当前位置:文档之家› 静态混合器 (NXPowerLite)

静态混合器 (NXPowerLite)

静态混合器 (NXPowerLite)
静态混合器 (NXPowerLite)

1、概念

静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。

2、流体的混合机理

对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。

3、静态混合器的混合形态

静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。

3.1层流的混合

经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。

混合器单元数、管径和流速的选定

混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。通常基于雷诺数并经试验确定混合器的放大倍数。但当雷诺数R e<100(严格地说在1以下)时,混合程度、混合状态与雷诺数无关,只取决于混合器的单元数。

因此,只要混合统一流体,不论其流速和混合器直径多大,经试验确定的单元数都适用。混合器管内流速越大,混合效果越好。但流速太大,压力损失增加,提高了加压泵的扬程,能耗多。因此选定流速有一个较优的范围。

3.2湍流混合

适合于湍流混合的静态混合器采用的是扭曲叶片的形式。其理由是,随着流速的增大,在流动的断面方向会产生很多激烈的涡流和很强的剪切力。由于这种强大的剪切力的存在,故可有效地发生气液、液液、固液等的分散及液液、固液的溶解。

除扭曲叶片的形式外,其它形式的静态混合器也可以进行湍流混合,但其供给流体的能量大多消耗于流体与壁面的摩擦,用于流体之间的摩擦很少。所以,从耗能的角度来看,这些结构劣于扭曲叶片的形式的混合器。

4、分类

5、静态混合器具有以下特点:

①混合性能好,效率高,易实现连续化生产,降低劳动强度,提高生产效率;

②操作弹性大,操作稳定;

③放大效应小,放大容易;静态混合器型号、规格多,适用范围广;

④结构简单,设备体积小,占地面积小,不易损坏,设备费用低;

⑤能耗低,操作费用小。

混合反应技术

原则上,静态混合器在不使用机械搅拌单元的情况下就能实现混合。运动部分仅限于被混合的各种物料组分。

产品混合所需要的能源直接来自流体本身,固定的混合单元能连续地对流体进行分切、扩散和重新分配。混合所需要的动能来自泵装置。

实际上,静态混合器具有体积小、维护方便、安装简单、可拆卸和可靠性高等特点。

所有传质行业的连续工艺都采用混合和反应技术。

6、应用领域

静态混合器的发展始于70年代初,在化工、石油、化纤、油脂、食品和环境保护等领域逐步得到应用,而且在作为化工单元操作的交办、萃取、气体吸收、反应、热交换、溶解、分散、粉粒料的混合等方面迅速发展,进而使有效利用这种特点的应用机械和应用系统的开发不断地取得可喜的成果。

7、水处理领域

在水处理领域,混合和接触是最为重要的单元操作,它会对各个处理阶段的效果产生根本性的影响,甚至会影响到整个处理工艺的最终结果。对水质要求的提高导致不断地改进净化工艺。这是的在线静态混合器在本领域的使用(用来进行混合和接触操作)得到明显增加。

用于混合和接触操作的静态混合器安装在工艺物流的管线中。相关的管道或管路可以是圆形、方形或长方形。不同设计和不同物料使用不同的混合器,从而更好的满足各种工艺要求。

7.1功能

静态混合器主要由有序的导向板组成,而导向板会对流过管道的物料产生规则性的径向混合。流动途径具有一定的几何形状,因此可排除任何随机性混合。混合任务因此能在非常短的流距之内完成。

与搅拌槽或空管系统不同的是,静态混合器能确保对整个液体流进行强制性混合接触。

混合或传质所需要的能量来自主流体本身,这表现为相对于空管系统来说具有的较高压降。压降数值取决于混合器的设计及相关的操作条件,一般来说在0.02-3mwg的范围之内。与动态搅拌器相比,静态混合器所需要的能量至少小一个数量级。此外,能量能够通过整个混合器容积均匀的进行消散。

7.2特性

混合器单元面到面的长度非常短(为管径的1-5倍),因此,所需的安装空间也很小。重新安装到装置中在一般情况下不会出现任何问题。作为一个惯例,混合器的直径和连接管道的直径相同。

即使在操作条件不断变化的情况下,混合效果也能够保持稳定。诸如絮凝剂之类的添加剂能够被快速而均匀的分散开。没有必要过量的进行进料(已经证明可节约高达45%的物料)。

混合器能够对整个工艺物流进行强制性混合。因此可大大的降低储槽体积,甚至可以不使用储槽。

由于流体在整个截面上的浓度都是连续而平衡的,测量因此具有很高的代表性。能够很快的启动装置。连续运行为一种稳定状态。所得到的测量数据具有代表性,因此能对装置进行有效的控制。

压降和能量消耗很低。

静态混合器没有运动部件。因此不存在磨损,所需要的维护工作量也很小。

在安装方式和材质方面具有很高的灵活性。静态混合器的截面可以是圆形、方形或长方形;也可以安装在一个开放的管道中。混合器的材质可采用不锈钢、碳钢、PP、PVDF或玻璃钢。

絮凝作用

为了得到最佳的絮凝效果,要尽快均匀的将PAC、FeCl3、FeSO4或高分子电解质分布到整个工艺物料流中。通过使用混合器就能够很理想的达到这些目的。液体强制性混合器能够确保整个物流在数秒之内均匀地混合,药剂实际节省量可高达45%。

絮凝剂的在线稀释

为使絮凝剂具有最佳的活性,在将其加入到污水之前,必须使用体积为10-100倍的水来稀释。由于初级溶液在一般情况下都为高粘度溶液,在水中不能够自动的被稀释,因此要确保混合的彻底性。高分子聚合物在水中分布越均匀,则其活性也越大。使用静态混合器能够确保有效混合。静态混合器的使用能够减少絮凝

剂的使用量,因此能够节省成本。

混合消毒剂

快速混合接触消毒技术用于中水处理

次氯酸钠在水溶液中离解成HOCl 和OCl - 离子,即有效游离氯,其中HOCl 起主要杀菌作用。处理后的中水中残留的有机物与有效氯生成的化合物无杀菌能力。为了充分发挥HOCl 的杀菌作用,要求在加次氯酸钠后HOCl 尚未与有机物反应之前,在几秒时间内迅速完成杀菌作用。中水处理后投加次氯酸钠消毒时,快速

混合接触极为重要。

静态混合器作用

静态混合器选用结构简单的螺旋形混合器,是在管道内安装一定数量的左旋右旋元件(见图1) 。投加次氯酸钠溶液后的水流经静态混合器时有3种混合作用: (1) 分割作用。每个元件将水流一分为二,如果混合器内有6 个元件,水流被分割成26 即64 股。水流被分割后液层厚度很薄,使细菌暴露于HOCl 之中,加大了接触面积,易被杀灭。

(2) 转换作用(径向旋涡反转作用) 。水流在各断面内沿管中心轴线产生交替反向的涡流,增强了混合接触作用。

(3) 反转作用。在混合器内水流经右旋元件和左旋元件的旋转方向相反交替,提高了混合接触效率。

8、静态混合器的工作范围和安装位置

静态混合器具有很广的工作范围。用于液体混合时,静态混合器的流体流动速率一般设计为0.5-1.5m/s。但是,即便在较低流动速率的情况下,混合器也能够获得很好的混合效果。对于大多数应用情况,混和器可安装在任何位置。如果被混合介质的密度有很大差异且流速非常低时,则应将混合器安装在垂直位置(流动方向最好为从小至上)。

9、可调式静态混合器

可调式静态混合器RSM是应用“改变罐体内部空间体积的方法”RST专利技术,为水处理工业设计的一种新型高效和节能的水力机械—管道混合装置。

RSM的混合机构是一具Rohud,没有运动部件,它被锚固在混合器内,其工作时相对水流呈静止状态。在管道水流推动下Rohud自动形成锥形喷孔,其喷射扩散式紊流流态仍然是典型的管道静态水力混合模式。通过“压差控制器”的自动调控系统或手工操作,能够在生产运行过程中灵便的调节该喷孔的尺寸,以改变喷射水流速度,维持混合过程所必需的能耗和速度梯度G值。RSM彻底改变了静态(固定)混合器不能操控水力混合强度的弊端,首次实现了管道水力混合过程可控制。

目前国内外广泛使用的各种固定式管道静态混合器都是不能调节的,只有在生产运行条件与混合器的设计参数及工作条件相符时,才可能获得予期的混合效果。以自来水厂的絮凝混合工序为例;在处理过程中,水量、水温水质、化学药剂种类和投量等常常发生变动影响絮凝效果。如生产运行水量受制于用水量的增减。在水厂投产初期或冬季供水量少时,呈现低负荷运行态势。在这种情况下,固定式等态混合器的混合强度严重不足,导致混凝反应沉淀效果低劣、药耗增高等后果;老厂挖潜提高产水量或夏季供水高峰期间是超负荷运行工况。由于混合器的阻力大,不可避免地发生水头损失(能耗)急剧增大和浪费能源等现象。

RSM的主要技术特征是可调节性,适应流量变化的能力强,能够对生产运行条件的改变及时作出反应和调整。如果某季节的水质条件好不必进行混合处理时,RSM的喷孔直径可以调节到近乎管道内径的水平,无阻碍的让水流通过,消除了不必要的能源耗费。

众所周知,上述固定式静态混合器的缺陷是公认的,由于没有解决办法或替代产品,只能带病运行。如果采用RSM取代之,将会改变现状,提升自来水厂站的絮凝混合工艺的技术质量,为节省药剂、节约电力和提高净化水质以及降低生产成本创造了条件。

“可调式静态混合器”,是对原有管道静态混合器的改进。众所周知,静态混合器在制水量达到设计水量的条件下,具有很好的混合效果,但是当制水量效低时(设计水量的80%以下),混合强度降低、效果变差。我们开发的“可调式静态混合器”,可以在低水量的情况下一直保证做到设计时的最佳混合效果,最低水量可以做到40%。其特别适用于制水量变化较大的水厂,强化混合效果,为后续的絮凝与沉淀(或澄清)过程提供良好的条件,从而还可以降低药耗。其实现简单,操作方便,从混合机理上分析是毫无疑问能够实现混合调节的,已经过中试试验,确实能保证混合效果。

实现水处理的快速混合过程中,混流式混合的水流不符合快速、均匀混合的要求,推流式管道混合的效果又受制于流量的影响.本文作者提出的一种可调式静态混合器(RSM)可望突破管道流量的制约,实现水力快速混合过程的控制.

静态混合器的设置

静态混合器的设置HG/T 20570.20—95

1 应用范围和类型 1.0.1应用范围 静态混合器应用于液-液、液-气、液-固、气-气的混合、乳化、中和、吸收、萃取反应和强化传热等工艺过程,可以在很宽的流体粘度范围(约106mPa·s)以内,在不同的流型(层流、过渡流、湍流、完全湍流)状态下应用,既可间歇操作,也可连续操作,且容易直接放大。以下分类简述。 1.0.1.1 液-液混合:从层流至湍流或粘度比大到1:106mPa·s的流体都能达到良好混合,分散液滴最小直径可达到1~2μm,且大小分布均匀。 1.0.1.2 液-气混合:液-气两相组份可以造成相界面的连续更新和充分接触,从而可以代替鼓泡塔或部分筛板塔。 1.0.1.3 液-固混合:少量固体颗粒或粉未(固体占液体体积的5%左右)与液体在湍流条件下,强制固体颗粒或粉未充分分散,达到液体的萃取或脱色作用。 1.0.1.4 气-气混合:冷、热气体掺混,不同组份气体的混合。 1.0.1.5 强化传热:静态混合器的给热系数与空管相比,对于给热系数很小的热气体冷却或冷气体加热,气体的给热系数提高8倍;对于粘性流体加热提高5倍;对于大量不凝性气体存在下的冷凝提高到8.5倍;对于高分子熔融体可以减少管截面上熔融体的温度和粘度梯度。 1.0.2静态混合器类型和结构 1.0. 2.1 本规定以SV型、SX型、SL型、SH型和SK型(注①)五种类型的静态混合器系列产品为例编制。 1.0. 2.2 由于混合单元内件结构各有不同,应用场合和效果亦各有差异,选用时应根据不同应用场合和技术要求进行选择。 1.0. 2.3 五种类型静态混合器产品用途和性能比较见表1.0.2-1和表1.0.2-2,结构示意图见图1.0.2。静态混合器由外壳、混合单元内件和连接法兰三部分组成。

静态混合器

全世界经济发展的同时,我们周围的环境在不断恶化。在我国尤其如此,近二十年经济的迅猛发展给环境带来严重影响。我国境内的河流受污染情况十分严重,大多数河流的水质都出现了不同程度的下降。地球上的淡水资源是有限的,在我国的北方大部分地区水资源是缺乏的,因此我国实施了南水北调工程。日益严重的水污染与水资源短缺,使得有效的水处理技术变得越来越重要,人们从不同的方向改进着水技术。其中,混凝技术是一种常见的水处理技术,得到广泛的认可和推广。水的混凝机理十分复杂,一直得到广大学者的关注。一般认为:混凝过程中包含凝聚和絮凝两个步骤,其中凝聚是在瞬间内完成的,它是指化学药剂与水接触形成小颗粒的过程,在水处理过程中表现为使用各种混合设备将药剂与水均匀地混合,其均匀的程度关系着混凝效果优劣;絮凝是指凝聚过程中形成较小颗粒后,它们之间相互碰撞形成较大颗粒并沉降的过程。 影响混合效果的因素主要有三方面:一、废水水质,包括废水中浊度、PH值、水温及共存杂质等;二、混凝剂,包括混凝剂种类、投加量和投加顺序等;三、水利条件,主要指混合的方式。混合方式有:管式混合、水力混合、机械搅拌混合以及水泵混合等。其中管式混合主要形式有管式静态混合器、孔板式、文氏管道混合器、扩散混合器等;机械搅拌混合是在池内安装搅拌装置,以电动机驱动搅拌器将水与药剂混合;水泵混合是将药剂投放在水泵吸水管或吸水喇叭口处,利用水泵叶片的高速旋转来达到快速混合。 在水处理过程中,管式静态混合器具有高效混合、节约用药、设备小等特点,它是由一组组混合元件组成,而混合元件组数的确定应根据水质、混合效果而定。 在不需外动力情况下,水流通过混合元件时可以产生较大范围对流、返流和漩涡等运动,这些均能促使药剂均匀的分布(图1-1所示)。在选择管式静态混合器时,其管内流速应控制在经济流速范围内,当水流量较大所选管径大于500毫米时速度范围可以适当地放宽。混凝剂的入口方式以较大的速度,射流进入混合器管道内为佳。实际应用中管式静态混合器的水头损失一般在0.4-0.6米范围内,条件允许时可将管径放大50-100毫米,可以减少水头损失。本文的主要研究对象即为管式静态混合器。 2静态混合器 静态混合器(static mixer)是一种没有运动部件的高效混合设备,它在管道内加入静止元件,其主要包括三类:一类对流体起切割作用、二是使流体发生旋转、三是使流道形状与截面积变化(图1-2至1-6),然后依靠流体自身的动力(压力降),在流经元件的时候实现对流体的混合,被誊为是一种“虽然非常简单,却能发挥巧妙的作用”的工业元件。它可以在很大的流体粘度范围内,不同的流动状态下应用,既可间歇的又可连续的操作。其能使不同的流体达到均匀混合,根本原因在于混合元件使流体产生分流、拉伸、旋转、合流等运动,过程中增强了湍动,这些均极大地促进了对流扩散和紊动扩散,从而造成完善的径向混合效果。静态混合器有许多优点,与动态混合器相比,其结构简单、能耗低、安装维修简便、混合性

sk型静态混合器

7.静态混合器

静态混合器上尽量不安装流量、温度、压力等指示仪表和检测点,特殊要求时在订货时出图说明。 对于需要在混合器外壳设置换热夹套管时,要在订货时说明。 对于SH系列产品,由于其加工精度高,维修困难,要求使用的介质清洁或能用溶剂倒置清洗,要不就是介质在高温对于SV系列产品,若因流体不清洁而堵塞,可拆卸设备、用水(蒸汽)或溶剂倒置清洗,也可拆掉单元,取对于SK系列的活络单元产品,可将整个单元抽出清洗,但拉出时切忌敲击,以免单元变形。 A、SV型静态混合器 1.产品特性 单元是由一定规格的波纹板组装而成的圆柱体,它的技术性能:最高的分散程度为1-2μm,液-液相的不均匀度为Δ 2.产品型号 规格DN dh Q规格DN dh SV-2.3/2020 2.30.5-1.2SV-5-20/2002005-20 SV-2.3/2525 2.30.9-1.8SV-5-20/2502505-20 SV-3.5/3232 3.5 1.4-2.9SV-5-30/3003007-30 SV-3.5/4040 3.5 2.2-4.5SV-7-30/3503507-30 SV-3.5/5050 3.5 3.5-7SV-7-30/4004007-30 SV-3.5/6565 3.55-12SV-7-30/4504507-30 SV-5/808059-18SV-7-30/5005007-30 SV-5/100100514-28SV-7-30/6006007-30 SV-5-7/1251255-724-34SV-7-30/100010007-30 SV-5-7/1501505-730-60SV-15-30/1200120015-30 SV型外形图

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

管式静态混合器流量怎么计算

管式静态混合器流量怎么计算 根据静态混合器连续操作的特点, 定义描述其混合效果的混合度表达式, 并利用不相溶的两相流体混合后的 体积等于它们各自体积之和的原理, 建立动态求取各组分体积分数和流量分数的计算方法和实验装置. 结果表明:利用该方法测定静态混合器的混合效果避免了多点取样,提高了测量的准确性并减少了实验时间,可以用于混合产品质量的在线检测,并为静态混合器的结构设计和工艺设计提供参考依据. 2 管式混合器 混合设备的基本要求是,药剂与水的混合必须均匀,混合设备种类较多,常用的有水泵混合,管式混合,机械混合。水泵混合效果较好,不需要另外建设混合设施,节省动力,大中小型水厂均可以使用,但是采用三氯化铁作为混凝剂时,若投药量较大,药剂对水泵叶轮有轻微的腐蚀作用。当水泵距离反应池较远时,不宜采用水泵混合。机械混合是在池子内安装搅拌设备,以电动机驱动搅拌器使水与药剂混合,机械搅拌的优点是混合效果好,且不受水量变化的影响,适用于各种规模的水厂,缺点是增加机械设备并且相应增加维修费用,目前广泛采用的是管式混合器。 方式优缺点适用条件 管式混合优点: 1.设备简单 2.不占地缺点: 1.当流量减小时可能在中反应混凝 2.一般管道混合效果较差, 但采用静态管式混合器效果好,但水头损失大. 适用于流量变化不大的水厂 混合池混合优点:1.混合效果好 2.某些池型能调节水头高低,适应流量变化缺点:1.占地面积大 2.某些进水方式要带入大量气体适用于大中型水厂 水泵混合优点:1.设备简单 2.混合充分,混合效果好 3.不消耗动能缺点:吸水管较多时投药设备要增加,安装管理复杂适用于一级泵房距离处理构筑物120 米以内的各种规模的水厂 浆板式机械混合优点:1.混合效果好 2.水头损失小缺点:1.需要动能设备 2.管理维护比较复杂适用于各种规模的水厂 杭州西区水厂设计采用静态管式混合器,静态管式混合器混合效果好,主要由混合组件构成,将它放入絮凝 池进水管道中即可,混合组件可以用钢板剪切成椭圆形,在轴线处上下弯折成26.5 度的夹角,各个组件相互垂 直交叉,在端点处焊接既为一节组件。 设计使用要求如下: 混合组件数目为1-4 节,流速小时采用上限 水头损失等于 Q-流量 d-进水管管径m n-混合单元数 一般静态管式混合器的水头损失为0.5 米 混凝剂采用聚合硫酸铁(PFS),混凝工艺采用管式混合器,采用2节混合单元,流速为(在之间取值),进水管两根,投药设备混凝剂为PAC,混凝工艺采用管式静态混合器,混合元件数可为1-4节,取 2 节。 水头损失 一般水头损失要小于0.5m d=880mm,取0.9m 加药点设在混合器进口处,并增加药液扩散器,使混凝剂在管道内很好扩散。 药剂投配设备的设计 药剂采用PAC,混凝剂最大投加量阿a=20mg/l 溶液池 溶解池药剂用泵投加

静态混合器的种类和用途

静态混合器的种类和用途 静态混合器 静态混合器是一种没有运动部件的高效混合设备,其基本工作机理是利用固定在管内的混合单元体改变流体在管内的流动状态,以达到不同流体之间良好分散和充分混合的目的。 目录 简介 原理 分类 编辑本段简介 静态混合器是20世纪70年代初开始发展的一种先进混合器,1970年美国凯尼斯公司首次推出其研制开发的静态混合器,20世纪80后,国内相关企业也纷纷投入研究生产,其中在乳化燃料生产方面也得到了很好的应用。

自20世纪70年代以来,静态混合器就已开始在化学工业、食品工业、纺织轻工等行业得到应用,并取得良好的成果。但静态混合器作为一种专 利产品,国内、国外都对此结构不但保密,而且制成一次性不可拆卸结构。同时,固化剂和环氧树脂粘度相差很大(环氧树脂粘度是固化剂粘度的20~80倍),两流体在管路中流速又非常低,造成它们难以混合均匀。 静态混合器是一种先进的单元设备,和搅拌器不同的是,它的内部没有运动部件,主要运用流体流动和内部单元实现各种流全的混合以及结构特殊的设计合理性。静态混合器与孔板柱、文氏管、搅拌器、均质器等其它设备相比较具有效率高、能耗低、体积小、投资省、易于连续化生产。静态混合器中,流体的运动遵循着“分割-移位-重叠”的规律,混合过程的中起主要作用的是移位。移位的方式可分为两大类:“同一截面流速分布引起的相对移位和“多通道相对移位”,不同型号混合器的移位方式也有所不同。海泰美信HICHINE静态混合器不仅应用于混合过程,而且可以应用于与混合-传递有关的过程,包括气/气混合、液/液萃取、气/液反应、强化传热及液/液反应等过程。静态混合器广泛应用于塑料、化工、医药、矿冶、食品、日化、农药、电缆、石油、造纸、化纤、生物、环保等多个行业。由于该产品耗能低、投资省、效果好、见效快,为用户带来了可观的经济效益。 编辑本段原理

静态混合器 (NXPowerLite)

1、概念 静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。 2、流体的混合机理 对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。 3、静态混合器的混合形态 静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。 3.1层流的混合 经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。 混合器单元数、管径和流速的选定 混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。通常基于雷诺数并经试验确定混合器的放大倍数。但当雷诺数R e<100(严格地说在1以下)时,混合程度、混合状态与雷诺数无关,只取决于混合器的单元数。

静态混合器要如何选型

静态混合器要如何选型? 【字体:大中小】点击数: 一、静态混合器选型: 静态混合器选型一般取决于所用混合介质的物性(如粘度、颗粒大小、含固量、反应速度和工作温度压力等)。S V型比较常用,因混合性能好,广泛应用于汽-液、液-液、液-固等状态的混合,如调和油、轻质油混合、香料乳化、化学反应等。但SV型系统有压降,所需动力相对较大。而SK型静态混合器,因系统阻力降小、混合性能较好等特点,较多地应用于重质油与水、颗粒大小及含固量多等物系的混合。- 由于各工艺过程的不同,要求也会有所不同。因此在选型上,则根据不同的要求,灵活选用。例如:对于介质粘度较高的物系,一般采用SK型;而对混合性能有一定的要求,则可在选择SV型时并适当放大一些尺寸(管径)。- 当然,您也可通过计算软件来进行计算选型。 二、快速选型如下: SH型静态混合器---混合效果好,常用于粘度较高且清洁的介质。 SL型静态混合器---混合效果较好,常用于粘度较高或伴有高聚物介质的混合物系。 SX型静态混合器---混合效果较好,常用于中等粘度或生产高聚物流体的混合和反应过程。 SK型静态混合器---混合效果较好,常用于粘度较高通常粘度≥500厘泊且伴有杂质颗粒的小流量混合物系。 SV型静态混合器---混合效果好,常用于混合,乳化等要求较高的并且粘度≤100厘泊的各种物系。但因水力直径较小,相应阻力降ΔP 也就较大,要提高处理量,除增大公称直径外,所需动力也大。动力粘度换算:1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=0.001帕·秒(Pa·s)三、分配器:分配器的作用是将两股或两股以上的流体汇合成一股,然后进入静态混合器进行混合。分配器的型式通常分为两种,即三通管式和射流器式。其中三通管式的分配器适用的流体流量和压力相差不多;而射流器式的分配器适用流量比或压力比很大的混合介质。 分配器可以自己制作(如三通管式的要求不高),也可以委托定制。

静态混合器计算

静态混合器计算 1.1 选类型 选型依据:HG/T 20570.20-95 静态混合器设计 已知:在工作温度为35℃,系统压力为1.8MPa 下,静态混合器各股物流的物料 质量流率 kg/h 密度 kg/m3 体积流率 m3/h 粘度 mPa·s 直馏柴油 27777.8 810.4 34.28 2.03 液氨 116.0 587.4 0.20 10.5 乙二醇 3472.2 1102.0 3.15 0.0136 Σ 31366.0 37.63 根据表1.1,三股物料粘度均小于100mP·s ,选择SV 型静态混合器较合适。 1.2 流速 总体积流量: h /m 63.374 .5870 .116110210472.34.8101078.27333321=+?+?= ++=V V V V 根据表1.2,选择静态混合器管径为:mm 150=D 流体流速: m/s 589.0360015.04 468 .373600422=??=?=ππD V u 对于低、中粘度流体的混合、萃取、中和、传热、中速反应,适宜于过渡流或湍流条件下工作,流体流速控制在m/s 8.0~3.0,m/s 589.0=u 符合情况。 1.3 具体型号 选长径比为10=D L ,则 mm 150015010=?=L ,且设计压力为P=2.0MPa ,查表1.2,水力直径h d 取6mm ,所以该静态混合器型号规格为: SV-6/150-4.0-1500。 1.4 反应时间 [] ? -=Af X 0 A A A0)(X R dX c t

由于环烷酸与液氨的反应为1.5级反应,所以: ( )5 .1A f 5 .1A 01X kc r -= []() ?? -=-=Af Af 05.1Af 5.1A0A A00 A A A01)(X X X kc dX c X R dX c t 积分得: ()5 .0A0 5.0 Af 5.011kc X t ?--= - 式中:k —为反应速率常数,-0.5-11.5kmol s m 89.49??=k ; Af X —环烷酸转化率,由设计要求可得%3.99Af =X ; A0c —环烷酸浓度。 30A0m /kmol 012.063 .37260 /06.118/==== V M m V n c A 所以: ()s 4012 .089.495.01 993.015.0=??--= -t 单个静态混合器的反应体积: 3 22m 0265.05.115.044=??=?=π πL D V r 则空时: s 53.23600 63.370265 .0=÷== Q V r τ 选用两个静态混合器串联,则空时:τ=2×2.53=5.06s 由于是该反应是在液相中进行,可视为等容均相反应过程,故反应物料在静态混合器中的平均停留时间T=5.06s 由此可见,选择两个SV-6/150-4.0-1500静态混合器串联即可满足工艺要求。 1.5 压力降计算 查表1.2,空隙率0.1=ε,则: 8.14100 .11003.2589 .04.810006.03c h =????= = -με ρεu d R e 查表1.3,当150≥εe R 时,摩擦系数:0.1≈f 静态混合器压力降:

给水水厂设计说明书

一.设计资料 1.1.1 供水要求 1)给水厂水量为30000m3/d。 2)水厂自用水量系数为5~8%,时变化系数1.5~1.4。 3)水厂出水水压为45~50m。 4)出厂水质达到国家饮用水水质标准。 5)水厂自用水取5%。 6)时变化系数取1.5。 1.1.2 原水水质 某河流原水水质分析结果(见表1) 表1 某河流的原水水质分析结果

1.3 饮用水水质标准 生活饮用水水质标准(见表2) 表2 生活饮用水水质非常规检验项目及限值(62项)

1.2 设计任务 1)根据水质、水量、地区条件、施工条件和一些水厂运转情况选定处理方案和确定处理工艺流程。 2)拟定各种构筑物的设计流量及工艺参数。 3)选择各构筑物的形式和数目,初步进行水厂的平面布置和高程布置。在此基础上确定构筑物的形式、有关尺寸安装位置等。 4)进行各构筑物的设计和计算,定出各构筑物和主要构件的尺寸,设计时要考虑到构筑物及其构造、施工上的可能性。 5)根据各构筑物的确切尺寸,确定各构筑物在平面布置上的确切位置,并最后完成平面布置。确定各构筑物间连接管道、检查井的位置。 6)水厂厂区主体构筑物(生产工艺)和附属构筑物的布置,厂区道路、绿化等总体布置。 二.设计说明 2.1 选择方案 2.1.1 絮凝工艺: 方案:采用机械絮凝池和往复式隔板絮凝池组合使用 机械絮凝池 优点:絮凝效果好,节省药剂;水头损失小;可适应水质水量的变化。 缺点:需机械设备和经常维修。 往复式隔板絮凝池 优点:絮凝效果好;构造简单;施工方便。

缺点:容积较大;水头损失较大;转弯处絮粒容易破碎;出水流量不易分配均 匀;出口处易积泥,适用于流量每日大于3万立方米且水量变化较小的水厂。 两种形式絮凝池组合使用有如下优点:当水质水量发生变化时,可以调节机械 搅拌速度以弥补隔板往复式絮凝池的不足;当机械搅拌装置需要维修时,隔板 往复式絮凝池仍可继续运行。此外,若设计流量较小,采用往复式隔板絮凝池 往往前端廊道宽度不足0.5m,不利于施工,则前端采用机械絮凝池可弥补此不 足。 2.1.2 沉淀工艺: 方案:采用平流沉淀池 优点:造价较低;操作管理方便;施工简单;对源水浊度适应性较强;处理效果稳定;采用机械排泥设施时,排泥效果好。 缺点:需要维护机械排泥设备;占地面积较大;水力排泥时排泥困难;一般使用于中小型水厂。 2.1.3 过滤工艺: 方案:V型滤池 优点:可以采用均质滤料,截污能力大,反冲洗干净,过滤周期长,处理水质稳定,节省反冲洗水量。 缺点:对施工的精度和操作管理水平要求甚严,否则会产生如下问题:反冲洗不均匀,有较严重的短流现象发生;跑砂;滤板接缝不平、滤头套管处 密封不严,滤头堵塞甚至发生开裂;阀门启闭不畅等现象时有发生。2.2 水厂设计说明 2.2.1 设计规模 Q=30000 3m d,水厂自用水系数按5%计,设计任务书已给出最高日用水量为: d

各种混合器产品简介

SP 系列混合喷射搅拌系统 SP系列混合喷射搅拌系统是一种用于混合和翻转液体的高效混合喷射泵,其最大优点在于:可靠、简洁、无须保养、环保、节能。 SP系列混合喷射搅拌系统适用范围广阔,可以说,只要用离心泵可以传送翻转液体,就可以使用这种混合喷射搅拌系统,其主要用于容器、贮存罐和中和池,如油品调合,酸碱中和反应等工艺过程,成为理想的混合设备。 工作原理 从混合喷射器喷嘴中喷出的液流以其高速度在其锥形入口内形成低压,从而从罐中吸附并带动一股液流,使其加速,在喷射器内高度涡漩,产生了一个内部混合的混合液。 在混合喷射出口处,这种混合速度部分被转换为压力,使从喷射器中喷出的混合液成圆锥状扩散,并将其周围的液体带起来,达到罐内液体混合、中和的目的。技术指标:液-液混合不均匀度系数a×x-2≤7.5%,最高分散度5~20μm。 如果一个或几个SP系列混合喷射器排列正确的话,在罐中就产生了一个三维射流,它把整个罐内的物质进行均匀混合,而不产生剧列的运动。 混合喷射器与ISHG化工离心泵、正推进器组成SP混合喷射搅拌系统(工艺流程图如下)。 说明:系统液位顶部没有自动液位控制装置,与上部喷头联锁,当液位低于警戒线时自动液位控制装置发出信号使上部喷头停止工作。 型号标注

产品安装 SP系列混合器喷射器应尽可能安装在最深的位置,这样在液体量少的情况下也能保证取得有效的混合效果。 对于一些容易形成泡沫的液体来说,可以使液面高于混合喷射器1至2m,就可避免产生泡沫。 上图显示SP系列混合喷射器在罐中安装一般位置,敬请用户参考。 产品选型 SP系列混合喷射搅拌系统型号和尺寸号的安排十分巧妙,对于一般的工艺要求来说,总能找到理想的设备,根据下列功率曲线,您总能得到满意的答案。

给水厂混凝沉淀过滤消毒设计计算书详解

第二章:总体设计 2.1水厂规模的确定 水厂的设计生产量Q 包括以下两项:供应用户的出厂量Q 1和水厂的自用水量Q 2,一般Q 2只占Q 1的5-10%,所以水厂设计生产量可按下式计算: Q=KQ 1 (式中K=1.05-1.10 ) 水厂设计计算水量Q 1=50000m 3/d 即 Q=KQ 1=50000 1.0552500?= m 3/d=2187.5 m 3/h=0.61 m 3/s 根据水厂设计水量2万m 3/d 以下为小型水厂,2万~10万m 3/d 为中型水厂,10万m 3/d 以上为大型水厂的标准可知水厂为中型水厂。 2.2净水工艺流程的确定 玉川集聚区是以工业项目为主,从目前情况看用户对水质的要求不高,完全可以靠供给原水满足企业需求。但从长远来看,一方面不同的企业对水质的要求不同,尤其是夏季的洪水季节,当源水水质发生较大的变化时,可能会因为水质的变化影响企业的生产。 所以水厂以地表水作为水源,且水量充沛水质较好,则主要以取出水中的悬浮物 和杀灭致病细菌为目标,经过比较后采用地面水的常规处理工艺系统。工艺流程如图1所示。 原水 混 合 絮凝沉淀池 滤 池 混凝剂消毒剂清水池 二级泵房 用户 图1 水处理工艺流程 2.3处理构筑物及设备型式选择 (1) 药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m 左右,以减轻劳动强度,改善操作条件。

溶解池的底坡不小于0.02,池底应有直径不小于100mm的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 (2)混合设备 根据快速混合的原理,实际生产中设计开发了各种各样的混合设施,主要可以分为以下四类:水力混合、水泵混合、管式混合和机械混合。 在本次设计采用管式混合器对药剂与水进行混合。管式混合是利用原水泵后到絮凝反映设施之间的这一段压水管使药剂和原水混合的一种混合设施。主要原理是在管道中增加一些各种结构的能改变水流水力条件的附件,从而产生不同的效果。 在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。管式混合器采用管式静态混合器。 (3)反应池 反应作用在于使凝聚微粒通过絮凝形成具有良好沉淀性能的大的絮凝体。 目前国内使用较多的是各种形式的水力絮凝及其各种组合形式,主要有栅条(网格)絮凝、折板絮凝和波纹板絮凝。这三种形式的絮凝池在大、中型水厂中均有使用,都具有絮凝效果好、水头损失小、絮凝时间短、投资小、便于管理等优点,并且都能达到良好的絮凝条件,从工程造价来说,栅条造价为折板的1/2,为波纹板的1/3,因此采用栅条(网格)絮凝。 (4)沉淀池 原水经投药、混合与絮凝后,水中悬浮杂质已形成粗大的絮凝体,要在沉淀

某公司静态混合器技术协议-10.123

静态混合器技术协议 2018年10月

目录 第1章技术协议 (1) 第2章供货和服务范围 (6) 第3章技术资料及交付进度 (7) 第4章技术服务和设计联络 (9) 第5章差异表............................................................................................................ 错误!未定义书签。

第1章技术规范 1总则 1.1本技术协议用于某公司热电联产机组改扩建项目2×280t/h循环流化床锅炉烟气SNCR+SCR脱硝工程静态混合器设备的工程设计、制造、包装和运输、装配、安装督导、质量保证、培训、文件等方面的技术要求。 1.2 本技术协议提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准和规范的条文,卖方应保证提供符合本技术协议和相关的国际国内标准的优质产品及其相应服务。 1.3 卖方应执行本技术协议所列标准。有不一致时,按较高标准执行。 1.4 在合同签定后,买方有权因规范、标准、规程发生变化而提出一些补充要求,具体内容双方共同商定。 1.5 本技术协议仅是基于买方的经验,静态混合器的最终设计、选型、运行、故障保护措施等由卖方负全面的责任。 1.6 本工程采用KKS标识系统。卖方在签订合同后提供的技术资料(包括图纸)和设备标识必须有KKS编码。KKS编码应符合工程的总体编码要求,编号由买方提供。 1.7若本规范书中相关内容有重复描述,按更高的要求执行。 2 设计要求和环境条件 2.1设计参数 2.1.1静态混合器设备 设备名称:静态混合器 设备运行方式: 将进入静态混合器的20%氨水(以下均为质量浓度20%氨水)和除盐水混合均匀后排出,材质要求为304不锈钢。 每台静态混合器入口20%氨水温度约为25℃,压力约为1.2MPa,平均流量约为0.2m3/h,进口连接管径为DN20。 每台静态混合器入口除盐水温度约为25℃,压力约为1.2MPa,平均流量约为0.54m3/h,除盐水入口管径为DN20。 增加描述稀释水和氨水分别流向,三个接口的大致方位描述。2.1.2 环境条件 2.1.2.1概述 某公司热电联产改扩建项目的2×280t/h循环流化床锅炉烟气SNCR+SCR脱硝工程,每台炉设计新增1台静态混合器,为20%氨水及稀释水混合使用。

POY工艺

二:POY生产(预取向丝) (一)POY工艺流程:与常规纺丝相似 1.切片纺丝法: 图POY纺丝工艺流程示意图图无导丝盘卷绕方式流程 1—料斗;2—挤出机;3—过滤 器;1—喷丝板;2—冷却吹风筒;3—上油点;4—导丝器4—静态混合器;5—纺丝箱体;6—卷绕机5—丝筒;6—摩擦辊;7—丝束 A—喷丝板与上油点距离;B—下纺丝筒长度 聚酯切片→切片料桶(氮气保护)→螺杆挤出机(进料、熔融压缩、计量均化)→弯管→过滤器→纺丝箱体→吹风窗(冷却固化)→给湿上油→甬道→卷绕 高速纺丝的工艺特点:熔体预过滤器、丝束的冷却、上油方式、导丝盘的有无、纺丝卷绕速度、静态混和器 2.直接纺丝法: 聚酯熔体→熔体输送管→过滤器→纺丝箱体→吹风窗→给湿上油→甬道→卷绕 (二)POY工艺控制:

1.对聚酯质量的要求: *切片的粉屑:<0.1%;粉屑↑→纺丝喷丝板粘板↑——筛滤除去 *凝胶:聚酯热降解→纺丝断头↑,深色丝(D丝)——聚合时避免氧渗入(高温、氧作用,金属是聚酯降解的催化剂) *高结晶聚合物:高结晶聚合物→熔点↑→纺丝断头——高过滤、螺杆温度提高 *TiO2: TiO2→聚酯降解催化剂→→→→→→→→→→→→→→ →不溶于三甘醇清洗剂→熔体过滤器滤芯难洗涤→→加入量0.3% *二甘醇:<0.76%;二甘醇↑→聚酯熔点↓、分子量↓、黄光↑ 2.对切片质量要求(干燥): *干燥切片含水率:0.005%; 含水率↑→高速纺丝熔体水解↑(高速纺丝温度=常规纺温度+5~15℃) →气泡丝→毛丝或断头(高速纺丝速度高,使气泡丝毛丝→或断头) →飘丝 *干燥切片特性粘度:0.65±0.1dL/g; *干燥切片温度:干燥风温度<185℃;干燥时切片的实际温度<160℃保证除去水分;保证 特性粘度不至于下降过大(可采用加大干燥风量和降低干燥风湿度来提高 干燥效率) 3.纺丝温度:280--300℃(纺丝速度高→纺线上拉伸倍数↑→要求熔体流动性好 →纺丝停留时间↓→要求熔体流动性好) 纺丝温度↑→聚合物热分解↑→可纺性↓ 纺丝温度↓→熔体流变性和均匀性↓→毛丝、断头↑ 螺杆挤出机的加热划分成五区或六区,螺杆进料段(第一、二区)、压缩段(第三区)、计量段(第四、五、六区)。 表不同切片的纺丝温度

静态混合器

静态混合器_(NXPowerLite) 1、概念 静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。众所周知,对于二股流体的混合,一般用搅拌的方法。这是一种动态的混合设备,设备中有运动部件。而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。 2、流体的混合机理 对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。 3、静态混合器的混合形态 静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。在实际应用中往往将多种基本流程组合在一起使用。两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。 3.1层流的混合 经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。 混合器单元数、管径和流速的选定 混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。

(整理)BSD带式污泥脱水机安装操作手册.

BSD带式污泥脱水机 安装及操作维护手册 深圳市新环机械工程设备有限公司ShenZhen New-environmental Mechanical Engineering & Equipment Co.,LTD 地址: 深圳市彩田路中深花园B座2203 邮编: 518026 电话:(0755)82997256 传真:(0755)82996258

目录 前言 (2) 1.保管储存 (3) 2.安装说明 (3) 2.1安装前的准备 (3) 2.2吊装固定 (3) 2.3管道安装 (4) 2.4气路连接 (4) 2.5动力线路的连接 (5) 2.6信号线路的连接 (5) 3.使用说明 (5) 3.1工作原理 (5) 3.2使用条件 (6) 3.3系统初次空载试运行 (6) 3.4负载运行 (7) 3.5运行中注意事项 (8) 3.6系统关机程序 (8) 4.日常维护保养、检修 (8) 4.1日常保养 (8) 4.2定期保养 (9) 4.3常见故障及排除 (9) 前言

欢迎您使用深圳市新环机械工程设备有限公司生产的BSD 带式污泥脱水机,能为您提供产品和服务是我们公司全体员工的荣幸。 在您安装、使用前,请仔细阅读本说明书。 脱水机配套设备中的污泥泵、药液泵、清洗泵、空压机均有相应厂商的《使用维护说明书》,而集中电控柜,则有厂家提供的《电控原理图》,请在阅读本说明书的同时一并阅读。 如果您是初次使用脱水机,请您在安装使用前完成下面两项必要的工作: 1. 取需脱水的物料10升左右,到我公司进行脱水试验,通过试验确定絮凝剂的种类、浓度、投加量,选定网带的张力、速度等参数,进行试验后,将大大的缩短您的调试周期。 2. 选派1~2名技术员或操作工到我公司进行操作使用维护等培训,进行了这项工作,您的设备将得到完全正确的使用和维护。 1.保管和储存 1.1设备运达目的地,在未安装以前须妥善保管,防止零部件 丢失。 1.2室外存放时须用防雨布遮盖。

浅谈水厂净水工艺的选择

浅谈水厂净水工艺的选择 发表时间:2019-07-08T16:33:44.353Z 来源:《防护工程》2019年第7期作者:曾彬[导读] 本文以西江饮水工程为背景,探讨广东地区广州水厂工艺的选择。 摘要:水厂净水工艺的选择与水工工程设计以及原水源之间有着紧密的关系,原水源的情况以及水质特点决定着水厂净水工艺流程、净水方法的选择以及净水设施的建设。本文以西江饮水工程为背景,探讨广东地区广州水厂工艺的选择。 关键词:西江饮水工程;水厂;净水工艺 引言: 广州作为广东省的省会城市,人口密度较大,经济发达,不仅生产生活所用的水量较大,而且生产的生产生活污水也较多。作为我国经济发展名列前茅的城市,广州拥有较好的教育、医疗以及就业机会,这也成为越来越多的人选择留在广州发展的原因。然而,这个在经济上展现着雄厚实力的城市,环境污染问题却成为一个重点问题。广州西部地区曾经连续两年时间因为水源污染问题被省环保局列入黑名单,并要求其尽快的解决城市水源问题。为了创造宜居城市,广州市政府决定启动西江饮水工程置换西北部地区所有的原有水源,并要求各水厂对净水工艺进行升级改造,加强水源净化工作,为广州市居民提供一个干净、卫生的水源。 一、水厂净水工艺流程 1.水源 为了解决广州市西部地区的水源污染情况,西北部地区的水厂一律通过西江饮水工程取佛山市三水区西江思贤滘下陈村的水为水厂净化的原水源。据有关资料显示,西江水从1987年开始连续20多年获得Ⅰ类、Ⅱ类的水质检测报告,这说明西江水水质良好,是广州市西北部水厂良好的取水水源。经有关部门检测,西江水水质满足《地表水环境质量标准》(GB3838 —2002)中的 II 类水源水质标准。据悉,引入西江水后,广州市西北部净水厂提供水的水质将满足(《生活饮用水卫生标准》GB5749-2006)中的要求,其中106项指标达到了国际水平水质标准,全面改善了广州市西北部地区的水质问题。 2.出厂水质要求 水厂出厂水质根据不同的饮用水标准可以分为四大类,分别是生活饮用水、城市饮用净水、管道直饮水、桶装水或瓶装水。以下主要以生活饮用水为例,分析水厂净水工艺的选择。根据相关标准要求,净水厂出水浑浊度要求常规处理后 ≤1 N TU,深度处理后 ≤0 .1NT U,其他指标均满足卫生部《生活饮用水水质卫生规范》和建设部《城市供水水质标准》。 3.工艺流程 净水厂的工艺流程是为了满足水质净化以及深度处理依据净水处理顺序而实施的处理工艺。一般的工艺流程包括去除水中的臭味、色度以及有机污染物等工序,达到深度处理的水质还需要进行深度处理。常规的水厂净水工艺流程如下图1所示。 图1 常规的水厂净水工艺流程 二、净水工艺选择 (一)过滤 过滤是水厂净水工艺中的基本工艺,属于物理处理工艺。在水厂净水工艺中,大、中型的水厂的水质过滤选择双阀滤池过滤工艺,自来水厂选择气水反冲洗均粒滤料滤池过滤工艺。气水反冲洗滤池在水厂净水工艺流程的应用中,需要定期的冲洗水池,冲洗周期一般为30-48小时,浊水度要始终保持在1NTU以下。冲洗方式包括气冲和气水联冲两种。不管哪种冲洗方式,目的是为了保证废水的有效排除。 (二)沉淀 沉淀属于化学处理与物理处理的结合,一般与凝絮工艺组合使用。水厂净水工艺流程中,一般选择加速澄清池、斜管沉淀池、平流沉淀池三种,广州市大多选择的是平流沉淀池。实际上,一般的中、小型水厂净水工艺都可以选择平流沉淀池,具有设施构造简单、便于维护管理、耗能低、排污效果好以及净水成本较低的多种优势。不过,平流沉淀池对于原水水质和水量有一定的要求,要求水质污染性质较为稳定,水流流量冲击性较强。满足以上条件,平流沉淀池方可发挥出较好的净水作用。 (三)凝絮 凝絮属于化学处理工艺,主要有水力凝絮与机械凝絮两种,处理工艺与混合处理工艺相似。水利凝絮包括栅条絮凝、网格絮凝、孔室絮凝、折板絮凝四类。水利凝絮对于设计参数、水利条件的要求较高。机械凝絮需要借助机械完成凝絮功能,效果较好,但耗能较大,设备维护难度较高,凝絮工艺还受设备功能的影响,因此有一定的局限性。凝絮池原本兼有沉淀的功能。凝絮的效果与凝絮时间有关,一般时间越长,凝絮功能越好,产生的沉淀物越多。 (四)混合方式 混合方式主要包括机械混合和水力混合,目的是为了达到更好的凝絮沉淀效果。水力混合处理方式有混合池混合、管式静态混合器混合以及管道混合,其处理效果受水量变化影响明显。优势是维护工作较少。机械混合需要利用混合的机械设备完成混合,虽然处理效果较好、操作灵活方便,但是机械维护复杂。水厂净水工艺流程最常用的混合方式为管式静态混合器混合,组合处理流程如下图2所示。该组处理工艺也是水厂净水工艺中应用最为广泛的一种工艺。

给排水课设

1综述 1.1基本资料水厂设计基本资料如下: (1)水厂设计产水量:25000m3/d,考虑到水厂自用水和水量的损失,要乘以安全系数K=1.08,总处理水量 Q 2.5 104 1.08 2.7 104m3/d 1125m3/h。 Q高日高时1.5Q 1.5 2.7 104m3/d 4.05 104m3/d (2)水文及水文地质资料: 1)河流最高洪水位:37.50m 2)河流常水位:34.0-36.4m 3)设计地面标高:38.5m (3)原水水质如下: (4)厂区地形:按平坦地形设计,水源口位于水厂西北方向80m水厂位 于城市北面1km。 (5)自然状况 城市土壤种类为砂质黏土,地下水位 2.97m,冰冻线深度0.69m,年降水量 569.9mm最冷月平均为-8.2 C,最热月平均为30.7 C;极端温度:最高39.7 C, 最低-22.9 C。主导风向:夏季东南,冬季西北。

2总体设计 2.1工艺流程的确定 根据《地面水环境质量标准》(GB— 3838— 02),原水水质符合地面水川类水质标准,除浊度、菌落总数、大肠菌数偏高外,其余参数均符合《生活饮用水卫生标准》(GB5749- 2006)的规定。 水厂水以地表水作为水源,工艺流程如图 1所示。 混凝剂消毒剂 图1水处理工艺流程 2.2处理构筑物及设备型式选择 2.2.1药剂溶解池 设计药剂溶解池时,为便于投置药剂,溶解池的设计高度一般以在地平面以下或半地下为宜,池顶宜高出地面0.20m左右,以减轻劳动强度,改善操作条件。溶解池的底坡不小于0.02,池底应有直径不小于100mn的排渣管,池壁需设超高,防止搅拌溶液时溢出。 由于药液一般都具有腐蚀性,所以盛放药液的池子和管道及配件都应采取防腐措施。溶解池一般采用钢筋混凝土池体,若其容量较小,可用耐酸陶土缸作溶解池。 投药设备采用计量泵投加的方式。采用计量泵,不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。 2.2.2混合设备 使用管式混合器对药剂与水进行混合。在混合方式上,由于混合池占地大,基建投资高;水泵混合设备复杂,管理麻烦,机械搅拌混合耗能大,管理复杂,相比之下,管式混合具有占地极小、投资省、设备简单、混合效果好和管理方便等优点而具有较大的优越性。 2.2.3絮凝池

相关主题
文本预览
相关文档 最新文档