当前位置:文档之家› 合成氨变换工段设计说明

合成氨变换工段设计说明

合成氨变换工段设计说明
合成氨变换工段设计说明

工商职业技术学院

毕业论文

题目:合成氨变换工段设计

作者:焦鹏丽学号:2101100125系别:化工工程系

专业:应用化工技术

指导教师:晋萍专业技术职务讲师

2012 年1月1

工商职业技术学院

毕业设计说明书

题目:合成氨变换工段设计

作者:焦鹏丽学号:2101100125

系别:化工工程系

专业:应用化工技术

指导教师:晋萍专业技术职务讲师

2012 年1月1

摘要:本文是关于煤炭为原料一氧化碳变换工段初步设计。在合成氨的生产中,一氧化碳变换反应是非常重要的反应。用煤炭制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。

关键词:煤炭;一氧化碳变换;中温变换炉;流程图

结论中提到完成了设计宗指,但你的设计宗指到底是什么?没有表达出来。结论中也没有对你的设计做一个总结,你到底做这个设计的做用是什么?解决了什么问题?目录中二级目录应比一级目录再缩进两格,下级目录同理。

目录

第一章绪论 0

1.1 氨的性质和用途 0

1.1.1 氨的性质 0

1.1.2 氨的用途 0

1.2 我国合成氨生产现状 (1)

1.3 一氧化碳变换在合成氨中的意义 (1)

第二章变换流程及工艺条件 (2)

2.1 变换工艺原理 (2)

2.1.1变换反应的热力学分析 (2)

2.1.2 变换反应的动力学分析 (2)

2.2变换工艺的选择 (3)

2.3 工艺条件 (4)

2.3.1 温度 (4)

2.3.2 压力 (5)

2.3.3 水汽比 (5)

第三章工艺计算 (6)

3.1 基本工艺数据的确定 (6)

3.1.1水气比的确定 (6)

3.2中变炉一段催化床层的物料衡算 (7)

3.2.1 中变炉一段催化床层的物料衡算 (7)

3.2.2中变炉一段催化床层的热量衡算 (8)

3.2.3 中变一段催化剂操作线的计算 (11)

3.3中间冷凝过程的物料和热量计算 (12)

3.4中变炉二段催化床层的物料与热量衡算 (13)

3.4.1中变炉二段催化床层的物料衡算: (13)

3.4.2中变炉二段催化床层的热量衡算 (15)

3.4.3中变二段催化剂操作线计算 (16)

3.5 主换热器的物料与热量的衡算 (18)

3.6 调温水加热器的物料与热量衡算 (19)

3.7低变炉的物料与热量衡算 (20)

3.7.1低变炉的物料衡算 (20)

3.7.2低变炉的热量衡算 (22)

3.7.3 低变催化剂操作线计算 (23)

3.7.4 最佳温度曲线的计算 (24)

第四章设备计算 (25)

4.1中变炉的计算 (25)

4.1.1催化剂用量的计算 (25)

4.1.2设备直径与管板的确定 (27)

结论 (28)

致 (29)

参考文献 (30)

第一章绪论

氨是一种重要的化工产品,主要用于化学肥料的生产,它不仅是所有食物和肥料的重要成分,也是所有药物直接或间接的组成。由于氨的广泛用途,氨是世界上产量最多的无机化合物之一。合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

1.1 氨的性质和用途

1.1.1 氨的性质

氨的分子式NH

,在标准状态下是无色气体,比空气轻,具有特殊的刺激性臭味。

3

人们在大约100cm/m氨的环境中,每天接触8H会引起慢性中毒。

物理性质:氨极易溶于水,溶解时放出大量的热,可产生含NH

15%~30%的氨水,氨水

3

溶液是碱性,易挥发。液氨或干燥的氨气对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等金属有腐蚀作用。

氨与空气或氧的混合物在一定浓度围能发生爆炸,有饱和水蒸气存在时,氨-空气混合物的爆炸界限较窄。

化学性质:氨在常温时非常稳定,在高温、电火花或紫外线光的作用下可分解为氮和氢,其分解速度在很大程度上与气体接触的表面性质有关。

氨是一种可燃性物质,自燃点为630℃,一般较难点燃。

氨与空气或氧的混合物在一定围能够发生爆炸。常压,常温下的爆炸围分别为15.5%~82%(氧气)。

氨易与很多物质发生反应,例如在铂催化剂作用能与氧反应生成NO。

1.1.2 氨的用途

氨在国民经济中占有重要的地位。现在大约有80%的氨用来制造化学肥料,其余作为生成其它化工产品的原料。

除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素,磷酸氨,硝酸氨,硫酸氨,氨水以及含氮混肥和复肥为原料的。

氨在工业上主要用来制造炸药和各种化学纤维及塑料。从氨可以制取硝酸,进而

再制造硝酸铵,硝化甘油,三硝基甲苯和硝基纤维素等。在化纤和塑料工业中,则以氨、硝酸和尿素等作为氮源,生产己酰胺、尼龙6单体、人造丝、丙烯晴、酚醛树脂和尿醛树脂等产品。

氨的其它工业用途也十分广泛,例如,作用制冰、空调、冷藏等系统的制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药和生物化学方面用做生产磺胺类药物、维生素、蛋氨酸和其它氨基酸等等。

1.2 我国合成氨生产现状

2002年,我国合成氨实际产量36750 k/ta,2003年生产能力为41600k/ta,总生产能力和产量均居世界第一位,但单系列装置规模较小,合成氨装置平均规模为50kt/a。目前我国共有合成氨装置800余套,其中300k/ta以上大型成氨生产装置34套(其中一套为400k/ta),设计总生产能力为109000k/ta,实生产能力为100000k/ta,约占中国大陆合成氨总生产能力的22%。300k/ta以上大型合成氨生产装置,我国共有小合成氨设备700多套,生产能力为28000k/ta,约占中国大陆合成氨总生产能的66%。

乌鲁木齐石油化工建设的450k/ta合成氨装置,是目前国单套生产能力最大的合成氨装置。

1.3 一氧化碳变换在合成氨中的意义

用不同燃料制得的合成原料气,均含有一定量的一氧化碳。一般固体燃料制得的水煤气中含CO35%—37%,半水煤气中含CO25%—34%,天然气蒸汽转化制得的转化气中含CO较低,一般为12%—14%,一氧化碳不是合成氨生产所需要的直接原料,而且在一定条件下还会与合成氨的铁系催化剂发生反应,导致催化剂失活。因此,在原料气使用之前,必须将一氧化碳清除。

清除一氧化碳分两步进行,第一步是大部分CO先通过变换反应:

CO + H

2O(g)= CO

2

+ H

2

这样既能把一氧化碳变为易于清除的二氧化碳而且又制得等量的氢,而所消耗的只是廉价的水蒸气。因此,一氧化碳变换既是原料气的净化过程,又是原料气制造的

继续。第二步是少量残余的一氧化碳再通过其他净化方法加以脱除。

第二章 变换流程及工艺条件

2.1 变换工艺原理

一氧化碳是氨合成反应的毒物,在原料气中含量为13%-30%,一氧化碳变换主反应为:

CO + H 2O = CO 2 + H 2 (2-1)

通过上述反应,CO 转化为较易被消除的CO 2并获得宝贵的H 2,因而一氧化碳变换既是气体的净化过程,又是原料气制取的继续。最后,少量的CO 再通过其他净化法加以脱除。

此外,一氧化碳与氢之间还可发生下列反应:

CO + H 2 = C + H 2O (2-2) CO + 3H 2 = CH 4 + H 2O (2-3)

但是,由于变换所用催化剂对反应式(2-1)具有良好的选择性,从而抑制了其他副反应的发生。

变换过程中还包括下列反应式:

2H 2 + O 2 = 2H 2O (2-4) 2.1.1变换反应的热力学分析

变换反应是一个放热的可逆反应,反应的热效应视H 2O 的状态而定,若为液态水,则是微吸热反应;如是水蒸汽则为放热反应,通常都是以水蒸气为准。

放热反应放出的热量随温度的升高而降低。不同温度下的反应热可以用下式计算:

△H=??+?ΘT

p dT C H

298

298

2.1.2 变换反应的动力学分析

(1)变换反应的平衡常数

由于CO 变换反应是在常压或压力不高的条件下进行的,故计算平衡常数时用各组分分压表示便可。

K p =

222222H co H co H co H co y y y y p p p p ??=??

只需要反应焓变与温度的关系就可根据 )2/(/RT H dT dLnKp ΘΘ?= 导出平衡常数与温度的关系:

lgK p =3994.704/T+12.220227lgT-0.004462T+0.67814×10-6T 4-36.72508 式中:p CO 、p H 2

O 、p CO 2

、p H 2

——分别为CO 、H 2 O 、CO 2和H 2各组分的分压;

y CO 、y H 2

O 、y CO 2

、y H 2

——分别为CO 、H 2 O 、CO 2和H 2 摩尔分数。

2.2变换工艺的选择

变换工艺主要有4种:全中变、中串低、全低变和中低低。

合理选择变换工艺应考虑以下因素:半水煤气、水和蒸汽的质量;半水煤气中硫化氢含量;变换气中CO 含量要求;对变换后续工段的影响;企业现有的管理水平和操作水平。

中变段间煤气冷激与中变炉喷水冷激两种中低低工艺流程各有优缺点。现比较如:

A 、节能效果:段间喷水热回收率高,直接将段间高位能转化为蒸气,增加了汽气比,降低了蒸汽消耗,节能效果比段间煤气冷激要好。

B 、设备:段间喷水冷激需在中变炉设置蒸发层和喷头,这样与煤气冷激相比中变炉的结构就更为复杂,设备高度亦需增加,煤气冷激流程有部分半水煤气不经过主热交,因此主热换热面积也比炉喷水流程要小。

C 、操作运行:煤气冷激流程操作简单,但需防止中变下段发生偏流,造成床层漏氧,引起低变一段催化剂中毒失活,炉喷水冷激操作要求高,冷激水最好能用脱氧软水,喷水冷激装置既要达到所需的喷淋量,又要保证雾化好,以免中变下段催化剂粉化和结块。

通过以上比较,中变炉喷水冷激流程具有节能,运行费用低等优点,中变段间煤气冷激流程具有操作简单、投资省等优点。因此本设计采用中变-低变串联流程。流程图如下:

图2–1

2.3 工艺条件

2.3.1 温度

变换反应存在最佳温度,如果整个反应过程能按最佳温度曲线进行,则反应速率最大,即相同的生产能力下所需催化剂用量最少。但是实际生产中完全按最佳温度曲线操作是不现实的。首先,在反应初期,x很小,但对应的Tm很高,且已超过了催化剂的耐热温度。而此时,由于远离平衡,反应的推动力大,即使在较低温度下操作仍有较高的反应速率。其次,随着反应的进行,x不断升高,反应热不断放出,床层温度不断提高,而依据最适宜曲线,Tm却要求不断降低。因此,随着反应的进行,应从催化床中不断移出适当的热量,使床层温度符合Tm的要求。生产上控制变换反应温度应遵循如下两条原则。

根据催化床与冷却介质之间的换热方式的不同,移出方式可分为连续换热和多段换热式两大类。对变换发应,由于整个反应过程变换率较大,反映前期与后期单位催化床所需排出的热量想差甚远,故主要采用多段换热式。此类变换炉的特点是反应过程与移热过程分开进行。

对于低温过程,由于一氧化碳反应量少,无需从床层移热。其温度控制除了必须在催化剂的活性温度围操作外,低限温度必须高于相应条件下的水蒸汽露点温度约300C。

变换反应是可逆放热反应。从反应动力学的角度来看,温度升高,反应速率常数增大对反应速率有利,但平衡常数随温度的升高而变小,即 CO平衡含量增大,反应推动力变小,对反应速率不利,可见温度对两者的影响是相反的。

而存着最佳反应温对一定催化剂及气相组成,从动力学角度推导的计算式为

Tm=

1

2

12ln 1E E E E RT T e e

-+

式中Tm 、Te —分别为最佳反应温度及平衡温度,最佳反应温度随系统组成和催化剂的不同而变化。 2.3.2 压力

压力对变换反应的平衡几乎没有影响,但是提高压力将使析炭和生成甲烷等副反应易于进行。对平衡而言,加压并无好处。但从动力学角度,加压可提高反应速率。从能量消耗上看,加压也是有利。由于干原料气摩尔数小于干变换气的摩尔数,所以,先压缩原料气后再进行变换的能耗,比常压变换再进行压缩的能耗低。具体操作压力的数值,应根据中小型氨厂的特点,特别是工艺蒸汽的压力及压缩机各段压力的合理配置而定。一般小型氨厂操作压力为0.7-1.2MPa,中型氨厂为1.2-1.8Mpa 。本设计的原料气由小型合成氨厂天然气蒸汽转化而来,故压力可取1.7Mpa 。 2.3.3 水汽比

水蒸汽比例一般指H 2O/CO 比值或水蒸汽/干原料气.改变水蒸汽比例是工业变换反应中最主要的调节手段。

为了尽可能地提高CO 的变换率,防止副反应的发生,工业上是在水蒸气过量下进行反应的。因此,应该充分利用变换的反应热,直接回收蒸汽,以降低水蒸气的消耗。此外,合理确定CO 最终变换率以及催化剂床层的段效,保持良好的段间冷却效果,都可以促进水蒸气消耗的降低。

中(高)变换时适宜的水蒸汽比例一般为:H 2O/CO=3~5,经反应后,中变气中H 2O/CO 可达15以上,因此,不必再添加蒸汽即可满足低温变换的要求。

第三章工艺计算

已知条件如下表:

计算基准:1吨氨

计算生产1吨氨需要的变换气量:(1000/17)×22.4/(2×22.56)=2920.31 M3(标) 因为在生产过程中物料可能会有损失,因此变换气量取2962.5 M3(标)

年产10万吨合成氨生产能力(一年连续生产350天):

每小时的生产量:100000÷350÷24=11.9T/h

要求出中变炉的变换气干组分中CO%小于2%。

进中变炉的变换气干组分如下表:

假设进中变炉的变换气温度为330℃,取变化气出炉与入炉的温差为35℃,出炉的变换气温度为365℃。

进中变炉干气压力

P=1.75Mpa.

3.1 基本工艺数据的确定

3.1.1水气比的确定

O/CO=3.5

考虑到是天然气蒸汽转化来的原料气,所以取H

2

=3.5 V CO=3.5*338.32=1184.113m3(标) ,n(水)= V(水)/22.4=52.862kmol

故V

(水)

因此进中变炉的变换气湿组分如下表。

含量% 6.86 8.16 39.80 16.12 0.24 0.27 28.56 100

3.2中变炉一段催化床层的物料衡算

已知条件:

进中变炉一段催化床层的变换气的温度为330℃ 进中变炉一段催化床层的变换气湿组分如下表:

3.2.1 中变炉一段催化床层的物料衡算

假设CO 在一段催化床层的实际变换率为60% 假使O 2 与H 2 完全反应,O 2 完全反应掉 故在一段催化床层反应掉的CO 的量为:

60%×338.318=202.9908 M 3(标) = 9.062kmol

出一段催化床层的CO 的量为:

338.318-202.9908=135.3272 M 3(标) =6.0414kmol

故在一段催化床层反应后剩余的H 2的量为:

1650.409+202.9908-2×9.77=1833.8478 M 3(标)=81.868kmol

故在一段催化床层反应后剩余的CO 2的量为:

284.4+202.9908=487.3908 M 3(标)=21.758kmol

故出中变炉一段催化床层的变换气干组分的体积:

V 总(干)=V CO +V CO2+V H2+V N2+V NH4

=135.3272+487.3908 +1833.8478+668.34+11.26

=3136.1658 M 3(标)

故出中变炉一段催化床层的变换气干组分中CO 的含量:

CO %=1658.31363272.135=4.32%

同理得:

CO 2%=

1658.31363908

.487=15.54%

H 2%=1658.31368478.1833=58.47%

N 2%=1658

.313634

.668=21.31%

CH 4%=

1658

.3136258

.11=0.36%

所以出中变炉一段催化床层的变换气干组分如下表:

表3–5:

剩余的H 2O 的量为:

1184.113-202.9908+2×9.776=1000.6622 M 3(标) = 44.6724kmol

故出中变炉一段催化床层的变换气湿组分的总体积:

V 总(湿)= V CO +V CO2+V H2+V N2+V NH +V H2O

135.3272+487.3908+1833.8478+668.34+11.258+1000.6722

=4136.838 M 3(标) =184.68kmol 故出中变炉一段催化床层的变换气湿组分中H 2O 的含量

H 2O %=

838

.41366722

.1000 =24.19%

故出中变炉一段催化床层的变换气湿组分中CO 2的含量

CO 2%=

38.841369

.3487×100=11.78%

同理可得: CO %=38.841363

.3135×100=3.27%

H 2%=38.841364

.81833×100=44.33%

N 2%=38.841364

.3668×100=16.16%

CH 4%=38

.841365

.211×100=0.27%

所以出中变炉一段催化床层的变换气湿组分的含量如下表:

3.2.2中变炉一段催化床层的热量衡算

以知条件:进中变炉一段催化床层的变换气温度:330℃出中变炉一段催化床层的变换气温度为:415℃

可知反应放热Q:在变换气中含有CO,H

2O,O

2

,H

2

这4种物质会发生以下2种反应:

CO + H

2O = CO

2

+ H

2

(3–1)

O2 + 2H

2 = 2 H

2

O (3–2)

以上这2个反应都是放热反应。

根据《小合成氨厂工艺技术与设计手册》可知为简化计算,拟采用统一基准焓(或称生成焓)计算。以P=1atm,t=25℃为基准的气体的统一基准焓计算式为:

H T =△H0

298

=Cpdt

式中: H

T

——气体在 T298在T(K)的统一基准焓,kcal/kmol(4.1868kJ/kmol);

△H0

298

——该气体在25℃下的标准生成热, kcal/kmol(4.1868kJ/kmol);

T——绝对温度,K;

Cp ——气体的等压比热容,kcal/(kmol.℃)[4.1868kJ/(kmol.℃)]

气体等压比热容与温度的关系有以下经验式:

Cp=A

0+A

1

×T+A

2

×T2+A

3

×T3+……

式中A

0、A

1

、A

2

、A

3

……气体的特性常数

将式代入式积分可得统一基准焓的计算通式: Ht=a

0+a

1

×T+a

2

×T2+a

3

×T3+a

4

×T4

式中常数a

0、a

1

、a

2

、a

3

、a

4

与气体特性常数及标准生成热的关系为:

a

1=A

, a

2

=A

1

/2, a

3

=A

3

/4, a

4

=A

3

/4

a 0=△H0

298

-298.15a

1

-298.152×a2-298.153×a

3

-298.154×a

4

采用气体的统一基准焓进行热量平衡计算,不必考虑系统中反应如何进行,步骤有多少,只要计算出过程始态和末态焓差,即得出该过程的总热效果。

△H=(∑ni×Hi)

始-(∑ni×Hi)

式中△H——过程热效应,其值为正数时为放热,为负数时系统为吸热,kcal;(4.1868kJ);

ni --- 始态或末态气体的千摩尔数,kmol;

Hi —始态温度下或末态温度下气体的统一基准焓,kcal/kmol,(4.1868kJ/kmol);

现将有关气体的计算常数列于气体统一基准焓(通式)常数表

计算O 2的基准焓:

根据基准焓的计算通式:Ht=a 0+a 1×T+a 2×T 2+a

3×T 3+a 4×T 4

在415℃时T=415+273=683K 将O 2的常数带入上式得:

Ht=1.90318×103+5.80298×683+2.15675×10–3×6832-7.40499×10–7×6833 +1.08808×10–10

×683

4

=6699.742kcal/kmol=28050.412 kJ/kmol

同理根据以上方法计算可得变换气的各个组分的基准焓列于下表:

放热: CO +H 2O=CO 2+H 2 (3–3) △H 1=(∑Hi )始-(∑Hi )末

=(-376630.620+11405.768)-(-98953.987-228191.759) =-38079.106kJ/kmol

Q1=n CO ×△H1=9.062×(-38079.106) =-345072.859kJ

O 2 + 2H 2= 2 H 2O (3–4)

同理:△H 2=(∑Hi )始-(∑Hi )末

=2 ×(-228191.758)-(11405.768×2+28050.480)

= -523890.244 kJ/kmol

Q 2= n O2×△H 2=0.44×(-507245.532) =-230511.707kJ

气体反应共放热:

Q=Q 1+Q 2=345072.859+230511.707=575584.566kJ 气体吸热Q3

根据《物理化学教程》知CO, H2, H2O, CO2, N 2 ,可用公式:Cp=a+b+CT -2来计算热容,热容的单位为kJ/(kmol.T )。结果同表3–7

CH 4可用公式:Cp=a+b+CT 2+dT 3来计算热容,结果同表3–8。 则在在415℃时T=683K 时计算结果如下表:

所以平均热容:

Cpm=∑(Yi*Cp )=0.0327×31+0.1178×48.2+

0.4433×29.6+0.2419×37.2+0.1616×30.7+0.0027×56.1 =33.92 KJ/(kmol.T ) 所以气体吸热Q3=33.9×184.68×(415-330)

=532469.376kJ

假设热损失Q4(一般热损失都小于总热量的10%) 根据热量平衡的:

Q= Q3 +Q4

Q4=43115.190 kJ 3.2.3 中变一段催化剂操作线的计算

中变一段催化剂变换率及热平衡计算结果知: 中变炉入口气体温度 330℃ 中变炉出口气体温度 415℃ 中变炉入口CO 变换率 0 中变炉出口CO 变换率 60%

由此可作出中变炉催化剂反应的操作线如下:

0102030405060708090100300

350

400450

温 度(℃)

C O 转化率 X p

图3–1

3.3中间冷凝过程的物料和热量计算

此过程采用水来对变换气进行降温。

以知条件:变换气的流量:184.68koml

设冷凝水的流量:X kg

变换气的温度:415℃

冷凝水的进口温度:20℃

进二段催化床层的温度:353℃

操作压力:1.75MPa

冷凝水吸热Q1:据冷凝水的进口温度20℃查《化工热力学》可知h

=83.96kJ/kg

1

根据《化工热力学》可知:

冷凝水要升温到353℃,所以设在353℃, 626K,1750kp时的焓值为h

对温度进行查法:

1600kpa时: (626-600 )/ (h-3693.2)=(700-626)/(3919.7-h) h=3752.09 kJ/kg

1800kpa时:(626-600)/(h- 3691.7)=(700-626)/( 3918.5-h)

h=3750.67 kJ/kg

再对压力使用查法得在353℃, 626K,1750kp时的焓值h为:

(1750-1600)/(h-3752.09)=(1800-1750)/(3750.67-h)

故:h=3751.02 kJ/kg

= X( 3751.02-83.96)

Q

1

变换气吸热Q

2

根据表3–7和表3–8得:

所以Cpm= ∑Yi*Cp =33.92 kJ/(kmol.T)

Q2=184.68×33.92×(415-353)=388389.4272 kJ

取热损失为0.04 Q

2

根据热量平衡:

0.96 Q

= X(3751.02-83.96)

2

X=101.677kg = 5.649 kmol

= 126.54M3(标)

水的量为:126.54+1000.6742=1127.2142M3(标) = 50.3220 kmol 所以进二段催化床层的变换气组分如下表:

3.4中变炉二段催化床层的物料与热量衡算

已知进中变炉二段催化床层的变换气干组分如下表:

表3–13:

3.4.1中变炉二段催化床层的物料衡算:

设中变炉二段催化床层的转化率为0.74(总转化率)

所以在CO的变化量为: 338.318×0.74=253.7385M3(标)

= 11.3276 kmol

在中变炉二段催化床层的转化的CO的量为:

135.32-(338.318-253.7385)=50.7405 M3(标)

= 2.27 kmol

出中变炉二段催化床层的CO的量为:

135.32-50.7405=84.58667M3(标)

=3.7762 kmol

的量为:

故在二段催化床层反应后剩余的CO

2

487.39+50.7405= 538.1313M3(标)

=24.0237 kmol

故在二段催化床层反应后剩余的H 2的量为:

1833.84+50.7405= 1884.5883M 3(标)

=84.1334 kmol

所以在二段催化床层反应后的变换气总量:

V 总(干)=84.58667+538.1313+1884.5883+668.34+11.26=3186.906M 3(标) =142.2726 kmol

所以出中变炉二段催化床层的变换气干组分如下表:

表3–14:

故在二段催化床层反应后剩余的H 2O 的量为:

1127.2042-50.7405 = 1076.464M 3(标) =48.056 kmol

故出中变炉二段催化床层的变换气湿组分中CO 的含量:

CO %=7

.342639

.584

=2.01%

同理得:

CO 2%=

7

.342633

.1538

=12.62% H 2%=

7.342639

.51884

=44.20%

N 2%=

7.342634

.3668

=15.68%

CH 4%=

7.3426326

.11

=0.26%

H 2O %=

7

.3426364

.41076

=25.25

合成氨变换工段车间布置图Word版

摘要 变换工段是指一氧化碳与水蒸气反应生成二氧化碳和氢气的过程。一氧化碳变换既是原料气的净化过程,又是原料气制备的继续。目前,变换工段主要采用中变串低变的工艺流程。本设计针对中低温串联变换流程进行设计,对流程中各个设备进行物料、能料衡算、以及设备选型,并绘制了带控制点的流程图。 关键词:合成氨,变换,工艺设计,设备选型

30kt/a Retention Of Ammonia Synthesis Process Preliminary Design Abstact Transform section refers to the reactions that produce carbon dioxide carbon monoxide and hydrogen and water vapor in the process. Carbon monoxide transformation is the gas material purification process, and the preparation of gas material to continue. At present, the transformation mainly by grow string sections of variable process low. This design of low-temperature series transformation process of process design, materials, each device can material calculation, and the equipment selection, and plotted take control in the flow chart and variable furnace equipment assembly drawing. Keywords:ammonia, transformation, process design,equipment choice

年产3000吨丙烯氰(AN)合成工段换热器工艺设计1

年产3000 吨丙烯氰合成工段换热器工艺设计

目录 一、设计说明 (3) 1.1 概述 (3) 1.2丙烯腈生产技术的发展概况 (3) 1.2.1国外的发展情况 (3) 1.2.2国内的发展情况 (4) 1.3 世界X围内产品的生产厂家、产量 (6) 1.4世界X围内生产该产品的所有工艺及其分析 (7) 1.4.1环氧乙烷法 (7) 1.4.2 乙炔法 (7) 1.4.3丙烯氨氧化法 (7) 1.5设计任务 (8) 二、生产方案 (8) 2.1 工艺技术方案及原理 (8) 2.2 主要设备方案 (9) 2.2.1催化设备 (9) 2.2.2控制系统 (10) 三、物料衡算和热量衡算 (10) 3.1 生产工艺及物料流程 (10) 3.2 小时生产能力 (14) 3.3 物料衡算和热量衡算 (14) 3.3.1反应器的物料衡算和热量衡算 (14) 3.3.2废热锅炉的热量衡算 (17) 3.3.3空气饱和塔物料衡算和热量衡算 (18) 3.3.4 氨中和塔物料衡算和热量衡算 (21) 3.3.5换热器物料衡算和热量衡算 (27) 3.3.6丙烯蒸发器热量衡算 (32) 3.3.7丙烯过热器热量衡算 (33) 3.3.8氨蒸发器热量衡算 (33) 3.3.9气氨过热器 (34) 3.3.10 混合器 (34) 3.3.11 空气加热器的热量衡算 (35) 3.3.12吸收水第一冷却器 (36) 3.3.13 吸收水第二冷却器 (36) 四、主要设备的工艺计算 (37) 4.1 空气饱和塔 (37) 4.2 水吸收塔 (40) 4.3 合成反应器 (43) 4.4 废热锅炉 (45) 五、环境保护要求 (46) 5.1丙烯腈生产中的废水和废气及废渣的处理 (46) 六、参考文献 (50) 1设计说明

年产五万吨合成氨合成工段工艺设计设计

年产五万吨合成氨合成工段工艺设计设计

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (2) 1.1 氨的基本用途 (2) 1.2 合成氨技术的发展趋势 (2) 1.3 合成氨常见工艺方法 (2) 1.3.1 高压法 (2) 1.3.2 中压法 (2) 1.3.3 低压法 (2) 1.4 设计条件 (2) 1.5 物料流程示意图 (2) 2 物料衡算 (2) 2.1 合成塔入口气组成 (2) 2.2 合成塔出口气组成 (2) 2.3 合成率计算 (2) 2.4 氨分离器出口气液组成计算 (2) 2.5 冷交换器分离出的液体组成 (2) 2.6 液氨贮槽驰放气和液相组成的计算 (2) 2.7 液氨贮槽物料衡算 (2) 2.8 合成循环回路总物料衡算 (2) 3 能量衡算 (2) 3.1 合成塔能量衡算 (2) 3.2废热锅炉能量衡算 (2) 3.3 热交换器能量衡算 (2) 3.4 软水预热器能量衡算 (2) 3.5 水冷却器和氨分离器能量衡算 (2) 3.6 循环压缩机能量衡算 (2) 3.7 冷交换器与氨冷器能量衡算 (2) 3.8 合成全系统能量平衡汇总 (2) 4 设备选型及管道计算 (2) 4.1 管道计算 (2) 4.2 设备选型 (2) 结论 (2) 致谢 (2) 参考文献 (2)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步 骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工 段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H 2 73.25%,N 2 25.59%, CH 4 1.65%,Ar 0.51%合成操作压力为31MPa, 合成塔入口气的组成为NH 3(3.0%),CH 4 +Ar(15.5%),要求合成塔出口气中 氨的摩尔分数达到17%。通过查阅相关文献和资料,设计了年产五万吨 合成氨厂合成工段的工艺流程,并借助CAD技术绘制了该工艺的管道及 仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡 算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和 材质进行了选择。 关键词:物料衡算,氨合成,能量衡算

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

生产管理--年产五万吨合成氨变换工段工艺初步 精品

四川理工学院 毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业无机化工 011 指导教师 教研室主任 学生姓名 接受任务日期 20XX年2月28日 完成任务日期 20XX年6月1日

四川理工学院 毕业论文任务书 材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计 起迄日期20XX年 2 月25 日起至20XX 年 6 月1日止 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期20XX 年 2 月25 日 接受任务日期20XX 年 2 月25 日 完成任务日期20XX 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 及致谢 (35)

年产20万吨PVC合成工段工艺设计毕业设计

毕业设计(论文)任务书 化学化工院化工系(教研室)系(教研室)主任: (签名) 年月日 学生姓名: 学号: 专业: 化学工程与工艺 1 设计(论文)题目及专题:年产20万吨PVC合成工段工艺设计 2 学生设计(论文)时间:自 2 月 20 日开始至 6 月 2 日止 3 设计(论文)所用资源和参考资料:1)化工设计;2)化工设备设计;3)化工工艺设计手册;4)有机合成;5)株洲化工厂现场实习资料。 4.设计(论文)完成的主要内容:1)总论;2)生产流程及生产方案的确定; 3)生产工艺流程叙述;4)工艺计算; 5)工艺管道设计; 6)安全与节能; 7.技术经济. 5.提交设计(论文)形式(设计说明与图纸或论文等) 1. 带控制点生产工艺流程图; 2. 车间立面布置图; 3. 合成塔结构图。 4 厂房设计平面图 6 发题时间:二○一一年二月二十日 指导教师:(签名) 学生(签名)

内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对厂址进行了选择,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。 关键词:聚氯乙烯;生产技术;悬浮法;乙炔法;乙烯法; 防粘釜技术;

目录 第一章总论 (2) 1.1 国内外 pvc发展状况及发展趋势 (2) 1.2 单体合成工艺路线 (3) 1.2.1乙炔路线 (3) 1.2.2乙烯路线 (4) 1.3聚合工艺实践方法 (5) 1.3.1本体法聚合生产工艺 (5) 1.3.2乳液聚合生产工艺 (5) 1.3.3悬浮聚合生产工艺 (6) 1.4最佳的配方、后处理设备的选择 (7) 1.4.1配方的选择 (7) 1.4.2后处理设备侧选择 (7) 1.5 防粘釜技术 (9) 1.6原料及产品性能 (9) 1.7 聚合机理 (11) 1.7.1自由基聚合机理 (11) 1.7.2链反应动力学机理 (12) 1.7.3 成粒机理与颗粒形态 (12) 1.8影响聚合及产品质量的因素 (13) 1.9工艺流程叙述 (14)

年产40万吨合成氨合成工段工艺设计

目录 摘要 (3) ABSTRACT (4) 第一章总论 (5) 1.1 概述 (5) 1.2 氨的性质 (5) 1.2.1 氨的物理性质 (5) 1.2.2氨的化学性质 (6) 1.3 原料气来源 (6) 1.4 文献综述 (6) 1.4.1 合成氨工业的发展 (7) 1.4.2我国合成氨工业的现状 (7) 1.4.3合成氨工业的发展趋势 (7) 1.5 设计任务的项目来源 (8) 第二章流程方案的确定 (9) 2.1生产原理 (9) 2.2各生产方法及特点 (9) 2.3工艺条件的选择 (10) 2.4合成塔进口气的组成 (11) 第三章工艺流程简述 (13) 3.1 合成工段工艺流程简述 (13) 3.2 工艺流程方框图 (14) 第四章工艺计算 (15) 4.1 物料衡算 (15) 4.1.1设计要求 (15) 4.1.2计算物料点流程图 (16) 4.1.3合成塔入口气组分 (16) 4.1.4合成塔出口气组分 (17) 4.1.5合成率 (18)

4.1.6氨分离器气液平衡计算 (18) 4.1.7冷交换器气液平衡计算 (20) 4.1.8液氨贮槽气液平衡计算 (21) 4.1.9合成系统物料计算 (24) 4.1.10合成塔物料计算 (25) 4.1.11水冷器物料计算 (26) 4.1.12氨分离器物料计算 (27) 4.1.13冷交换器物料计算 (27) 4.1.15氨冷器物料计算 (30) 4.1.17液氨贮槽物料计算 (30) 4.2 热量衡算 (30) 4.2.1冷交换器热量计算 (30) 4.2.2 氨冷凝器热量衡算 (33) 4.2.3循环机热量计算 (33) 4.2.4合成塔热量衡算 (35) 4.2.5废热锅炉热量计算 (37) 4.2.6热交换器热量计算 (38) 4.2.7水冷器热量衡算 (39) 第五章设备选型及设计计算 (40) 5.1 合成塔催化剂层设计 (40) 5.2 废热锅炉设备工艺计算 (42) 5.2.1计算条件 (42) 5.2.2管内给热系数的计算 (42) 5.2.3管外给热系数 (46) 5.2.4传热总系数K (46) 5.2.5传热温差 (47) 5.2.6传热面积 (47) 参考文献 (50) 致谢 (51)

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

丙烯腈合成工段的工艺设计

丙烯腈合成工段的工艺设计 前言 毕业设计是培养学生运用理论知识进行实际设计能力的重要实践教学环节,是理论与实际结合的重要连接点。在教师指导下毕业设计可以培养我们独立思考,运用所学到的基本理论并结合生产实际的知识,综合的分析和解决工程实际问题的能力。 本次毕业设计所设计的内容为年产6万吨丙烯腈合成工段的工艺设计,通过认真细听老师课堂上讲解和任务布置,我们了解到了为完成设计需要查找资料的方向,并进行了细心的查阅,掌握了基本的理论知识。对于刚进行设计的人来说,学会收集、理解、熟悉和使用各种资料,正是设计课程需要培养的重要方面,化工设计非常强调标准规范。但是并不是限制设计的创造和发展,因此遇到与设计要求有矛盾时,经过必要的手续可以放弃标准而服从设计要求。通过设计应知道如何查取数据知道如何查找资料对丙烯腈合成工段的工艺设计有了一个全新的 认识,知道如何选取相关数据参数,建立一个工程概念,知道工程和理论的区别。对于物料衡算和热量衡算、主要设备的工艺计算(反应器)等都有一个全新的认识和了解,知道如何使用手册和资料,认识工程。

一、产品的性状、用途、国内外市场情况 1.1 丙烯腈简介 丙烯腈是一种重要的有机合成单体,在丙烯产品系列中居第二,仅次于聚丙烯,是三大合成材料(纤维、橡胶、塑料)的重要化工原料,主要用来生产聚丙烯腈纤维(腈纶)、丙烯腈- 丁二烯-苯乙烯(ABS)塑料、苯乙烯(AS)塑料、丙烯酰胺等。丙烯腈在合成纤维、合成树脂等高分子材料中占有显著地位,应用前景广阔。除此之外,丙烯腈聚合物与丙烯腈衍生物也广泛应用于建材及日用品中 1.2 丙烯腈物化性质 1.2.1 丙烯腈物理性质 无色或淡黄色液体,有特殊气味,分子量:53.06 沸点:77.3℃冰点:-83.5 ℃生成热:184.2 kJ/mol(25℃) 燃烧热:1761.5 kJ/mol 聚合热:72.4 kJ/mol 蒸汽压:11.0KPa(20℃) 闪点:0℃自燃点:481℃爆炸极限:在空气中 3.0%~17%(体积)油水分配系数:辛醇/水分配系数的对数值为-0.92 毒性:剧毒,毒作用似氢氰酸溶解性:溶于丙酮、苯、四氯化碳、乙醚、乙醇等有机溶剂,微溶于水 1.2.2 丙烯腈化学性质 丙烯腈由于分子结构带有C=C双键及-CN键,所以化学性质非常活泼,可以发生加成、聚合、腈基及氢乙基化等反应。聚合反应和加成反应都发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除发生自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、丙烯酰胺等发生共聚反应,由此可制得合成纤维、塑料、涂料和胶粘剂等。丙烯腈经电解加氢偶联反应可以制得已二腈。氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。丙烯腈与氨反应可制得1,3 丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。 1.3 丙烯腈的用途

年产5万吨合成氨变换工段工艺初步讲解

毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业 指导教师 教研室主任 学生姓名 接受任务日期 完成任务日期

四川理工学院 毕业论文任务书 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期2005 年 2 月25 日接受任务日期2005 年 2 月25 日完成任务日期2005 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 参考文献及致谢 (35)

(工艺技术)合成氨工艺简介

合成氨工艺控制方案总结 一合成氨工艺简介 中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置主要的控制回路有:(1)洗涤塔液位; (2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。 其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。 二主要控制方案 (一)造气工段控制 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s. l、吹风阶段 此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低, 时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。 2、上吹加氮制气阶段 在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。 3、上吹制气阶段 该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。 4、下吹制气阶段 为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间

合成氨变换工段设计说明

工商职业技术学院 毕业论文 题目:合成氨变换工段设计 作者:焦鹏丽学号:2101100125系别:化工工程系 专业:应用化工技术 指导教师:晋萍专业技术职务讲师 2012 年1月1

工商职业技术学院 毕业设计说明书 题目:合成氨变换工段设计 作者:焦鹏丽学号:2101100125 系别:化工工程系 专业:应用化工技术 指导教师:晋萍专业技术职务讲师 2012 年1月1

摘要:本文是关于煤炭为原料一氧化碳变换工段初步设计。在合成氨的生产中,一氧化碳变换反应是非常重要的反应。用煤炭制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。 关键词:煤炭;一氧化碳变换;中温变换炉;流程图 结论中提到完成了设计宗指,但你的设计宗指到底是什么?没有表达出来。结论中也没有对你的设计做一个总结,你到底做这个设计的做用是什么?解决了什么问题?目录中二级目录应比一级目录再缩进两格,下级目录同理。

目录 第一章绪论 0 1.1 氨的性质和用途 0 1.1.1 氨的性质 0 1.1.2 氨的用途 0 1.2 我国合成氨生产现状 (1) 1.3 一氧化碳变换在合成氨中的意义 (1) 第二章变换流程及工艺条件 (2) 2.1 变换工艺原理 (2) 2.1.1变换反应的热力学分析 (2) 2.1.2 变换反应的动力学分析 (2) 2.2变换工艺的选择 (3) 2.3 工艺条件 (4) 2.3.1 温度 (4) 2.3.2 压力 (5) 2.3.3 水汽比 (5) 第三章工艺计算 (6) 3.1 基本工艺数据的确定 (6) 3.1.1水气比的确定 (6) 3.2中变炉一段催化床层的物料衡算 (7) 3.2.1 中变炉一段催化床层的物料衡算 (7) 3.2.2中变炉一段催化床层的热量衡算 (8) 3.2.3 中变一段催化剂操作线的计算 (11) 3.3中间冷凝过程的物料和热量计算 (12) 3.4中变炉二段催化床层的物料与热量衡算 (13) 3.4.1中变炉二段催化床层的物料衡算: (13) 3.4.2中变炉二段催化床层的热量衡算 (15) 3.4.3中变二段催化剂操作线计算 (16) 3.5 主换热器的物料与热量的衡算 (18)

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

小合成氨厂低温变换工段工艺设计资料

《化工工艺设计任务书》

变换工艺设计说明书 设计题目小合成氨厂低温变换工段工艺设计 课题来源小合成氨厂低温变换工段工艺设计变换工段化学工艺设计标准变换工段在合成氨生产起的作用既是气体净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 要求:1.绘制带控制点的工艺流程图 2.系统物料、能量衡算 3.系统主要设备能力及触媒装填量核算 4?该工段设备多,工艺计算复杂,分变换炉能力及触媒装填量核算、系统热量核算和系统水循环设备及能力核算。 变换工艺流程 低压机四段来的半水煤气压力 2.0 MPa,温度40C的半脱气经热水洗涤塔除去气体中的油 污、杂质,进入饱和塔下部与上部喷淋下来的166?175 C的热水逆流接触,进行传质传热, 使气体中的水汽含量接近饱和,从塔顶出来到蒸汽喷射器,补入外管来的高压蒸汽,进一步 提高气体的温度和水气比,使出0/干气=0.6?0.7。达到变换所需的液气比值。接着气体进 入半水煤气换热器I,半水煤气换热器n管内加热,温度升至300 C,经过加压电炉进入中 变炉内。中变炉触媒分三段,每段各装一层触媒,上段出口变换气CO含量13?15%,温度 437C,通过甲烷化加热器壳程换热和增湿器降温,增湿温度降至370C进入中变二段,二 段出口CO变换率8?9%,温度403 C进入增温器,三段出口变换气中,CO 3?3.5%,温度386C,经过半水煤气换热器n和半水煤气换热器I的管间,加热进中变的半水煤气,温度降至285C 然后进入一水加热器被管内的循环热水降温至185C,进入低变炉进行低温变换。 低变炉触媒分上、下两段,每段各层一层耐硫变换催化剂,上段出口变换气温度222C,含CO 0.5?0.6%,进入段间冷却器管间,温度降至190C,进入低变炉下段反应,出口变换气 温度232 C,含CO 0.2?0.3%,进入二水加热器降温后,温度170 C进入热水塔与饱和塔底 出来的热水逆流接触,进行传质传热,进一步降温并回收热量,147C的变换气接着又进入 脱盐水预热器管内与来自脱盐水站的脱盐水换热后进入变换气水冷器管间,出来后温度降至 40 C,在变换气水分离器内,分离冷凝水后去变脱工段。 变换工段化学工艺设计原则 1.入工序气体流量:6000kmol/h (干基)压力: 2.47Mpa温度:40 C 2.入口气体组分:CO%=2.01% CO2%=10.95% 出%=41.49% 2%=1 3.93% CH4%=0.21% H2O%=31.23% Ar=0.18 %(体积比) 3.出口气体组分:CO% < 0.34% (体积比) 目录

产五万吨合成氨合成工段工艺设计方案

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 氨的基本用途 (3) 1.2 合成氨技术的发展趋势 (4) 1.3 合成氨常见工艺方法 (4) 1.3.1 高压法 (5) < 1.3.2 中压法 (5) 1.3.3 低压法 (5) 1.4 设计条件 (5) 1.5 物料流程示意图 (6) 2 物料衡算 (8) 2.1 合成塔入口气组成 (8) 2.2 合成塔出口气组成 (8) 2.3 合成率计算 (9) 《 2.4 氨分离器出口气液组成计算 (10) 2.5 冷交换器分离出的液体组成 (13) 2.6 液氨贮槽驰放气和液相组成的计算 (13) 2.7 液氨贮槽物料衡算 (15) 2.8 合成循环回路总物料衡算 (17) 3 能量衡算 (28) 3.1 合成塔能量衡算 (28) 3.2废热锅炉能量衡算 (30) ~ 3.3 热交换器能量衡算 (31) 3.4 软水预热器能量衡算 (32) 3.5 水冷却器和氨分离器能量衡算 (33) 3.6 循环压缩机能量衡算 (35) 3.7 冷交换器与氨冷器能量衡算 (36) 3.8 合成全系统能量平衡汇总 (38) 4 设备选型及管道计算 (40) 4.1 管道计算 (40) , 4.2 设备选型 (42) 结论 (43) 致谢 (44) 参考文献 (45)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H273.25%, N225.59%,CH41.65%,Ar0.51%合成操作压力为31MPa,合成塔入口气的组成为NH3(3.0%>,CH4+Ar(15.5%>,要求合成塔出口气中氨的摩尔分数达到 17%。通过查阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的 工艺流程,并借助CAD技术绘制了该工艺的管道及仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和材质进行了选择。 关键词:物料衡算,氨合成,能量衡算 , The Design of 50kt/a Synthetic Ammonia Process Abstract:There are many types of Ammonia synthesis technology and process,Generally,they includes ammonia synthesis, separation and recycling, inert gases Emissions and other basic steps, Combining the above basic stepsturnning into the ammonia synthesis reaction and recycling process , in which ammonia synthesis section is the central part of a synthetic ammonia process. The task of curriculum design is theammonia synthesis section of an annual fifty thousand tons synthetic ammonia plant . The composition of fresh feed gas is: H2(73.77%>,N2(24.56%>,CH4(1.27%>,Ar(0.4%>, the temperature is 35℃, the operating pressure is 31MPa, the inlet gas composition of the Reactor is : NH3(3.0%>,CH4+Ar(15.7%>,it Requires the mole fraction of ammonia reacheds to 16.8% of outlet gas of synthesis reactor. By consulting the relevant literature and information,we designed the ammonia synthesis section of an annual fifty thousand tons synthetic ammonia

合成氨变换工段毕业设计说明书

摘要 本文是关于重油为原料年产8万吨氨一氧化碳变换工段初步设计。在合成氨的生产中,一氧化碳变换反应是非常重要的反应。用重油制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。并且综合各方面因素对车间设备布置进行了合理的设计,最终完成了20 000字的设计说明书及生产工艺流程图、车间平立面布置图及主体设备装配图的绘制。 关键词:重油;一氧化碳变换;中温变换炉;流程图

Abstract This article was about the annual output of heavy oil as raw materials to transform eight thousand tons of carbon monoxide ammonia preliminary design section. In the production of ammonia, transformation of carbon monoxide was a very important reaction. Manufactured using heavy oil feed gas which containa part of carbon monoxide, carbon monoxide could not be directly used as those of the raw materials of synthetic ammonia, but also a catalyst for ammonia poisoning effect there must be a catalyst for transformation through the catalytic reaction to be removed. Transformation of carbon monoxide is a gas purification process of raw materials, but also the manufacturing process of feed gas. The design of the main routes which include the identification process, the medium variant of the furnace material balance , heat balance, the calculation of the amount of catalyst, in the variable furnace process of calculation and selection of equipment, heat exchanger of the material balance and heat balance as well as equipment selection type and so on. Taking all factors and workshop equipment to carry out a reasonable arrangement of the design. In the end, the20 000-word statement and map production process, shopping facade and the main equipment layout drawing assembly were completed. Key words: Heavy oil; Transformation of carbon monoxide; Temperature shift converter; Flow chart

相关主题
文本预览
相关文档 最新文档