当前位置:文档之家› (仅供参考)柯西收敛准则

(仅供参考)柯西收敛准则

(仅供参考)柯西收敛准则
(仅供参考)柯西收敛准则

数学分析Cauchy收敛准则及迭代数列极限

第七章实数的完备性 §1.Cauchy 收敛准则及迭代数列极限 一引言 问题 极限{}n x 收敛、发散是什么意思?答如果存在数a ,使得lim n n x a →∞=,则称数列{}n x 收敛;反之称为发散。 问题上述关于数列“收敛性”的定义有何缺陷? 答涉及数a ,这在理论上不够完美。 问题 能否不涉及数a ,仅根据{}n x 本身的特性判断{}n x 的收敛性?答可以,如前面已学过的“单调有界定理”,“两边夹法则”,“Stolz 定理”等。 问题 上述方法只是数列{}n x 收敛的“充分条件”,有无“充要条件”?答有,Cauchy 收敛准则――它是具有重要原则意义的敛散性充要判别法则,它揭示了实数的完备性。 二、基本数列(引进此概念仅为叙述方便) 不严格的讲,如果lim n n x a →∞ =?n 充分大时,n x a ≈?当n ,m 充分大时,0n m x x a a -≈-=,即从第m 个起,数列{}n x 的任意两项差别可以任意小。严格的讲,有以下定义: 定义1对每个ε>0,都能找到一个自然数N ,对一切n ,m ≥N ,成立不等式n m x x ε-<,则称{}n x 为 (cauchy )基本数列,记作,lim ()0n m n m x x →∞-=。 简写:{}n x 是收敛数列?,lim ()0n m n m x x →∞ -=?0,,,N n m N ε?>??≥,n m x x ε-<。例1若{}n x 收敛,则{}n x 必是基本数列例2{}(1)n -不是基本数列例31n n +?????? 是基本数列。三、Cauchy 收敛准则 {}n x 收敛?{}n x 是基本数列 四、实数系的完备性 实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ??+??? ?:1lim(1)n n e n →∞+=(无理数)。五、函数极限的Cauchy 收敛准则 设f 在点a 某个去心邻域有定义,则极限lim ()x a f x →存在且为有限?lim[()()]0x a x a f x f x '→''→'''-=0ε??>,

柯西准则及其应用

柯西准则及其应用 摘 要:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,本文将补给并详细证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用. 关键词:柯西准则;应用;极限存在;优越性 引言:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用非常广泛,贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,即 设函数()f x 在00(;)U x δ'内有定义,0 0()lim x x f x →存在的充要条件是:任给0ε>,存在正数 δ(<δ'),使得对任何x ',x ''∈00(;)U x δ,都有()()f x f x '''-<ε. 事实上,当0x x +→,0x x - →,x →+∞,x →-∞,x →∞五种情形函数极限存在的柯西 准则可以类比,它们的应用也非常广泛.本文将详细叙述并证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用,充分展示其在解决上述几个方面问题的优越性和博大精深之处. 1 柯西准则的其它五种形式 定理1.1 设函数f 在00(;)U x δ+'内有定义.0 0()lim x x f x + →存在的充要条件是:任给0ε>,存 在正数()δδ'<,使得对任何x ',x ''∈00(;)U x δ+,均有()()f x f x '''-<ε. 证 必要性 设0 ()lim x x f x A + →=,则对任给的ε>0,存在正数δ(<δ'),使得对 00(;)x U x δ+?∈, 有()2 f x A ε -<.于是对00(;)x x U x δ+'''?∈,,有 充分性 设数列{}00(;)n x U x δ+?且0lim n n x x →∞ =,按假设,对任给的ε>0,存在正数δ(<δ'),使得对任何x ',x ''∈00(;)U x δ+,有()()f x f x ε'''-<. 由于0()n x x n →→∞,对上述的δ>0,存在N >0,使得当n m ,>N 时有00(;)n m x x U x δ+∈, 从而有 ()()n m f x f x ε-<. 于是,按数列极限的柯西收敛准则,数列{}()n f x 的极限存在,记为A ,即()lim n n f x A →∞ =.

Cauchy收敛原理

Cauchy 收敛原理 “单调有界数列必有极限。”与“夹逼定理:设有三个数列{}{}{}n n n z y x ,,满足n n n z y x ≤≤,且c z x n n n n ==∞ →∞ →lim lim ,则c y n n =∞ →lim 。 ”给出了数列收敛的充分条件而不是必要条件,经过许多数学家的努力,终于由法国数学家Cauchy 获得了完善的结论——Cauchy 收敛原理,它从数列本身找到了能够判断数列收敛性的充分必要条件。 定理5 (Cauchy 收敛原理)数列{}n a 收敛的充分必要条件是:对任意的0>ε,都存在正整数N ,当N n m >,时,有 ε<-m n a a 证明 必要性: 设a a n n =∞ →lim ,则对0>?ε,存在正整数N ,当N l >时,有 3 ε <-a a l 从而当N n m >,时,有 εε ε <+ <-+-≤-+-=-3 3 m n m n m n a a a a a a a a a a 必要性得证。 充分性 先证明数列{}n a 有界。取1=ε,由题设,必存在正整数0N ,当1,00+=>N m N n 时,有 110<-+N n a a 因而当0N n >时,有 11111000001++++++<+-≤+-=N N N n N N n n a a a a a a a a 当令{ } ,1,,,1100+=+N N a a a M ()( ) ,2,1=≤n M a n ,数列{}n a 有界。由致密性定理,数列{}n a 存在收敛的子列{} l n a ,设()∞→→l a a l n ,即对0>?ε,存在正整数L , 当L l >时,有 3 ε < -a a l n

柯西极限存在准则

柯西极限存在准则 柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε . 充分性证明: (1)、首先证明Cauchy列有界 取ε=1,根据Cauchy列定义,存在自然数N,对一切n>N,有 Ia(n)-a(N+1)I<1。 令M=max{|a(1)|,|a(2)|,…,|a(N)|,|a(N+1)|+1} 则对一切n,成立|a(n)|≤M。 所以Cauchy列有界。 (2)、其次在证明收敛 因为Cauchy列有界,所以根据Bolzano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以 A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用 的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了) 因为Cauchy列{a(n)}的定义,对于任意的ε>0,都存在N,使得m、n>N时有 |a(m)-a(n)|<ε/2 取子列{aj(n)}中一个j(k),其中k>N,使得 |aj(k)-A|<ε/2 因为j(k)>=k>N,所以凡是n>N时,我们有 |a(n)-A|<=|a(n)-aj(k)|+|aj(k)-A|<ε/2+ε/2=ε 这样就证明了Cauchy列收敛于A. 即得结果:Cauchy列收敛

柯西收敛准则的3种不同证法

柯西收敛准则的不同证法方法一:用定理2证明柯西收敛准则 证明:必要性:易知,当{ a n }有极限时(设极限为a),{ a n }一定是一个柯 西数列。因为对任意的ε>0,总存在N(N为正整数)。使得当n ,m>N时,有| a n -a|< ε, | a m -a|<ε ∴| a n - a m |≤| a n -a|+| a m -a|<ε,即{ a n }是一个柯西数列。 充分性:先证明柯西数列{ a n }是有界的。不妨取ε=1,因{ a n }是柯西数 列,所以存在某个正整数N 0,当n > N 时有| a n –a No+1 |<1,亦即当n ,N> N 时| a n |≤| a No+1 |+1即{ a n }有界。不妨设{ a n }?[a ,b],即a≤a n≤b,我们 可用如下方法取得{ a n }的一个单调子列{ a nk }: (1)取{ a nk }?{ a n }使[a,a nk ]或[a nk,b]中含有无穷多的{ a n }的项; (2)在[a,a nk ]或[a nk ,b]中取得a nk+1∈ { a n }且满足条件(1)并使nk+1>nk; (3)取项时方向一致,即要么由a→b要么由b→a。 由数列{ a n }的性质可知以下三点可以做到,这样取出一个数列{ a nk }?{ a n} 且{ a nk }是一个单调有界数列,必有极限设为a,下面我们证明{ a n }收敛于a。 因为lim n→∞a nk =a,则对ε>0,正整数K,当k >K时| a nk -a|< 2 ε 。另一方面由于 { a nk }是柯西数列,所以存在正整数N,使得当n ,m>N时有| a n – a m |< 2 ε , 取n 0=max(k+1,N+1),有n 0≥n N+1>N以及 > k+1 >k。所以当n >N时| a n-a|≤| a n – a m |+| a m -a|<ε。 ∴{ a n }收敛于a。 方法二:用定理3证明柯西收敛准证 证明:必要性显然。下证充分性。 设{x n }是柯西数列,即对任意的ε>0,存在N >0,使得当n , m > N时, 有| x n – x m | <ε (1) 令y n =sup{ x n+p | p =1,2,…} z n =inf { x n+p | p =1,2,…} 显然,y n 是单调递减数列,z n 是单调递增数列。取M =max{ x 1 ,x 2 ,…,

柯西收敛准则

第十讲、柯西收敛准则 定理10.1 . (柯西收敛准则)数列{x n}极限存在的充要条件是:对于 ?>存在正数N , 使当n >N 时, 对于一切p∈+有| | εx x ε0 +?< n p n 注记10.1. (I)柯西准则的意义是:数列{x n}是否有极限可以根据其一 般项的特性得出,而不必事先知晓其极限的具体值(见下面的例子10.2)。(II)定理10.1 的逆否命题为: (柯西收敛准则)数列{x n}极限不存在的充要条件是: ?ε0 > 0,使得对 ?∈, 均存在n >N 时, 存在p∈,使得 N | | + +?≥ + x x ε n p n 0 例子10.1 设x n sin 2n =,试用柯西收敛准则证明该数列极限存在。 n 证明:注意到 sin 2(n p) sin 2n sin 2(n p) sin 2n ++ |x x |= ??≤ + n+p n ++ n p n n p n 1 1 2 ≤+≤ n p n n +

2 ∈有于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= + 2 sin 2n n p n n +?≤<。故由定理10.1 柯西收敛准则可知 ε n n 证毕。 例子10.2.设x n 1 1 1 =++++,证明数列{ } 1 x 收敛。 2 3 n 2 2 2 n 证明:注意到

1 1 1 |x x |= n p n +?+++ +++ 2 2 2 (n 1) (n 2) (n p) 1 1 1 ≤+++ n(n 1) (n 1)(n 2) (n p 1)(n p) ++++?+ 1 1 1 1 1 1 =?+++?++++??+ n n 1 n 1 n 2 n p 1 n p 1 1 1 =?< n n p n + 1 于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= 1 |x x | n p n +?≤<ε。故由定理10.1 柯西收敛准则可知 n ++++ 1 1 1 存在。 lim 1 n→∞n 2 3 2 2 2 ∈有 +

相关主题
文本预览
相关文档 最新文档