件物理分析,然后建立CAE模型进行强度分析计算,得出分析结果。运用同样的方法进行分析和整改,然后进行试验验证,最终满足设计要求。 关键词:板簧卷耳;CAE分析;改进方法 中图分类号:U463 文献标识码:B 文章编号:1671-7988(2018)20-91-02 Analysis And Improvement on leaf spring rolling fracture of A Light Truck Wu Lin ( Anhui Jianghuai Automobile Group Corp., Ltd, Anhui Hefei 230022 ) Abstract:The article mainly describes analysis and improvement on a light truck’s leaf spring rolling fracture. Firstly, physical analysis is carried out, and then a CAE model is established for strength analysis. A conclusion is drawn based on the analysis result. Use the same method for analysis and rectification and test to meet design requirements. Keywords: Leaf spring rolling; CAE analysis; ways to improve CLC NO.: U463 Document Code: B Article ID: 1671-7988(2018)20-91-02 引言 钢板弹簧是汽车悬架中应用最广泛的一种弹性元件,它由若干片等宽但不等长的合金弹簧片组合而成的一根近似等强度的弹性梁。钢板弹簧最长的一片称为主片,其两端弯成卷耳,卷耳内装有衬套,通过弹簧销可将钢板弹簧和车架连接。钢板弹簧的主片卷耳受力较大,是主片的薄弱处,为了增加主片的卷耳强度,常将第二片弹簧也变成卷耳,包在主片卷耳的外面。 1 故障情况 某轻卡在强化路试验里程2865km时,出现左后钢板弹簧主簧前卷耳位置断裂的情况。该板簧采用上卷耳和1/4包耳结构。 图1 板簧卷耳断裂图示 2 故障件分析 2.1 金相分析 板簧材质为60Si2MnA,硬度为HRC43.5,满足标准要求。对板簧进行金相检测,样片为4级组织,脱碳层深为0.112mm,能够满足标准要求。 图2 板簧卷耳破损部位断面 2.2 断面分析 板簧截面尺寸:11×70mm,符合图纸要求。观察断口,见图2,断面基本与板簧母线垂直,上表面5点裂纹源,呈 作者简介:吴林,就职于安徽江淮汽车集团股份有限公司。 91

钢板弹簧失效分析数据库经验总结

钢板弹簧失效分析数据库经验总结 钢板弹簧提前失效是商用车常见的故障,顾客抱怨和索赔所占比重较大,严重影响公司的声誉和经济利益。为维护公司声誉和对产品的分析改进,失效分析具有重要意义! 钢板弹簧的失效分析没有技术标准可参考,依据的多是行业内各供应商自己积累的经验。加上主机厂替换后的失效件退回周期长,断口锈蚀磨损严重不清晰,商用车在使用中负载和路况情况复杂,给失效分析带来一定困难。因此,失效分析很难给予明确的定性结论,也很难得到顾客认可。 鉴于以上两点,失效分析操作者的经验尤为重要!实验中心从16年至18年5月钢板弹簧失效分析共做75份191件,历经四人的工作经历,在钢板弹簧失效分析方面,积累了一定的经验,从中找到了一些规律性的失效模式。有必要对钢板弹簧失效分析做经验总结和建立数据库,成为公司的技术数据,为公司生产和质量改进、顾客反索赔提供技术依据。 通过统计和分析,对钢板弹簧失效件断口分为如下几种特征: 一、从断口来划分:分为断口齐整和断口不齐整(呈锯齿状或高低不平)两种。 从统计看,装车返回的失效件多为断口齐整情况,约占90%;台架疲劳试验件断口多为断口不齐整情况。分析其原因,笔者认为:装车返回失效件受力状态基本为常温交替疲劳循环,其表现为穿晶断裂,断口齐整;而台架疲劳试验受力状态为受力时间集中,连续受高应力且工作温度高(一般工件可达150-250℃),受力产生的疲劳裂纹沿晶界结合力弱的部位扩展,也就是说台架疲劳试验受力状态为非常温交替疲劳循环,其表现为非穿晶断裂,断口不齐整。

二、从疲劳源来划分:分为一点;两点或三点;多点或台阶纹。 1、一点:断口多为有一点疲劳源,约占65%。一点在板簧边缘左侧或右侧R角附近最多,在中间部位的少。 2、两点或三点:约占20%,分散分布。 3、多点或台阶纹:约占15%,集中分布,在断口上可看到高低不平平行分布的台阶纹。 三、从断口形成的纹理来划分:这是本数据库经验总结的重要部分,因为不同的受力情况会导致断口形成不同纹理,对于成分、金相、硬度对断口形貌的影响因素很小,可作为相同的理想状态不做分析。本文做统计和分析主要对此做总结。 在总结前,对几个术语做说明: 1、疲劳:材料、零件和构件在循环加载下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、或使裂纹进一步扩展直到完全断裂的现象。 2、低周疲劳和高周疲劳是可以放在一起讨论的概念。据循环周次来判定,一般总周次大于10的5次方为高周疲劳,小于10 的4次方为低周疲劳,但一般认为10的2次方到10的5次方为低周疲劳。对于板簧断裂失效件尤其退回件而言,真正的失效疲劳次数无从知道,因此低周疲劳和高周疲劳只是相比较而言。 高周疲劳一般在部件受到较小的交变应力时发生,疲劳寿命较长。由于失效持续时间较长,因此断口纹理明显。 低周疲劳一般在构件受到较高应力或者由于存在应力集中区域,局部应力超过材料的屈服极限,形成较大的塑性区,在交变应力作用下,塑性

弹簧疲劳断裂案例分析

弹簧疲劳断裂案例分析 一2引言 现代工业社会的不断进步,人类生活质量不断提高,对工业产品各项功能的“安全性”、“环保型”、“舒适性”程度要求越来越高。弹簧作为工业产品中不可缺少的基础元件,弹簧的性能直接关系到工业产品整体的质量水平的高低。关于弹簧的问题中,经常碰到和最终要解决的问题是“弹簧疲劳断裂及应力松弛”。这是弹簧工作过程中失效的两种主要形式。弹簧工作中后者更为普遍。应力松弛及弹性衰减的现象意味着弹簧弹性功能的部分丧失,甚至全部丧失。由此可见,提高弹簧疲劳寿命研究应力松弛和弹性衰退的规律及影响因素,对研制新的弹簧材料及抗应力处理技术,对不断提高企业和行业竞争力,对国民经济的发展,不断提高我国弹簧产品及弹性材料研制的科学技术水平,都有重大意义。 二2弹簧的疲劳断裂 通常疲劳断口是由疲劳源、裂纹扩展区、最后瞬时断裂区三部分组成。疲劳源有时非常清楚,有时则不清晰。裂纹扩展区和最后瞬时断裂区则是主要组成部分。 裂纹扩展区的特征:表面比较平滑,是裂纹缓慢扩展、裂纹面相互接触及摩擦造成的结果。它是一种脆性的断裂特征,裂纹扩展方向与最大拉应力方向垂直。通常可以用肉眼发现断口上呈现海滩状、贝壳状或年轮状的花样。可以根据裂纹扩展方向与海滩状条纹相垂直的现象及其曲率半径最小的特征来确定弹簧断裂的疲劳源。 瞬时断裂区特征:疲劳裂纹不断扩展到一定程度后,有效的承载面积不断减少,相应的工作应力逐渐增大,当该应力超过了弹簧的断裂应力时,弹簧就会瞬时断裂。其特征是断口比较粗糙、凹凸不平。 疲劳断裂的微观特征:疲劳裂纹大多数在晶粒边界、相界、夹杂物和脆性碳化物之间开始生成,然后逐渐向内扩展。疲劳断口的微观特征主要表现在裂纹扩展区上。扩展区的主要微观特征是疲劳条带。疲劳条带有以下特征:①条带的形态是起伏或涟波状;②每一条带代表一次循环载荷;③由条带可以断定裂纹前沿 线在前进时的位置;④条带有脆性和塑性的。 三2案例分析 (1)轿车气门弹簧断裂 ①事故描述:气门弹簧是汽车发动机的重要零部件,它不仅控制发动机气门的开闭,还是极为重要的安全部件,故各汽车厂商对发动机气门弹簧的质量都极为重视,内燃机气门弹簧技术条件JB/T 10591-2007要求其台架疲劳试验2300万次不断裂。某型号轿车在出厂后行驶199km时出现发动机异响、怠速抖动现象,经检查后发现一只气门弹簧断裂。

相关主题
文本预览
相关文档 最新文档